RAPID ASSESSMENT OF INFILL DRILLING POTENTIAL USING A

SIMULATION-BASED INVERSION APPROACH

A Dissertation
by

HUI GAO

Submitted to the Office of Graduate Studies of
Texas A&M University
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2005

Major Subject: Petroleum Engineering



RAPID ASSESSMENT OF INFILL DRILLING POTENTIAL USING A

SIMULATION-BASED INVERSION APPROACH

A Dissertation
by
HUI GAO
Submitted to Texas A&M University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Approved as to style and content by:

Duane McVay Jerry Jensen
(Chair of Committee) (Member)
Akhil Datta-Gupta Richard Gibson
(Member) (Member)
Stephen Holditch
(Head of Department)
May 2005

Major Subject: Petroleum Engineering



il

ABSTRACT

Rapid Assessment of Infill Drilling Potential Using a Simulation-Based
Inversion Approach. (May 2005)
Hui Gao, B.S., University of Petroleum (East China)
M.S., University of Petroleum (BeiJing)
Chair of Advisory Committee: Dr. Duane McVay

It is often difficult to quantify the drilling and recompletion potential in producing gas fields, due
to large variability in rock quality, well spacing, well completion practices, and the large number
of wells involved. Given the marginal nature of many of these fields, it is often prohibitively
expensive to conduct conventional reservoir characterization and simulation studies to determine
infill potential. There is a need for rapid, cost-efficient technology to evaluate infill potential in
gas reservoirs, particularly tight gas reservoirs. Some authors have used moving window
statistical methods, which are useful screening tools for identifying potential areas or groups of
wells for further study. But the accuracy of the moving window method in very heterogeneous
reservoirs is limited, based on the analysis of some authors.

This study presents a new simulation-based inversion approach for rapid assessment of
infill well potential. It differs from typical simulation inversion applications in that, instead of
focusing on small-scale, high-resolution problems, it focuses on large-scale, coarse-resolution
studies consisting of hundreds or, potentially thousands, of wells. In an initial application, the
method employs well locations, production data, an approximate reservoir description and,
accordingly, is able to identify potential areas or groups of wells for infill development quickly
and inexpensively. Prediction accuracy can be increased commensurate with reservoir
characterization effort, time and costs. Thus, the method provides a consistent basis for transition

from screening studies to conventional reservoir studies.
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The proposed approach is demonstrated to be more accurate than moving window
statistical methods in synthetic cases, with comparable analysis times and costs. In a bind
validation study of a field case with 40 years of production history, the method was able to

accurately predict performance for a group of 19 infill wells.
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CHAPTER 1

INTRODUCTION

1.1 Background and Literature Review
Natural gas plays a vital role in meeting energy requirements and today provides almost a
quarter of the United State’s energy portfolio. The demand for natural gas increases yearly, while
the decline rate of existing production continues to increase as well. To meet U.S. natural gas
demand, unconventional gas, which refers to natural gas extracted from coalbeds, low-
permeability sandstone and shale formations, has become an increasingly important component
of total U.S. domestic production over the past decade. From 18% (3.2 trillion cubic feet) of total
gas production in 1990, the unconventional gas share grew to 24% (4.5 trillion cubic feet) by
1998. Although unconventional gas sources are abundant, they are generally more costly to
produce.’ Infill drilling is an alternative to exploration of unconventional gas in existing basins.
However, quantifying the drilling and recompletion potential in producing gas basins is often
challenging, due to large variability in rock quality, well spacing, well completion practices, and
the large number of wells involved. It is not uncommon for an operator to have hundreds of infill
candidates from which to choose in a particular campaign.’

