
AN1278/0502 1/44

AN1278
APPLICATION NOTE

LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS
by Microcontroller Division Applications

INTRODUCTION

Many mechanical components in the automotive sector have been replaced or are now being

replaced by intelligent mechatronical systems. A lot of wires are needed to connect these

components. To reduce the amount of wires and to handle communications between these

systems, many car manufacturers have created different bus systems that are incompatible

with each other.

In order to have a standard sub-bus, car manufacturers in Europe have formed a consortium

to define a new communications standard for the automotive sector. The new bus, called LIN

bus, was invented to be used in simple switching applications like car seats, door locks, sun

roofs, rain sensors, mirrors and so on.

The LIN bus is a sub-bus system based on a serial communications protocol. The bus is a

single master / multiple slave bus that uses a single wire to transmit data.

To reduce costs, components can be driven without crystal or ceramic resonators. Time syn-

chronization permits the correct transmission and reception of data. The system is based on a

UART / SCI hardware interface that is common to most microcontrollers.

The bus detects defective nodes in the network. Data checksum and parity check guarantee

safety and error detection.

As a long-standing partner to the automotive industry, STMicroelectronics offers a complete

range of LIN silicon products: slave and master LIN microcontrollers covering the protocol

handler part and LIN transceivers for the physical line interface. For a quick start with LIN,

STMicroelectronics supports you with LIN software enabling you to rapidly set up your first LIN

communication and focus on your specific application requirements.

Figure 1. LIN Network Overview

MASTER

SLAVE SLAVE SLAVE

LIN Bus

CAN Bus

1

2/44

Table of Contents

44

2

 INTRODUCTION . 1

1 LIN PROTOCOL . 4

2 LIN PRODUCTS . 7

2.1 LIN MICROCONTROLLERS . 7

2.1.1 LIN Slave MCUs . 7

2.1.2 LIN Master MCUs . 8

2.2 LIN TRANSCEIVERS . 9

2.2.1 L9637 K-Line Transceiver . 9

2.2.2 L9638 LIN Transceiver . 10

3 LIN SOFTWARE . 12

3.1 TYPES AND MACRO DEFINITIONS: LIB.H . 13

3.1.1 Debug settings . 13

3.1.2 Types . 13

3.1.3 Macros . 13

3.2 PROTOCOL HANDLER: LIN.P/H . 13

3.2.1 Type definition . 14

3.2.2 User interface functions . 14

3.2.3 Timeout handling . 15

3.2.3.1 Initializing the timer . 16

3.3 LIN CONFIGURATION FILE: LIN_CONFIG.H . 16

3.4 APPLICATION INTERFACE: LIN_AI.C . 20

4 EXAMPLES . 22

4.1 IMPLEMENTATION ON THE ST72254G2 - SOFTWARE EMULATED SCI . . . 25

4.1.1 Step by Step Configuration . 25

4.2 IMPLEMENTATION ON THE ST72334N4 - HARDWARE SCI 28

4.2.1 Step by Step Configuration . 28

4.2.1.1 lin_config.h . 28

4.2.1.2 lin_ai.c . 29

4.2.1.3 Master data request (DataRequest_Notification) 30

4.2.1.4 Data reception (DataReceived_Notification) 30

4.3 STMICROELECTRONICS LIN PACKAGE - EXAMPLE INSTALLATION 33

4.3.1 LIN package . 33

4.3.2 Quick start with STVD7 and Cosmic C Compiler . 33

4.4 PERFORMANCE . 36

4.4.1 Timing considerations . 37

4.4.2 Using the Emulated SCI . 38

4.4.2.1 Reception . 39

4.4.2.2 Transmission . 40

3/44

Table of Contents

4.4.3 Using the on-chip SCI . 42

4.4.3.1 Reception . 42

4.4.3.2 Transmission . 43

5 SUMMARY OF CHANGES . 43

1

4/44

LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS

1 LIN PROTOCOL

The aim of this chapter is to give an overview of the LIN protocol and concept. For detailed and

up-to-date information please refer to the official LIN homepage: www.lin-subbus.org where

you can register for the LIN specification package.

The LIN specification package consists of three parts:

■ The LIN protocol specification

■ The LIN configuration language description

■ The LIN API

The first part describes the LIN physical and data link layers. The second part describes the

LIN configuration language. The LIN configuration language enables the user LIN network to

be described in a file (how many nodes, how many frames, frame description, baudrate etc.).

The goal of this specification is to ease communications between the parties involved in the

development of a LIN network like car manufacturers and their suppliers. The third and last

part is about the software implementation of the LIN protocol and specifies some points on

how the software implementation has to be done.

The LIN concept uses a single master / multiple slave model. Only the master is able to initiate

a communication. A LIN frame consists of a header and a response part. To initiate a commu-

nication with a slave the master sends the header part. If the master wants to send data to the

slave it goes on sending the response part. If the master requests data from the slave the

slave sends the response part.

Figure 2. Basics of LIN communication

Direct communication between slaves is not possible. But as all nodes always listen to the

bus, a master request can be used to handle slave-to-slave communications.

Master

Slave 1 Slave 2

Header Response1 LIN frame

sent by:

Master

Slave 1

Slave 2

Master to slave 1

Slave 2 to master

LIN
Bus

5/44

LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS

The LIN protocol is object-oriented and not address-oriented. The header contains the identi-

fier which identifies the LIN frame and the data it contains. Different nodes may receive the

same frame data.

The response part consists mainly of data of selectable length (1 to 8 bytes). The data are se-

cured by an 8 bit checksum.

The LIN protocol is time-trigger oriented. The master periodically sends the same sequence of

LIN frames. Each sequence, the master and the slaves update the data they send and re-

ceive. The sequence sent by the master may change depending on application events.

Example: The slave is a sensor measuring a analog value which is communicated to the

master via LIN. The slave continuously measures its analog input independently from the LIN

communication. In response to a master request (periodical) the slave sends the up-to-date/

last measured value of the analog input.

Figure 3. Time-triggered protocol

In order to achieve a good level of security, different mechanisms exist like parity bits on the

identifier or checksum on data bytes.

One important feature of the protocol is to enable the slave MCUs to run with low cost oscilla-

tors such as an integrated RC oscillator provided that the accuracy is better than +/-15%. For

this purpose the header contains a sync field byte consisting of the constant 0x55. This byte

enables each slave to measure the master bit time and to synchronize its clock accordingly.

In order to obtain very low power consumption, the master is able to send a sleep frame. Any

node can go into low power mode. To wake up the network, any node can send a so-called

wake-up signal.

Master

Slave 1 Slave 2

1 sequence

Analog value:25

Analog

change
value

Analog value:38

25 25 38 38
LIN
Bus

6/44

LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS

Figure 4. Sleep mode - wake-up

Sleep mode
command

Wake-up
signal

“normal” mode Sleep mode Network
start-up

“normal“
mode

7/44

LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS

2 LIN PRODUCTS

A typical LIN node consists of a microcontroller for handling the LIN protocol and a LIN trans-

ceiver for interfacing the digital part and the physical line (see Figure 5 . LIN bus topology).

STMicroelectronics offers both kind of products.

Figure 5. LIN bus topology

2.1 LIN MICROCONTROLLERS

STMicroelectronics offers a wide range of microcontrollers suitable for master and/or slave

nodes.

