

Name

Period _____ Date ____

Section 4.7: Lines of Best Fit Using Point-Slope Form

Example 1: The tread depth of a Michelin car tire was measured for different vehicles and different distances driven. The table below shows x = the distance driven in thousands of miles and y = the tread depth in millimeters.

x	y	a. Make a scatter plot of the
17	5.3	data on graph paper. Label
41	1.2	
25	4.0	b. Use a ruler to draw the line
4	6.8	of best fit (trend line)
34	2.3	c Dick two points that fall on
22	4.1	vour line (probably not any
48	0.3	of the original given
36	1.9	points). Use these two
13	5.7	points to calculate the
30	3.3	
45	1.9	
9	6.0	

- d. Find units of measure for the slope, *m*, also known as rate of change. Using the context of the problem, write a short sentence explaining the meaning of the slope in this problem.
- e. Substitute the values of the slope and one point into the equation $y y_1 = m(x x_1)$ to write the equation in **point-slope form.**
- f. Write the equation of this line in **slope-intercept form**: y = mx + b. This equation gives us a **linear model** for the tire tread depth based on the distance the vehicle was driven.
- g. What is the **y-intercept** of your model? Using the context of the problem, write a short sentence explaining the meaning of the y-intercept in this problem.
- h. Use your linear model to **predict** the distance a car must be driven to have a remaining tire tread depth of 1 millimeter.

Section 4.7: Lines of Best Fit Using Point-Slope Form

Example 2: Scuba divers in Hawaii reported the pressure experienced at different depths underwater. The table below shows x = the depth measured in feet and y = pressure measured in pounds per square inch (psi.)

		0
x	y	a.
69	50	b.
30	31	
50	41	с.
78	57	
44	39	d.
66	45	
12	20	9
36	32	С.
57	42	f.
17	24	
75	52	~
23	25	g.

- a. Make a **scatter plot** of the data on graph paper. Label and scale your axis.
- b. Use a ruler to draw the line of best fit (trend line)
- c. Pick **two points** that fall <u>on</u> your line. Use these two points to calculate the slope *m*.
- d. Find units of measure for the slope, *m*. Using the context of the problem, write a short sentence explaining the meaning of the slope in this problem.
- e. Write the equation of the line of best fit in **point-slope form.**
- f. Write the equation of this line in **slope-intercept form**. This equation gives us a **linear model** for the underwater pressure based on the depth of the diver.
- g. What is the **y-intercept** of your model? Using the context of the problem, write a short sentence explaining the meaning of the y-intercept in this problem.
- h. Use your linear model to **predict** the depth of a diver experiencing a pressure of 75 psi.

Example 3: Several students at an elementary school measured the length of their right foot and their height. The table below shows x = the foot length in centimeters and y = the height also in centimeters.

x	y y	
24	159	
22	148	
19	126	
23	157	
20	138	
24	162	
28	180	
25	161	
17	122	
24	155	
26	173	-
22	146	

- a. Make a **scatter plot** of the data on graph paper. Label and scale your axis.
- b. Use a ruler to draw the line of best fit (trend line)
- c. Pick **two points** that fall <u>on</u> your line. Use these two points to calculate the slope *m*.
- d. Find units of measure for the slope, *m*. Using the context of the problem, write a short sentence explaining the meaning of the slope in this problem.
- e. Write the equation of the line of best fit in **point-slope form.**
- f. Write the equation of this line in **slope-intercept form**. This equation gives us a **linear model** for the height of a student based on the length of his/her right foot.
- g. What is the **y-intercept** of your model? Using the context of the problem, write a short sentence explaining the meaning of the y-intercept in this problem.
- h. Use your linear model to **predict** the foot length of a student who is 1 meter tall.