The most accurate way to determine infill-drilling potential in a gas basin is to conduct a
complete reservoir evaluation, which includes developing a geological model of the study area,

estimating distributions of static reservoir properties of such as porosity and permeability,

This dissertation follows the style of SPE Journal.



constructing and calibrating a reservoir simulation model of the area, and then using the
reservoir model to predict future production and reserves at potential infill well locations. In the
history matching process, a reservoir simulation model has to be adjusted until a close match is
obtained between the simulated production response and the production response observed in the
field. This task has been performed traditionally by trial and error, and it is often time consuming
and expensive. Automatic history matching has been used to reduce the time for calibrating
reservoir models significantly. There are some example applications for determining reservoir
parameters in gas reservoirs. Coats® presented a method that used the least squares and linear
programming techniques to determine a reservoir description from given performance data.
Example applications presented in his paper include cases of single-phase gas flow, single-phase
oil flow and two-phase gas-water flow. In these particular applications the method Coats
proposed gave accurate reservoir description with a small number of simulation runs. Chung.
And Kravaris' developed a regularization history-matching algorithm that is capable of
incorporating prior information on the unknown reservoir parameters like porosity and
permeability. The prior information is considered to consist of order-of-magnitude point
estimates that are directly measured from core sample analysis, or are extracted from other field
tests. Their approach remains a deterministic one, and contrasts with other methods of
incorporating prior information that are largely based on a statistical formulation. In this paper,’
their proposed approach is compared with statistically-based methods of incorporating prior
information with respect to the mechanism of constraining the parameter space. The proposed
method is evaluated through numerical simulations on history-matching of a two-dimensional
ideal gas reservoir. The results showed that incorporation of a prior point estimates enhances the

accuracy the regularized estimate by recovering the spatial distribution on a local scale.



Some authors have combined conventional reservoir simulation with automated methods
to determine infill potential. For example, Coats’ presented a two-dimensional numerical
calculation method for calculating the semi-steady-state pressure distribution and individual well
deliverabilities in a gas field producing under a specified total rate schedule. The method he
described minimizes new well requirements at each successive stage of depletion by selecting
optimal locations for additional wells. The method accounts for the effects on well deliverability
of reservoir heterogeneity, irregular spacing, and well interference. The calculation method he
proposed can be employed to estimate field performance for any given combination of producing
well locations or may be used to determine an optimal drilling order for a given set of admissible
well sites. Coats also pointed out that the optimal selection of additional well sites depends upon
well interference phenomena as well as the reservoir k4 and ¢h distributions. It is important to
have good estimations of reservoir parameter distributions, particularly k% and ¢h, since these
distributions have a significant effect on the optimization.

While conventional reservoir simulation studies may be the most accurate way to
determine infill potential, they are also time-consuming and expensive. This is especially true of
large infill drilling studies in low-permeability gas basins, which may involve the analysis of
1000’s of wells. While use of automatic history matching methods can reduce time and cost
requirements, the time and costs associated with reservoir characterization can still make
conventional studies prohibitively expensive, particularly for marginal reservoirs.

As an alternative approach to detailed reservoir studies, some authors have proposed
statistical methods. McCain et al.® proposed a statistical method to evaluate the need for infill
drilling in complex, low-permeability gas reservoirs. It is a practical means of applying advanced
analysis techniques to an entire field. This proposed statistical production analysis allows the use

of a small number of localized advanced evaluations, and provides areal locations where



conclusions from the localized studies can be applied. The study in this paper includes the
geological description of Cotton Valley formation, critical evaluation of all available pressure
measurements, statistical comparison of production data for all wells in the field, careful and
tedious logging interpretation activities and analysis, objective selection of cutoffs for
determination of net pay and evaluation by some simulation studies. The statistical analysis is
inexpensive to perform, and the advanced analysis is limited to a few small areas, keeping costs
to a reasonable level. However, the author also needed the tedious logging interpretations in their
research to assure the accuracy of net pay thickness calculation.