2.1.1 LIN Slave MCUs

Table 1. Very low cost LIN slave MCUs - full software solution - Flash/ROM MCUs

Features ST72104G1 ST72104G2 ST72216G1 ST72215G2 ST72254G1 ST72254G2

Program memory -

bytes
4k 8k 4k 8k 4k 8k

RAM (stack) - bytes 256 (128)

Peripherals
Watchdog timer, One 16-

bit timer, SPI

Watchdog

timer, One

16-bit timer,

SPI, ADC

Watchdog

timer,

Two16-bit

timers, SPI,

ADC

Watchdog timer, Two 16-

bit timers, SPI, I2C, ADC

Operating Supply 3.2V to 5.5V

CPU Frequency Up to 8MHz (with oscillator up to 16 MHz)

Operating Tempera-

ture
-40°C to +85°C (-40°C to +105/125°C optional)

Packages SO28 / SDIP32

MASTER

SLAVE SLAVE SLAVE

MICROCONTROLLER

RXTX

TRANSCEIVER

LIN Bus

LIN Bus

8/44

LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS

Table 2. Low cost LIN slave MCUs with hardware SCI - Flash/ROM MCUs

2.1.2 LIN Master MCUs

Table 3. EPROM/OTP/ROM MCUs

Table 4. Flash, ROM MCUs (ST7 core)

Features

S
T

7
2

1
2

4
J

2

S
T

7
2

3
1

4
J

2

S
T

7
2

3
1

4
J

4

S
T

7
2

3
1

4
N

2

S
T

7
2

3
1

4
N

4

S
T

7
2

3
3

4
J

2

S
T

7
2

3
3

4
J

4

S
T

7
2

3
3

4
N

2

S
T

7
2

3
3

4
N

4

Program memory

- bytes
8k 8k 16k 8k 16k 8k 16k 8k 16k

RAM (stack) -

bytes

384

(256)

384

(256)

512

(256)

384

(256)

512

(256)

384

(256)

512

(256)

384

(256)

512

(256)

Peripherals
Watchdog timer, Two 16-bit timers, SPI, SCI

- ADC

Operating Supply 3.0V to 5.5V

CPU Frequency Up to 8MHz (with up to 16MHz oscillator)

Operating Tem-

perature
-40°C to +85°C (-40°C to +105/125°C optional)

Packages TQFP44/SDIP42 TQF64/SDIP56 TQF44/SDIP42 TQF64/SDIP56

Features ST72511R9 ST72511R7 ST72511R6

Program memory -

bytes
60k 48k 32k

RAM (stack) - bytes 2048 (256) 1536 (256) 1024 (256)

Peripherals Watchdog timer, Two 16-bit timers, 8-bit PWM ART, SPI, ADC

Operating Supply 3.0V to 5.5V

CPU Frequency Up to 8MHz (with oscillator up to 16 MHz)

Operating Tempera-

ture
-40°C to +85°C (-40°C to +105/125°C optional)

Packages TQFP64

Features ST72521R/M9 ST72521R/M7 ST72521R/M6 ST72521R5 ST72521R4

Program memory -

bytes
60k 48k 32k 24k 16k

RAM (stack) - bytes 2048 (256) 1536 (256) 1024 (256) 768 (256) 512 (256)

Peripherals

Watchdog timer, 16-bit timers, SPI, SCI, 10-bit ADC, CAN

8-bit PWM ART, I2C
8-bit PWM

ART

Operating Supply 2.7V to 5.5V

CPU Frequency
16 to 50kHz (with 32 to 100kHz oscillator), 500 to 8 MHz (with 1 to 16 MHz oscil-

lator), 2 to 8 MHz (with 2 to 4 MHz oscillator and PLL)

Operating Tempera-

ture
0°C to 70°C/-40°C to +85°C/-40°C to +105°C/-40°C to +125°C/

Packages TQFP80(M), TQFP64 (R)

9/44

LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS

Table 5. Flash, ROM MCUs (ST9 core)

Note: The master MCUs listed above have all an on-chip CAN peripheral. This corresponds to

the initial LIN concept: the LIN network as sub-network of CAN. However any other MCUs

(listed above as slave for example) can be used to implement a master node.

2.2 LIN TRANSCEIVERS

To ensure the physical behaviour of the LIN bus STMicroelectronics also offers K-Line drivers

and a dedicated LIN Bus Transceiver.

2.2.1 L9637 K-Line Transceiver

The L9637 K-Line transceiver is a monolithic integrated circuit containing standard ISO 9141

compatible interface functions. Its features are listed below.

■ Operating power supply voltage range 4.5V ≤ VS ≤ 36V (40V for transients)

■ Reverse supply battery protected down to VS ≥ -24V

■ Stand-by mode with very low current consumption ISSB 1µA @Vcc 0.5V

■ Low quiescent current in OFF condition ISOFF = 120µA

■ TTL compatible TX input

■ Bidirectional K-I/O pin with supply voltage dependent input threshold

■ Overtemperature shut down function selective to K-I/O pin

■ Wide input and output voltage range -24V ≤ VK ≤ VS

■ K output current limitation, typical IK = 60mA

■ Defined OFF output status in under voltage condition and VS or GND interruption

■ Controlled output slope for low EMI

■ High input impedance for open VS or GND connection

■ Defined output on status of LO or RX for open LI or K inputs

■ Defined K output off for TX input open

Features ST92F150JD ST92F150JC ST92F124J ST92F124

FLASH - bytes 128K 60/128K 60/128K 60/128K

RAM - bytes 6K 2/4K 2/4K 2/4K

EEPROM - bytes 1K 1K 1K 1K

Timers
2MFT, 2 EFT, STIM,

WD
2MFT, 0/2 EFT, STIM, WD

Serial Interface 2 SCI, SPI, I²C 1/2 SCI, SPI, I²C

ADC 16 x 10 bits 8/16 x 10 bits

Network Interface 2 CAN, J1850 CAN, J1850 J1850 -

Temp. Range -40°C to 125°C or -40°C to 85°C

Package P/TQFP100 P/TQFP100 and TQFP64

10/44

LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS

■ Integrated pull up resistors for TX, RX and LO

■ EMI robustness optimized

2.2.2 L9638 LIN Transceiver

The L9638 LIN transceiver is a monolithic integrated circuit fulfilling the LIN specification.

Its features are listed below.

■ Wake up capability by:

- LIN bus

- External signal (edge triggered)

■ System wake up functions:

- Inhibit output

- RxD output

■ Quiescent current less than 25µA

■ Fail safe functions implemented

■ Pin compatible to L9637

Figure 6. L9638 block diagram

Glitch

Filter

Control

Logic

Protection

Internal

Voltage

Regulator

VS

RXD

TXD

EN

WUP

LIN

INH

GND

Int.5V

Glitch

Filter

11/44

LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS

The following figure (Figure 7) shows a typical application of the L9638 LIN transceiver to-

gether with the ST72124J microcontroller and a voltage regulator.

Figure 7. Application of L9638 with ST72124J Microcontroller

The voltage regulator supplies the application and generates the MCU reset signal. The LIN

transceiver is the physical line interface between the SCI (Serial Communication Interface)

TDI and RDO pins of the microcontroller and the LIN bus line. The microcontroller handles the

LIN protocol and the application functions.

In order to lower power consumption the microcontroller is able to switch off the LIN trans-

ceiver via the L9638 “EN” input. The transceiver is then able to switch off the voltage regulator

by connecting its “INH” output to the “EN” input of the voltage regulator. In this state any ac-

tivity on the LIN bus will cause the L9638 to wake the voltage regulator up via the “INH” pin.

Another wake-up source is the “WUP” pin of the L9638 that can be used for contact sensing.

Any edge on this pin will also wake up the regulator.

