Handout PS111 - "Time Zones"

Standard Time

- established for US in November 1883 and soon adopted by other countries.
- based on the position of the noon day sun, but only ay selected meridians of longitude rather than at each specific site.
- the earth rotates 15° in 1 hr ., the standard time zones differ by exactly one hour intervals (24 time zones)
- The meridians used as the centers of their respective time zones are multiplies of 15°.
- The Greenwich meridian is reference for the other time zones. Times based on this system is called GMT (Greenwich Mean Time)
- Considerable liberty has been taken in placement of the time zone boundaries, generally are drawn along state lines.
- going East every 15° is one hour later
- going west every 15° is one hour earlier

International date line

- unique line in the world standard time system. $\left(180^{\circ}\right.$ meridian $)$
- Crossing the International date line the time changes by 24 hours.
- The time change is opposite to all those established by the 24 -hr time zone boundaries

$$
\begin{aligned}
& \text { Going } \mathrm{E} \rightarrow \mathrm{~W}-1 \text { day later } \\
& \text { Going } \mathrm{W} \rightarrow \mathrm{E}-1 \text { day earlier }
\end{aligned}
$$

- The International Date Line counterbalances the changes in time produced by the time zone boundaries.

If no date line with standard time

If you traveled the world in a westward direction in a $24-\mathrm{hr}$ period, you would cross 24 time zones and the time would be set back by 24 -hrs.
Thus when you arrived back at you starting point it would be the same time as when you left.

Problem: 1: If it was 10 p.m., Sunday at $135^{\circ} \mathrm{W}$, what are the time and day at that same instant at $15^{\circ} \mathrm{W}$?

Analysis:
Going $135^{\circ} \mathrm{W}$ to $15^{\circ} \mathrm{W}$, we are traveling \qquad
Time is \qquad

Time: \qquad day: \qquad

Problem 2: If it 9 a.m., Tuesday, at $105^{\circ} \mathrm{E}$ what are the time and day at that same instant at $150^{\circ} \mathrm{W}$?

Analysis:
Going $105^{\circ} \mathrm{E}$ to $150^{\circ} \mathrm{W}$, we are traveling \qquad
Time is \qquad
Since the two given longitudes are in different longitudinal hemispheres, their total longitudinal separation is calculated by adding the two numbers.

Time: \qquad day: \qquad

Figure 2.10 The global system of time zones.
*R.C. Scott, "Physical Geography", West Publishing Co., 1989, pg. 21.

Figure 2.11 The standard time zones of the cotemminous United States.

R.C. Scott, "Physical Geography", West Publishing Co., 1989, pg. 22.