As an improvement to McCain e al’s’ statistical method, Voneiff and Cipolla’
presented a moving window statistical method to determine infill potential in complex, low-
permeability gas reservoirs. This new technique is a set of empirically derived approximations,
comparisons, and statistical tests that attempt to mimic what a reservoir engineer does when
faced with a single infill location evaluation. It looks at surrounding well performance, compares
new wells to old wells for signs of depletion, calculates effective well density, and, once linked
to a scattering of conventional estimates of drainage area, provides estimates of undrained
acreage and infill reserves. The analyses are applied within a moving window of 5 to 15 wells at
a time to minimize the effects of areal changes in rock properties. The primary advantages of the
moving window technique are that it is easy to apply and it relies on only publicly available well
location and production data, making a 1,000-well study a manageable task. It has been
successfully applied to the Ozona (Canyon) Gas Sands, East Texas Cotton Valley, and the
Austin Chalk to determine optimum well spacing and quantify infill potential.””

Guan et al."” assessed the accuracy of the moving window technique for selecting infill
candidate wells in low-permeability gas reservoirs by analyzing synthetically generated

production data. The technology they showed in this paper is an extension of the method



described by Voneiff and Cipolla.” It also includes a local analysis, each in an areal window
centered around an existing well. However, a more rigorous, model-based analysis is applied in
each window, which is a 4D regression based on combinations of material balance equation and
the pseudo-steady state flow equation. The result of their analysis is a prediction of BY for a
new infill well offsetting each existing well. In this paper, they show that the moving window
technique can predict average infill performance of a group of wells reasonably well and,
importantly, it appears to provide a conservative estimate. Thus, it can serve as a useful
screening tool. However, as reservoir heterogeneity increases, the error in predicted individual
infill well performance increases, to as much as +/-50% or more. Also, with this technique it is
difficult to incorporate other types of data, particularly non-well based-data such as seismic data.

Therefore, considering the limitations of both conventional methods and moving
window techniques in identifying infill drilling areas, there is still a need for new methods to
quantify the infill potential in large gas reservoirs to be rapid, cost-efficient, but reasonably

accurate.

1.2 Objectives of research
The objective of my work was to develop improved technology for rapid assessment of infill
drilling and recompletion potential in large gas reservoirs. Specifically, I sought to combine the
greater accuracy of simulation-based methods with the short analysis times and low costs
associated with statistical methods, to yield a method intermediate in both.

In the following section, I presented the methodology of the proposed method. Then I
compared the accuracy of the inverse method with the moving window technique by four
synthetic cases, and showed the comparisons with SimOpt as well. Finally, I applied the inverse

method in a field case to validate its accuracy.



CHAPTER IT

FUNDAMENTALS OF INVERSE METHODS

2.1 Overview

My proposed method uses reservoir simulation combined with advanced automatic history
matching technology. A reservoir simulator serves as the forward model, which calculates well
production responses from reservoir description data. Sensitivity coefficients are calculated
internally and used in the inversion of historical production data to estimate the permeability
field. Using the estimated permeability field and forward model, I then determine the expected
performance of potential infill wells.

Since the method is simulation-based, all the data required to initialize a reservoir
simulator (e.g., reservoir property distributions, PVT properties, reservoir pressure) are required
to apply the method. However, since my goal is rapid, approximate estimation of infill potential,
I do not conduct a detailed reservoir characterization study. Instead, in an initial application, I
simply use whatever data are available. For example, I use reservoir property maps if they are
available; otherwise, I initialize the model with uniform average values. Since estimates of
individual well skin factors will generally not be available, I assume a uniform value for all wells
or apply a correlation of skin factor with completion type. In addition, since I rely primarily upon
readily available well location and production data, I invert production data with constant
pressure production modeling rather than inverting pressure data with constant rate modeling.

My proposed use of reservoir simulation inversion technology also differs from typical
uses in the scale of application. The ultimate is to determine infill or recompletion potential over

large areas and for large numbers of wells, often at scales exceeding individual reservoirs. To do



this I determine large-scale, coarse-resolution permeability fields, rather than small-scale, fine-
resolution property fields obtained in conventional studies of individual reservoirs.
As I described in the Overview, the proposed approach includes four steps (Fig. 2.1). 1

introduce each of these steps in the following sections.