LIN Node

Vbatt

LIN

LIN

RxD

TxD

INH

EN

LIN

WUP

Vs

GND

reset

GND

Vdd

TDI

RDO

I/O pin
Vs

Vout

RES

voltage

regulator

ST72124J

MCU

transceiver

EN

L9638

GND

Vdd

12/44

LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS

3 LIN SOFTWARE

Table 6. Software Overview

The LIN standard includes the specification of the communication protocol but also the use of

associated tools.

STMicroelectronics supports the development of your LIN application by providing ready-to-

use LIN software. This software only handles the communication protocol part. For a complete

software development tool solution you can contact LIN specialist third party tools manufac-

turers like VCT (http://www.vct.se) or Vector (http://www.vector-informatik.de).

The software supports LIN slave nodes. It consists of 4 files:

– lin.c/h: protocol handler code

– lin_config.c: LIN parameter configuration file

– lin_ai.c: application interface

A fifth additional file is delivered:

– lib.h: library file (macros, types definition)

The software supports the COSMIC C compiler.

Figure 8. Software Architecture

Version 2.0

Supported nodes slave

Supported MCUs all ST7 MCUs

LIN protocol specification revision rev 1.2

APPLICATION lin-ai.c

lin.c

HARDWARE

interrupt

application

specifics

LIN

MESSAGE

lin
_

c
o

n
fi
g

.h

13/44

LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS

The software is interrupt driven. As soon as a message begins on the bus, an interrupt is gen-

erated and automatically handles the protocol. This means that the protocol handler is totally

autonomous. It runs in the background. When the received frame is decoded by the software

this is notified to the application in the lin_ai.c. In this file the user is able to customize the be-

haviour of the application upon reception of a frame for example.

3.1 TYPES AND MACRO DEFINITIONS: LIB.H

3.1.1 Debug settings

see 4.4.1 Timing considerations

3.1.2 Types

The software uses predefined types for 1-byte and 2-byte variables.

The name used for the one-byte type is “uByte“.

The name used the two-byte type is “uWord”.

Beside these, a third type is used to define two-byte variables that can also be accessed high

byte or low byte only.

typedef union {

 unsigned int w_form;

 struct {

 unsigned char high, low;

 } b_form;

 } TwoBytes;

These types are defined in the lib.h file.

3.1.3 Macros

Three macros for register bit access are defined:

– SetBit(var,pos): Set bit “pos” of “var” variable

– ClrBit(var,pos): Clear bit “pos” of “var” variable

– ValBit(var,pos): Test bit “pos” of “var” variable. Return “0” if reset another value otherwise.

3.2 PROTOCOL HANDLER: LIN.P/H

The lin.p file contains the protocol handler. The user has no access to this file. It should simply

be linked to the rest of the application. The lin.p file is encrypted and can therefore not be read

but must be compiled and linked to the rest of the application.

The lin.h contains the definition of new types and the prototypes of the functions defined in

lin.c.

14/44

LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS

3.2.1 Type definition

t_error

typedef enum {NO_ERROR,BIT_ERROR,ID_PARITY_ERROR,CHECKSUM_ERROR,

NO_ID_MATCH,TIMEOUT_ERROR,DATA_RECEIVED,DATA_REQUEST,

WAKE_UP,UART_ERROR,SYNCH_BREAK_ERROR}t_error;

defines the different error code values that the software functions are able to return.

t_message_direction

typedef enum {ID_DATAREQUEST,ID_DATASENT}t_message_direction;

This type is used internally in lin.c and in lin_drv.c.

t_id_list

typedef struct{

uByte id;

t_message_direction dir;

uByte length;} t_id_list;

defines the type of an identifier list.

t_one_databyte_output

typedef struct{

t_error error_code;

uByte data_byte;} t_one_databyte_output;

defines a type of function return value consisting of an error code made up of error type and a

data byte.

t_header

typedef struct

{

uByte identifier;

uByte length;} t_header;

A LIN frame consists of a header and a response. This typedef defines the header part type.

t_response

typedef struct

{

uByte data[8];

uByte checksum;} t_response;

A LIN frame consists of a header and a response. This typedef defines the response part type.

3.2.2 User interface functions

To integrate this software into your application software you have to link 3 or 4 functions de-

fined in lin.c to your project.

15/44

LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS

Here are the prototypes of these functions:

3.2.3 Timeout handling

The LIN communication timeout handling is done using one output compare (OC) feature of

the 16 bit timer. If the SCI communication is emulated using a 16 bit timer (uses one OC and

one IC) the user can and should define the same timer for both the SCI communication and

the timeout handling. In this case the timer is fully used for the LIN communication and the LIN

software takes full control of the selected timer. If the user decides to configure 2 different

timers for the SCI communication and the timeout handling or if the SCI is not emulated by a

16 bit timer; timeouts are handled using only one OC of a separate timer. In order to leave the

unused OC/IC features free for the application, the application software is responsible for:

Function void LIN_Init(void)

Parameters none

Return value none

Description
LIN communication initialization

Has to be called after reset

Function void LIN_SendWakeUpSignal(void)

Parameters none

Return value none

Description

When the LIN network is in sleep mode and the application

wants to wake it up, this function has to be called to send a

wakeup frame.

Function void LIN_Interrupt(void)

Parameters none

Return value none

Description

LIN interrupt service routine. You should link this function to the

corresponding interrupt vector: timer or SCI interrupt according

to the SCI hardware used (see 3.3 LIN Configuration File:

lin_config.h).

Function void LINTimeOut_Interrupt(void)

Parameters none

Return value none

Description

LIN timeout interrupt service routine (exists only in some cases).

It only exists if SCI is defined or if the timer defined for timeouts

is not the one used for the SCI emulation You should link this

function to the corresponding timer interrupt vector (see 3.2.3

Timeout handling and 3.3 LIN Configuration File: lin_config.h).

16/44

LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS

3.2.3.1 Initializing the timer

The application can initialize the resources that are not used by the LIN software as needed

but is also responsible for initializing the OC defined for the timeouts handling in this way:

OC interrupt

The OCIE flag in Control Register 1 must be set. A write access must be made to the high byte

of the defined Output Compare Register to disable the corresponding interrupt separately.

The LIN software will enable it when needed. If the application is not using the other Output

Compare, a write access must be done to the high byte of the corresponding output compare

register to disable the feature.

Timer Clock Initialization

The timer clock/prescaler has to be defined to fulfil the LIN software requirements. The reason

is that the timeouts to be handled must be smaller than a timer period otherwise the output

compare cannot work properly. The LIN software takes the faster clock that respects this con-

dition. The “prescaler” to be set can be calculated using the following equations. The smallest

value (2,4, or 8) that fulfils the equation is the prescaler value.

Table 7. Equation for prescaler value calculation

Timer Interrupt Initialization

The LIN software will use the define OC feature in such a way that an OC interrupt will be gen-

erated if a LIN communication timeout occurs. The corresponding timer interrupt has to be de-

fined by the application and the “LINTimeOut_Interrupt” function described above has to be in-

serted in it. The function checks if the OCxF flag is set and resets it after completion.

3.3 LIN CONFIGURATION FILE: LIN_CONFIG.H

The lin_config.h file allows the user to configure the LIN communication. The following sym-

bols should be set:

#define FCPU

#define UART_TIMERA

#define UART_TIMERB

SCI emulation (FCPU/prescaler/BAUDRATE)*163 < 65536

SCI emulation & resynchr. 1,15*(FCPU/prescaler/BAUDRATE)*163 < 65536

On-chip SCI used (FCPU/prescaler/BAUDRATE)*165 < 65536

#define FCPU

Description Speed in MHz of the MCU internal frequency

17/44

LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS

#define SCI

#define LIN_PORT_ADD

#define LIN_RX_PINNB

Example: ST72-104/215/216/254 MCU family

#define UART_TIMERA, UART_TIMERB or SCI

Description

Define only one of these options. Define

UART_TIMERA or UART_TIMERB if you use a mi-

crocontroller without SCI and depending on the tim-

er you want to use. The serial communication will

be emulated by software with a timer. If you use a

microcontroller with an on-chip SCI, define SCI.

