Algebra
CHAPTER 4
FUNCTIONS AND LINEAR MODELING
\qquad

Period \qquad Date \qquad

Section 4.7: Lines of Best Fit Using Point-Slope Form

Example 1: The tread depth of a Michelin car tire was measured for different vehicles and different distances driven. The table below shows $x=$ the distance driven in thousands of miles and $y=$ the tread depth in millimeters.

x	y
17	5.3
41	1.2
25	4.0
4	6.8
34	2.3
22	4.1
48	0.3
36	1.9
13	5.7
30	3.3
45	1.9
9	6.0

a. Make a scatter plot of the data on graph paper. Label and scale your axis.
b. Use a ruler to draw the line of best fit (trend line)
c. Pick two points that fall on your line (probably not any of the original given points). Use these two points to calculate the slope \boldsymbol{m}.

d. Find units of measure for the slope, \boldsymbol{m}, also known as rate of change. Using the context of the problem, write a short sentence explaining the meaning of the slope in this problem.
e. Substitute the values of the slope and one point into the equation $y-y_{1}=m\left(x-x_{1}\right)$ to write the equation in point-slope form.
f. Write the equation of this line in slope-intercept form: $y=m x+b$. This equation gives us a linear model for the tire tread depth based on the distance the vehicle was driven.
g. What is the \mathbf{y}-intercept of your model? Using the context of the problem, write a short sentence explaining the meaning of the y -intercept in this problem.
h. Use your linear model to predict the distance a car must be driven to have a remaining tire tread depth of 1 millimeter.

Section 4.7: Lines of Best Fit Using Point-Slope Form

Example 2: Scuba divers in Hawaii reported the pressure experienced at different depths underwater. The table below shows $x=$ the depth measured in feet and $y=$ pressure measured in pounds per square inch (psi.)

x	y
69	50
30	31
50	41
78	57
44	39
66	45
12	20
36	32
57	42
17	24
75	52
23	25

a. Make a scatter plot of the data on graph paper. Label and scale your axis.
b. Use a ruler to draw the line of best fit (trend line)
c. Pick two points that fall on your line. Use these two points to calculate the slope \boldsymbol{m}.
d. Find units of measure for the slope, \boldsymbol{m}. Using the context of the problem, write a short sentence explaining the meaning of the slope in this problem.
e. Write the equation of the line of best fit in point-slope form.
f. Write the equation of this line in slope-intercept form. This equation gives us a linear model for the underwater pressure based on the depth of the diver.
g. What is the \mathbf{y}-intercept of your model? Using the context of the problem, write a short sentence explaining the meaning of the y-intercept in this problem.
h. Use your linear model to predict the depth of a diver experiencing a pressure of 75 psi .

Example 3: Several students at an elementary school measured the length of their right foot and their height. The table below shows $x=$ the foot length in centimeters and $y=$ the height also in centimeters.

x	y
24	159
22	148
19	126
23	157
20	138
24	162
28	180
25	161
17	122
24	155
26	173
22	146

a. Make a scatter plot of the data on graph paper. Label and scale your axis.
b. Use a ruler to draw the line of best fit (trend line)
c. Pick two points that fall on your line. Use these two points to calculate the slope m.
d. Find units of measure for the slope, \boldsymbol{m}. Using the context of the problem, write a short sentence explaining the meaning of the slope in this problem.
e. Write the equation of the line of best fit in point-slope form.
f. Write the equation of this line in slope-intercept form. This equation gives us a linear model for the height of a student based on the length of his/her right foot.
g. What is the y-intercept of your model? Using the context of the problem, write a short sentence explaining the meaning of the y-intercept in this problem.
h. Use your linear model to predict the foot length of a student who is 1 meter tall.