The hardware SCI peripheral will be used.

#define LIN_PORT_ADD

Description

Needs to be defined only if UART_TIMERA or

UART_TIMERB is defined.

Set which pin is the LIN RX pin. This symbol should

be set to the address of the data register of the I/O

port linked to the LIN RX pin (PC3>set address of

PCDR register).

#define LIN_RX_PINNB

Description

Needs to be defined only if UART_TIMERA or

UART_TIMERB is defined.

Set which pin is the LIN RX pin. This symbol should

be set to the number of the pin linked to the LIN RX

pin (PC3>set 3).

SCI emulated by Timer A SCI emulated by Timer B

LIN RX on IC1 LIN RX on IC2 LIN RX on IC1 LIN RX on IC2

LIN RX is pin: PB0 (Port B pin 0) PB2 (Port B pin 2) PC0 (Port C pin 0) PC3 (Port C pin 3)

LIN_PORT_ADD 0x04 0x04 0x00 0x00

LIN_RXC_PINNB 0 2 0 3

18/44

LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS

#define UART_IC1

#define UART_IC2

#define UART_OC1

#define UART_OC2

#define TIMEOUT_TIMERA

#define TIMEOUT_TIMERB

#define TIMEOUT_OC1

#define TIMEOUT_OC2

#define UART_IC1, UART_IC2

Description

Needs to be defined only if UART_TIMERA or

UART_TIMERB is defined.

Define only one of these options. Define UART_IC1

if the LIN RX pin is connected to the Input Capture

1 pin. Define UART_IC2 if the LIN RX pin is con-

nected to the Input Capture 2 pin.

#define UART_OC1, UART_OC2

Description

Needs to be defined only if UART_TIMERA or

UART_TIMERB is defined.

Define only one of these options. Define

UART_OC1 if the LIN RX pin is connected to the

Output Compare 1 pin. Define UART_OC2 if the

LIN RX pin is connected to the Output Compare 2

pin.

#define TIMEOUT_TIMERA, TIMEOUT_TIMERB

Description

Define only one of these options. Define which tim-

er is used for the timeout handling.

If you already defined a timer for the SCI emulation

set the same timer for the timeout handling. This will

optimize the use of resources: A timer is fully used

for the LIN software and the second is free for the

application.

#define TIMEOUT_OC1, TIMEOUT_OC2

Description

Define only one of these options. Define which out-

put compare of the previously defined timer is used

for the timeout handling.

Warning: If the same timer is used for both the SCI

emulation and the timeouts handling, do not define

the same output compare for both features.

19/44

LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS

#define BAUDRATE

#define BRR

#define ExPR

Note: Here is a list of baudrates and corresponding settings of (BRR,ExPR) depending on the

CPU frequency. Note that there are some small differences in the SCI prescaler between for

example the ST72324/321/521 and ST72314/334 derivatives. As a result the value of BRR

and ExPR may also depend on the MCU derivative.

Table 8. Example of (BRR,ExPR) values versus baudrate and fCPU

(*): fCPU=fOSC/2 if PLL is not used

#define ID_TABLE_SIZE

#define BAUDRATE

Description LIN communication speed in bit/s

#define BRR, ExPR

Description

Needs to be defined only if SCI is defined.

Set both registers to obtain the baudrate previously

defined. BRR is the “baudrate register” and ExPR

will set the same value for both the “extended re-

ceive prescaler division register” and the “extended

transmit prescaler division register”. Refer to the

datasheet of the MCU you are using (“Serial Com-

munication Interface” chapter).

ST72x314/334/124 ST72x324/321/521

fCPU(*) 8MHz 4MHz 2MHz 8MHz 4MHz 2MHz

bit rate(bit/s)
(0xD2,0x00) (0xC9,0x00) (0xC0,0x00) (0xDB,0x00) (0xD2,0x00) (0xC9,0x00)

4,8k

9,6k (0xC9,0x00) (0xC0,0x00) (0x00,0x0D) (0xD2,0x00) (0xC9,0x00) (0xC0,0x00)

19,2k (0xC0,0x00) (0x00,0x0D)
high quantifi-

cation error
(0xC9,0x00) (0xC0,0x00)

high quantifi-

cation error

20k (0x00,0x19)
high quantifi-

cation error

high quantifi-

cation error
(0x00,0x19)

high quantifi-

cation error

high quantifi-

cation error

#define ID_TABLE_SIZE

description
number of LIN frames to be handled by the applica-

tion. See Section 3.4

20/44

LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS

#define RESYNCH

3.4 APPLICATION INTERFACE: LIN_AI.C

This file is the application interface and should be filled by the user. In this way the user can

define the LIN communication of his application.

The lin_ai.c file consists of:

The ID_Table variable

You fill this variable to define the identifiers of the LIN frames that the application has to

handle.

Each member of this list corresponds to a LIN frame and its corresponding identifier. Each

member is of type t_id_list (See 3.2.1 Type definition) and has to be defined in the following

way:

{identifier, direction, data length}

identifier represents the whole identifier byte including the parity bits.

direction represents the data flow direction, is of type t_message_direction and should there-

fore be set to ID_DATAREQUEST for data being requested by the master and to be sent by

the application/slave or to ID_DATASENT for data being sent by the master to the application/

slave.

data length represents the number of data bytes of the corresponding frame. It can be set be-

tween 0 to 8.

Note: The LIN protocol specification gives some advice concerning the coding of the data

length through the ID5 and ID4 bits in the identifier byte. But this coding is no longer manda-

tory since revision 1.2 of the specification.

The number of members has to be entered in the lin_config.h file (See 3.3 LIN Configuration

File: lin_config.h).

3 Notification functions

The LIN software is interrupt driven which means you do not have to poll any variables to

handle LIN communication. When activity appears on the LIN bus, the LIN interrupt service

routine is entered and starts decoding the LIN frame. Once the LIN software is able to notify an

#define RESYNCH

description

Can only be defined if UART_TIMERA or

UART_TIMERB has been defined.

If the application is working with an inaccurate clock

the LIN software is able to resynchronize to the

master clock (refer to the LIN protocol). Define this

symbol to activate this feature.

21/44

LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS

event to the application, one of the 3 notification functions is called. These functions are deliv-

ered empty and by expanding them the user is able to fully define his application LIN commu-

nication. The 3 functions correspond to the 3 kinds of events:

Function uByte * DataRequest_Notification(@tiny t_header *header)

Parameters pointer to a variable of type t_header

Return value pointer to an array

Description

This function is called on reception of a LIN header which requests data

i.e. which is defined in the ID_Table with the qualifier

“ID_DATAREQUEST”. The function passes the received header as a

pointer. The user has to complete this function and return a pointer to the

array containing the data to be sent.

Note: The data bytes are buffered by the LIN software just after this func-

tion call so that the user does not have to handle data sharing between

the application and the LIN software.

Function
void DataReceived_Notification(@tiny t_header *header, @tiny

t_response *response)

Parameters
pointer to a variable of type t_header, pointer to a variable of type

t_response

Return value none

Description

This function is called upon the reception of a LIN header and response

which was sent by the master to the application i.e. which is defined in the

ID_Table with the qualifier“ID_DATASENT”. The function passes the re-

ceived header and response as a pointer. The user has to complete this

function to handle the received data.

Function void Error_Notification(t_error error_code)

Parameters variable of type t_error

Return value none

Description

This function is called upon the detection of an error. The function passes

the type of error (See t_error type definition in 3.2.1 Type definition). The

user has to complete this function if special action has to be taken in case

of errors.

22/44

LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS

4 EXAMPLES

The purpose of this chapter is to give you an example, describing step by step how to use the

LIN software. This example was defined to demonstrate the LIN software and not to show a

typical LIN application.

The network consists of the master node and 2 slave nodes.

Figure 9. LIN network example

The application example is slave1.

The LIN communication consists of 4 LIN frames.

(*): The example is given for the LIN specification package 1.1 as many tools still don’t support

the 1.2 package.

Frame name Identifier ID[7..0] Message Length Data Direction

DataToSlave1 0x03 2 master to slave1

RequestToSlave1 0x20 4 slave1 to master

RequestToSlave2 0x76 2 slave2 to master

MasterReq

(sleep mode command)
0x80(*) 2 master to all slaves

MASTER

SLAVE 1

LIN Bus

SLAVE 2

23/44

LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS

Figure 10. LIN communication example

The figure above represents the LIN communication in “running” mode. The “SleepMo-

deCOmmand” frame is sent by the master to set the LIN network in sleep mode and is there-

fore not part of the normal communication.

The baud rate is 9600 baud.

This communication corresponds to the following LIN description file:

master

slave 1

slave 2

bus

0x760x03 0x20 0x03 0x20

0x760x03 0x20 0x03 0x20

master

slave1

data

TX

TX

TX

line

DataToSlave1 RequestToSlave1 RequestToSlave2

data to
slave 1

slave2

data

24/44

LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS

Figure 11. LIN description file of the example

The rest of the example is divided into 2 main parts. The described example is first imple-

mented on the ST72254G2 MCU which has no SCI peripheral. This part demonstrates the ca-

pability of the LIN software to emulate the whole LIN protocol using the embedded 16-bit

timer. The second part describes the implementation on the ST72334N4 which has an SCI pe-

ripheral.

LIN_description_file ;

LIN_protocol_version = 1.1;

LIN_language_version = 1.1;

LIN_speed = 9.6 kbps;

Nodes {

Master: master, 1 ms, 0.1 ms;

Slaves: slave1, slave2;

}

Signals {

MasterDataToSlave1:16,5,master;

Slave1DataA:16,0,slave1;

Slave1DataB:8,0,slave1;

Slave1DataC:8,0,slave1;

Slave2DataA:8,0,slave2;

Slave2DataB:8,0,slave2;

}

Frames {

DataToSlave1:03,master {

MasterDataToSlave1,0;

}

RequestToSlave1:32,slave1 {

Slave1DataA,0;

Slave1DataB,16;

Slave1DataC,24;

}

RequestToSlave2:54,slave2 {

Slave2DataA,0;

Slave2DataB,8;

}

}

Schedule_tables {

Test_Schedule {

DataToSlave1 delay 10 ms;

RequestToSlave1 delay 15 ms;

RequestToSlave2 delay 15 ms;

 }

}

25/44

LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS

4.1 IMPLEMENTATION ON THE ST72254G2 - SOFTWARE EMULATED SCI

4.1.1 Step by Step Configuration

lin_config.h

Setting Group Comments Text line in lin_config.h

CPU operating frequency

An external resonator of 16 Mhz

is used. As a result the internal

CPU frequency is 8MHz. So

“FCPU” is set to 8000000.

#define FCPU 8000000

Communication peripheral

The ST72254 has no SCI periph-

eral on chip. As a result the

UART communication has to be

emulated by one of the 16bit tim-

er TimerA or TimerB. TimerA is

chosen in this example. As a re-

sult “UART_TIMERA” is defined

and “UART_TIMERB” and “SCI”

are commented out.

#define UART_TIMERA

//#define UART_TIMERB

//#define SCI

LIN RX and LIN TX pin definition

Depending on the constraints of

the board layout and according to

the ST72254 pinout we select the

Input Capture 1 pin and the Out-

put Compare 1 pin for respective-

ly the LIN RX and LIN TX signals.

The Input Capture 1 pin of Time-

rA is linked to the Port B pin 0

(see pin description in the MCU

datasheet). As a result

LIN_RX_PINNB” is set to 0. Port

B data register has the address

0x04. As a result

“LIN_PORT_ADD” is defined to

0x04

#define UART_IC1

//#define UART_IC2

#define UART_OC1

//#define UART_OC2

#define LIN_PORT_ADD 0x04

#define LIN_RX_PINNB 0

Timeouts

The UART communication is al-

ready using one input capture

and one output compare of Time-

rA. Setting TimerA for the timeout

handling will complement the use

of the timer. So we define

“TIMEOUT_TIMERA“. Output

Compare 1 is already used by the

UART communication (see

UART_OC1) so we define the

output compare 2 for the time-

outs handling.

#define TIMEOUT_TIMERA

//#define TIMEOUT_TIMERB

//#define TIMEOUT_OC1

#define TIMEOUT_OC2

LIN baudrate
The example LIN baudrate is

9600 Baud.

#define BAUDRATE

9600

26/44

LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS

lin_ai.c

The first part of the lin_ai.c code is the definition of the LIN frames the application has to

handle. Out of the 4 defined for the whole network the application handles the 3 following

frames:

The corresponding setting of “ID_Table” is:

const t_id_list ID_Table[]=

{

{0x03, ID_DATASENT, 2},

{0x20, ID_DATAREQUEST, 4},

{0x80, ID_DATASENT, 8}

};

The second part of the lin_ai.c code consists of 3 notification functions and is the kernel of the

LIN communication. Filling the notification functions enables you to define the behaviour of the

application upon a master data request (DataRequest_Notification function) on the reception

of data from the master (DataReceived_Notification function) and when errors occur

(Error_Notification function).

Master data request (DataRequest_Notification)

The application handles one data request from the master corresponding to the identifier 0x20

(ID_Table[1]). The application has to return a pointer to an array containing the data to be

sent. In this example we declare an array “slave_data[]”. This array will be shared between the

SCI peripheral registers

An SCI peripheral is not used. As

a result “BRR” and “ExPR” are

commented out.

//#define BRR 0xC9

//#define ExPR 0x00

Number of LIN frames to be han-

dled

The network communication con-

sists of 4 LIN frames. The appli-

cation example handles 3 of

them: DataToSlave1,

RequestToSlave1 and SleepMo-

deCommand.

#define ID_TABLE_SIZE

3

Resynchronization

The application is working with a

accurate clock (<2%). The resyn-

chronisation feature is not need-

ed. “RESYNCH” is commented

out.

//#define RESYNCH

Frame name Identifier ID[7..0] Message Length Data Direction

DataToSlave1 0x03 2 master to slave1

RequestToSlave1 0x20 4 slave1 to master

SleepModeCommand 0x80 2 master to all slaves

Setting Group Comments Text line in lin_config.h

27/44

LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS

application updating it with the latest data and the LIN communication sending its content on

request of the master. The corresponding code for the “DataRequest_Notification” function is:

Data reception (DataReceived_Notification)

The application handles 2 “data” frames from the master corresponding to the identifier 0x03

and 0x80. The first frame is part of the “normal” communication. The second frame is a sleep

command frame that can be sent by the master at any time to interrupt normal communication

and set all nodes into low power mode.

On reception of the first frame the application saves the received data into the variable

“master_data[]“.

On reception of the sleep command frame the application sets the ST7 in Halt mode. Before

setting the ST7 in Halt mode the wake-up sources should be acitivated. An application func-

tion, “PORTS_WakeUp_On()“, is called. Two pins are configured as interrupt and will wake

the ST7 up on a corresponding interrupt request. The first pin is the Laniards pin. As a result

any bus activity will wake the application up. The second is an application pin that should be

also able to wake up the application.

The corresponding code for the “DataReceived_Notification” function is:

Any activity on the bus will wake up the ST7 out of Halt mode. As soon as the ST7 is ready to

execute the next instruction any incoming frame can be received.

extern uByte slave_data[];

uByte * DataRequest_Notification(@tiny t_header *header)

{

 if(header->identifier == ID_Table[1].id){

 return(slave_data);

 }

}

extern uByte master_data[];

void DataReceived_Notification(@tiny t_header *header, @tiny t_response *re-

sponse)

{

 if(header->identifier == ID_Table[0].id){

 master_data[0]=response->data[0];

 master_data[1]=response->data[1];

 }

else if(header->identifier == ID_Table[2].id){

 PORTS_WakeUp_On();

 _asm("halt\n");

 }

}

28/44

LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS

The application can also be woken up by a sensor connected to one pin of the ST7 and then

should also wake up the whole LIN network. For this a wake-up frame has to be sent, which is

done by the “LIN_SendWakeUpSignal()” function. This function is therefore inserted in the ap-

plication wake-up interrupt:

The software is ready!

4.2 IMPLEMENTATION ON THE ST72334N4 - HARDWARE SCI

4.2.1 Step by Step Configuration

4.2.1.1 lin_config.h

@interrupt void PORTS_0_Interrupt(void)

{

unsigned char i;

 i=250;

 while(i--);

 if(!(PADR&0xFE))

 {

 PAOR&=0xFE;

 LIN_SendWakeUpSignal();

 }

}

Setting group Comments Text line in lin_config.h

CPU operating frequency

An external 16 MHz resonator is

used. As a result the internal

CPU frequency is 8 MHz. So

“FCPU” is set to 8000000.

#define FCPU 8000000

Communication peripheral

The ST72334N4 has an on chip

SCI peripheral. As a result “SCI”

is defined, “UART_TIMERA” and

“UART_TIMERB” are comment-

ed out.

//#define UART_TIMERA

//#define UART_TIMERB

#define SCI

LIN RX and LIN TX pin definitions

These are not needed when us-

ing an on-chip SCI peripheral. All

symbols are commented out.

//#define UART_IC1

//#define UART_IC2

//#define UART_OC1

//#define UART_OC2

//#define LIN_PORT_ADD

0x04

//#define LIN_RX_PINNB 0

29/44

LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS

4.2.1.2 lin_ai.c

The first part of the lin_ai.c code is the definition of the LIN frames the application has to

handle. Out of the 4 defined for the whole network the application handles the 3 following

frames:

The corresponding setting of “ID_Table” is:

const t_id_list ID_Table[]=

{

{0x03, ID_DATASENT, 2},

{0x20, ID_DATAREQUEST, 4},

{0x80, ID_DATASENT, 8}

};

The second part of the lin_ai.c code consists of 3 notification functions and is the kernel of the

LIN communication. Filling the notification functions enables you to define the behaviour of the

application upon a master data request (DataRequest_Notification function) upon the recep-

tion of data from the master (DataReceived_Notification function) and upon errors

(Error_Notification function).

Timeouts

One output compare of one timer

is needed for the timeouts han-

dling. We choose the output com-

pare 1 of timer A. So

“TIMEOUT_TIMERA” and

“TIMEOUT_OC1” are defined.

#define TIMEOUT_TIMERA

//#define TIMEOUT_TIMERB

#define TIMEOUT_OC1

//#define TIMEOUT_OC2

LIN baudrate
The example LIN baudrate is

9600 Baud.

#define BAUDRATE

9600

SCI peripheral registers

See Table 8. Example of

(BRR,ExPR) values versus

baudrate and fCPU.

//#define BRR 0xC9

//#define ExPR 0x00

Number of LIN frames to be han-

dled

The network communication con-

sists of 4 LIN frames. The appli-

cation example handles 3 of

them: DataToSlave1,

RequestToSlave1 and SleepMo-

deCommand.

#define ID_TABLE_SIZE

3

Resynchronization

Not supported using the on-chip

SCI peripheral. “RESYNCH” is

commented out.

//#define RESYNCH

Frame name Identifier ID[7..0] Message Length Data Direction

DataToSlave1 0x03 2 master to slave1

RequestToSlave1 0x20 4 slave1 to master

SleepModeCommand 0x80 2 master to all slaves

30/44

LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS

4.2.1.3 Master data request (DataRequest_Notification)

The application handles one data request from the master corresponding to the identifier 0x20

(ID_Table[1]). The application has to return a pointer to an array containing the data to be

sent. In this example we declare an array “slave_data[]”. This array will be shared between the

application updating it with the last data and the LIN communication sending its contents on

request of the master. The corresponding code for the “DataRequest_Notification” function is:

4.2.1.4 Data reception (DataReceived_Notification)

The application handles 2 “data” frames from the master corresponding to the identifier 0x03

and 0x80. The first frame is part of the “normal” communication. The second frame is a sleep

command frame that can be sent by the master at any time to interrupt the normal communi-

cation and set all nodes into low power mode.

On reception of the first frame the application saves the received data into the variable

“master_data[]“.

On reception of the sleep command frame the application sets the ST7 in Halt mode. Before

setting the ST7 in Halt mode the wake-up sources should be acitivated. An application func-

tion, “PORTS_WakeUp_On()“, is called. Two pins are configured as interrupt and will wake

the ST7 up upon a corresponding interrupt request. The first pin is connected to the LIN_RX

pin (the SCI RX pin has no interrupt capability). As a result any bus activity will wake the ap-

plication up. The second is an application pin that should be also able to wake up the applica-

tion.

The corresponding code for the “DataReceived_Notification” function is:

Any activity on the bus will wake up the ST7 out of Halt mode. As soon as the ST7 is ready to

execute the next instruction any incoming frame can be received.

The application can also be woken up by a sensor connected to one pin of the ST7 and then

should also wake up the whole LIN network. To do this, a wake-up frame has to be sent, which

is done by the “LIN_SendWakeUpSignal()” function. This function is therefore inserted in the

application wake-up interrupt routine:

The last point to be configured is the timeout handling and the setting of the corresponding

timer, which is timer A. The application software is not using timer A for other purposes. As de-

extern uByte slave_data[];

uByte * DataRequest_Notification(@tiny t_header *header)

{

 if(header->identifier == ID_Table[1].id){

 return(slave_data);

 }

}

31/44

LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS

scribed in 3.2.2 User interface functions the application is responsible for the initialization and

the interrupt routine.

Initialization:

Firstly, the output compare must be configured: The OCIE flag of the TACR1 register must be

set and the defined OC disabled by writing the high byte of the OC1 register. As the applica-

tion is not using OC2 it is disabled also in the same way.

Secondly, the timer prescaler must be calculated using the equations given in Table 7:

1st test: prescaler=2

(FCPU/prescaler/BAUDRATE)*165= 8000000/2/9600*165=68750 > 65536 doesn’t match

1st test: prescaler=4

(FCPU/prescaler/BAUDRATE)*165= 8000000/4/9600*165=34375 < 65536 match!

The prescaler has to be set to 4 which corresponds to writing the value (0,0) in the (CC0,CC1)

bits in Timer A Control Register 2.

extern uByte master_data[];

void DataReceived_Notification(@tiny t_header *header, @tiny t_response *re-

sponse)

{

 if(header->identifier == ID_Table[0].id){

 master_data[0]=response->data[0];

 master_data[1]=response->data[1];

 }

else if(header->identifier == ID_Table[2].id){

 PORTS_WakeUp_On();

 _asm("halt\n");

 }

}

@interrupt void PORTS_0_Interrupt(void)

{

unsigned char i;

 i=250;

 while(i--);

 if(!(PADR&0xFE))

 {

 PAOR&=0xFE;

 LIN_SendWakeUpSignal();

 }

}

on-chip SCI used (FCPU/prescaler/BAUDRATE)*165 < 65536

32/44

LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS

The corresponding initialization code is:

Interrupt:

The timer is only used for the timeout handling so the “LINTimeOut_Interrupt” function just

needs to be called in the Timer A interrupt service routine defined by the application which cor-

responds to the following code:

 TACR1=0x40;

 TACR2=0x00;

 TASR;

 TAOC2_L;

 TAOC2_H=0x55;

 TASR;

 TAOC1_L;

 TAOC1_H=0x55;

/* -output compare interrupt enabled */

/* prescaler = 4 */

/* erase OC2F flag and */

/* and disable it */

/* erase OC1F flag and */

/* and disable it */

/*--

ROUTINE NAME : TIMA_Init

INPUT/OUTPUT : None

DESCRIPTION : Configure the Timer A

COMMENTS :

--*/

void TIMA_Init(void)

{

}

void LINTimeOut_Interrupt(void);

/*--

ROUTINE NAME : TIMA_Interrupt

INPUT/OUTPUT : None

DESCRIPTION : timer Interrupt Service Routine

COMMENTS :

--*/

@interrupt void TIMA_Interrupt(void)

{

 LINTimeOut_Interrupt();

}

33/44

LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS

The software is ready!

4.3 STMICROELECTRONICS LIN PACKAGE - EXAMPLE INSTALLATION

4.3.1 LIN package

The LIN software is delivered in a package including the software itself, this application note

and the above examples for the ST72254 and the ST72334 MCUs.

Figure 12. STMicroelectronics LIN package

You will receive a “zip” file called st_lin.zip that will generate the above directory tree. Create

a new folder we will call the working directory and extract the files into it.

The directory tree and architecture are the same for both example.

Figure 13. Example directory tree

4.3.2 Quick start with STVD7 and Cosmic C Compiler

In order to make the examples run you need the following software to be installed:

-STVD7: STMicroelectronics visual debugger for the ST7 microcontroller family with inte-

grated editing and environment features. This software is free of charge. You can download it

by accessing the STMicroelectronics MCU homepage: mcu.st.com

st_lin

an

examples

254

334

lin_v2.0

application note

ST72254 MCU example

ST72334 MCU example

LIN software revision 2.0

config

sources

254 (resp.334)

st7

configuration files

files generated by compiler

ST7 hardware register

LIN software

object

lin

(makefile, linker file,
LIN description file)

main file

declaration

34/44

LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS

– Cosmic C Compiler: Cosmic C compiler for the ST7 target. For further information or con-

tacts go to: http://www.cosmic-software.com/

In order to be able to compile and start a debug session and even flash an ST7 MCU with the

example code you need to create a new STVD7 workspace and configure your COSMIC tools

installation directory.

– Create a new STVD7 project:

start the STVD7 software.

First check that the Cosmic compiler installation directory is configured: “Project>Toolchains

Path...” Under “Cosmic Builder Path” enter (if not already configured) the compiler path (where

cxst7.exe is located).

We are ready to create a new project. Select File>New Workspace. Under “Workspace

filename” enter “334env” (or “254env”). Under “Workspace location” enter the examples direc-

tories: <your working directory>\st_lin\examples\334 (or <your working directory>\st_lin\ex-

amples\254). Click on “Next“. Fill in the next dialog box as follows:

Figure 14. Project configuration

Click “OK“.

To have easy access to your source files, configure the source file directories in the work-

space window. The example has 3 folders containing the source files:

or

object\254env.elf

35/44

LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS

<your working directory>\st_lin\examples\334\sources\ (or -\254\sources)

main file location (application code location)

<your working directory>\st_lin\examples\334\sources\lin (or -\254\sources\lin)

LIN software location

<your working directory>\st_lin\examples\334\sources\st7 (or -\254\sources\st7)

hardware register declaration

The workspace window should look like this:

Figure 15. Workspace window configuration

The workspace is ready. Save it in the working directory: File>Save Workspace

-Cosmic installation path

The examples are delivered with all necessary configuration files like makefiles and linker

files. As far as possible paths are given that are relative to the working directory so you don’t

36/44

LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS

need to update them when you move the example to another directory/PC. One file contains

absolute paths: The linker file located in <your working directory>\st_lin\examples\334\config

(or -\254\config) and named 334env.lkf (resp. 254env.lkf). You need to enter 3 paths. Edit the

file. See Figure 16:

Figure 16. COSMIC linker file configuration

In place of “<ENTER COSMIC INSTALL PATH>” (3 times) enter your Cosmic compiler instal-

lation path (path of “cxst7.exe”). For example replace “<ENTER COSMIC INSTALL

PATH>\lib\crtsx.st7” by “c:\cosmic\\lib\crtsx.st7“. Save the file.

The example is ready. You can build the example (F7). Build will generate a 334env.elf (or

254env.elf) for debugging and a 334env.s19 (254env.s19) for flashing an MCU. Refer to the

STVD7 documentation for details using of the STVD7 editor and debugger.

4.4 PERFORMANCE

The above examples correspond to the 2 main kinds of software configuration, the SCI com-

munication emulated by software or supported by the hardware SCI peripheral. The corre-

...
+seg .share -a UZPAGE -is -sRAM

<ENTER COSMIC INSTALL PATH>\lib\crtsx.st7 # startup routine
..\object\main.o # application program
..\object\adc.o
..\object\crs.o
..\object\eep.o
..\object\mcc.o
..\object\misc.o
..\object\ports.o
..\object\sci.o
..\object\spi.o
..\object\tima.o
..\object\timb.o
..\object\trap.o
..\object\lin.o
..\object\lin_ai.o
<ENTER COSMIC INSTALL PATH>\lib\libm.st7
<ENTER COSMIC INSTALL PATH>\lib\libims.st7

+seg .const -b 0xFFE0 -k # vectors start address
..\object\vector.o # interrupt vectors
...

37/44

LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS

sponding software performance is different. Table 9 and Table 10 give performance summa-

ries for both examples.

Table 9. ST72254 Example performance summary

Table 10. ST72334 Example performance summary

4.4.1 Timing considerations

The runtime performance of the software depends on many parameters like the memory

model, the compiler options and the compiler version and also on the application (lin_ai.c is

part of the LIN interrupt). As a result it is impossible to give generally applicable software

runtime performance data.

A first timing consideration is the maximum reachable speed running the software without any

application software. In this case only the software emulating the SCI communication

(ST72254 example) has speed limitations. In the above ST72254 example the maximum

speed reachable was 16kbaud. The software using the on-chip SCI peripheral has no LIN

speed limitation.

Then if you add some application code in the lin_ai.c file, you make the LIN interrupt service

routine longer and therefore decrease the software performance. That’s why in order to

achieve better performance you should keep actions done in the lin_ai.c file as short as pos-

sible. Nevertheless the software that uses the on-chip SCI peripheral should not be speed lim-

ited under 20kbaud.

The final timing consideration is when the application software needs to interrupt the LIN com-

munication. The LIN software is interrupt-driven and between two interrupts the application

software can run some other code. As long as the application software is interruptable, the LIN

software will interrupt it when needed. Problems can occur if the application software is not in-

Compiler version v4.3a

Memory model +modm - memory short

Compiler options +debug

Code size

whole project 2.1 kbyte

lin.o 1.8 kbyte

lin_ai.o 44 byte

LIN interrupt - CPU load 17%

Max LIN baudrate @16MHz 16kbaud

Compiler version v4.3a

Memory model +modms - memory small

Compiler options +debug

Code size

whole project 1.4 kbyte

lin.o 1.0 kbyte

lin_ai.o 44 byte

LIN interrupt - CPU load 2%

Max LIN baudrate @16MHz no limit-20kbaud

38/44

LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS

terruptable for a long time so that the LIN interrupt is called too late and an event is lost (bit/

byte). As too many parameters are involved it’s impossible to give generally-applicable per-

formance data. Therefore we implemented a timing analysis feature (DEBUG_MODE) you

can activate when debugging your software.

This feature can be activated in the lib.h file using 5 symbols:

The final piece of information you need to do the timing analysis is how much can the applica-

tion delay the occurrence of the LIN interrupt? For this we need to go into more detail to ana-

lyze the way the software is handling each bit/byte. Once again, depending on whether the

SCI communication is emulated or not the software is works in very different ways:

4.4.2 Using the Emulated SCI

Figure 17. SCI emulation: LIN Reception

#define DEBUG_MODE

Description

When defined, this activates the timing debug fea-

ture. This feature configure an pin as output and

uses it to indicate when the LIN interrupt is entered

(set) and when it is left (reset).

#define

DEBUG_PxDRADD

DEBUG_PxDDRADD

DEBUG_PxORADD

Description

To configure the used I/O pin, first define these

symbols to the address of the corresponding data

register, data direction register and option register.

#define DEBUG_LIN_IT_PIN

Description
Set this symbol to the pin number used (ex: 5 when

using PC5)

��
��
��

IC OC OC OC OC OC OC OC OC OC OC

CPU not used for LIN

LIN interrupt running

LIN Bus

39/44

LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS

4.4.2.1 Reception

The SCI is emulated by software using the input capture and output compare of the on-chip

16-bit timer. When the bus is idle, the software waits for a negative edge: The input capture in-

terrupt is activated and calls the LIN interrupt when a negative edge occurs. The input capture

time is used to generate an output compare in the middle of this first bit. The LIN interrupt rou-

tine returns to the calling program. When the output compare event occurs the LIN interrupt is

called again. The bus level is checked and a new output compare is set to occur in the middle

of the next bit. This last process is repeated until the stop bit.

As a result the application software should not:

– delay the occurrence of the IC interrupt too much. Specifically: A problem occurs if the first

output compare is set after the expected occurrence of the output compare event, which is

the middle of the bit. So as long as the IC interrupt ends before the middle of the bit, the delay

is acceptable. See Figure 18.

Figure 18. IC Interrupt Handing in Reception Mode

– Delay the occurrence of each OC interrupt too much. Specifically: A problem occurs if the

sample time defined at the beginning of the interrupt is delayed so that it occurs after the end

of the bit. See Figure 19.

start bit

application task

IC request IC interrupt served

deadline for
end of IC interrupt

1/21/2

40/44

LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS

Figure 19. OC interrupt Handling in Reception Mode

4.4.2.2 Transmission

For transmission the software only uses the Output Compare feature of the 16-bit timer. For

each bit, two OC interrupts are generated. The first one is generated to output the value of the

new bit. The second is used to read back the bus and check whether the output value is actu-

ally being sent, in other words to check for a bit error. See Figure 20.

Figure 20. SCI emulation: LIN Transmission

The bit transition time is precise because the timer output compare itself outputs the new level

when an output compare event occurs. Software delays do not influence the bit transitions.

The first OC sets a new OC for the middle of the bit. The second reads the LIN bus level and

prepares the next OC to output the next bit.

As a result the application software should not:

1 bit

application task

deadline for
start of OC interrupt

OC request OC interrupt served

1 bit

1st OC: 2nd OC:
output new bit read back

41/44

LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS

– Delay the occurrence of the first OC interrupt too much. Specifically: A problem occurs if the

second output compare is set after the expected time, which is the middle of the bit. So as

long as the first OC interrupt ends before the middle of the bit, the delay is acceptable. See

Figure 21.

Figure 21. Handling the first OC Interrupt in transmission mode

– Delay the occurrence of the second OC interrupt too much. Specifically: A problem occurs if

the sample time defined at the beginning of the interrupt is delayed outside the bit. See Fig-

ure 22

Figure 22. Handling the second OC Interrupt in transmission mode

1 bit

application task

deadline for
end of 1st

1rst OC request 1rst OC serviced

OC interrupt

1 bit

application task

deadline for
start of 2nd

2nd OC request 2nd OC serviced

OC interrupt

42/44

LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS

4.4.3 Using the on-chip SCI

Using the on-chip SCI the flexibility is considerably increased. The CPU load is very low and

the capability of the application software to run at the same time as the LIN software is high.

Firstly a LIN interrupt occurs every byte instead of every bit (even every half bit in transmis-

sion) in the timer solution. And secondly the received byte is buffered in hardware which al-

lows a lot of flexibility.

Figure 23. CPU load with on-chip SCI peripheral

4.4.3.1 Reception

The on-chip peripheral is handling the SCI communication and notifies a reception at the end

of each byte. A LIN interrupt is then generated and handles the received data according to the

LIN protocol.

Figure 24. Reception Notification Interrupt

When the SCI notifies the reception it copies at the same time the received value into a buffer.

As a result the peripheral is ready for the next reception and the software can still hold the re-

ceived data until the end of the new reception. Afterwards an overrun condition occurs.

������������������������
������������������������
������������������������

�������������������������
�������������������������
�������������������������

������������������������
������������������������
������������������������

������������������������
������������������������
������������������������

CPU not used for LIN

LIN interrupt running

LIN Bus

LIN frame

stop

bit

1 byte

SCI reception notification

LIN interrupt

43/44

LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS

As a result the application software should not delay the occurrence of the SCI reception no-

tification interrupt so much that an overrun condition occurs. Specifically: The end the LIN in-

terrupt should end before the stop bit of the next byte.

Figure 25. Reception Interrupt Handling

4.4.3.2 Transmission

In transmission delays coming from the application cannot disturb the proper working of the

software. This will delay the transmission and the issue is more a timeout issue on the current

transmitted frame: If the interrupt time is very long the transmitted frame may exceed the max-

imum allowed frame time. The SCI interrupt in transmission occurs also at the stop bit. If the

occurrence of the interrupt is delayed by the application the interbyte time will increase.

5 SUMMARY OF CHANGES

Revision Main changes Date

1.0 First version August 2001

1.1 Remove section “HOW TO GET THE LIN SOFTWARE?” April 2002

1 byte

SCI reception
interrupt request

application task

interrupt served

44/44

LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS

“THE PRESENT NOTE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS WITH INFORMATION
REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME. AS A RESULT, STMICROELECTRONICS
SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO
ANY CLAIMS ARISING FROM THE CONTENT OF SUCH A NOTE AND/OR THE USE MADE BY CUSTOMERS OF
THE INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.”

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

2002 STMicroelectronics - All Rights Reserved.

Purchase of I2C Components by STMicroelectronics conveys a license under the Philips I2C Patent. Rights to use these components in an
I2C system is granted provided that the system conforms to the I2C Standard Specification as defined by Philips.

STMicroelectronics Group of Companies
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan

Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