Run Forward Model

ﬂ

Calculate Sensitivity

g

Estimate Permeability from Inverse Model

ﬂ

Calculate Infill Drilling Potential

Fig. 2.1 - Four steps used in the inverse method

2.2 Forward model

The forward model used to calculate reservoir and well performance is a conventional 2D,
single-phase, finite-difference gas reservoir simulator. This forward model is based on GasSim, a
single-phase simulator for modeling real-gas flow in gas reservoirs.' The main equations used in

this simulator are defined as following:



e Real-gas pseudopressure:

p,(p)= 2I£dp ........... 2.1)
) ZHU

e 2D flow equation:

- aNpZZIH - awpzltll,_/ + acp:’,zlj - aEpZ;lL_/ - aSpZZ_I/+1 =d . (2.2)
Where a. =a, +a, +a, +ag+a . (2.3)
d=ap,,—q (2.4)
n+l n
V,p _ V,p
At\ p, T Py =Py
e Plequation:
q= J'(p;:; - ppwf) ........... (2.6)
. 0.01988khT

Where J = = (2.7)

pSCT(lnr” + sj
rW

23 Minimization methods
Automatic history matching involves minimization of an objective function quantifying the

mismatch between simulated and observed data. In the past, many methods'>' have been used



for minimization. Generally, these approaches can be broadly classified into three categories:

derivative-free methods, gradient-based methods and sensitivity-coefficient methods.

2.3.1 Derivative-free method
The derivative-free approaches such as simulated annealing can combine data from many
different sources such as cores, logs, seismic traces and interwell tracer data.
2.3.1.1 Simulated annealing
Simulated annealing is an algorithm initially developed for the solution of combinatorial
optimization problems. The central idea behind simulated annealing is an analogy with
thermodynamics, specifically with the way liquids freeze and crystallize, or metals cool and
anneal. The essential components of an annealing algorithm are the objective function, a
procedure to update the objective function, a perturbation mechanism, and some empirical
procedure for lowering the temperature or reducing the control parameter.
The general algorithm may be described with the following steps:

1. Generate an initial image

2. Establish an initial control parameter ¢ and a schedule for lowering it as the looping

progresses.
3. Perturb the image.
4. Compute a new objective function F,,

5. Establish the acceptance probability distribution:

P{accept} =1, ifF, <F,

new

F  —-F
:exp{u} otherwise
¢
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6. Draw from that probability distribution. If the perturbation is accepted then update the

image and reset the objective function £, = F

new

7. Return to step 3 until the objective function is low enough or there has not been any
significant improvement in many successive iterations.

This derivative-free method is very flexible since it does not require derivative

computations. It can also account for a wide variety of data as I mentioned above. But it is also

computationally demanding because of the large number of rejection moves it makes as

annealing progresses. Thus, this method is not practical for field-scale applications.

2.3.2 Gradient-based method

For the gradient-based algorithms, it is classified according to its search direction into steepest
descent, Newton, quasi-Newton, and conjugate gradient. In the following, I introduced steepest
descent and Newton method.

2.3.2.1 Steepest descent method

Taking the Tayler series of objective function F(x),
F(x,+p)=F&x)+qip, . (2.9)

where ¢, is the gradient of /' .The search direction that minimize Eq. 2.9 is

Pe="9. (2.10)

The steepest-descent method usually works satisfactorily when the search is far away from the
minimum. However, it progresses very slowly in the vicinity of the minimum. A better rate of
convergence can be obtained by choosing the search direction from the second-order

approximation to the objective function like Newton method does.
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2.3.2.2 Newton method

Taking the Tayler series of objective function F(x) to second-order,
T 1 T
F(xk+p)=F(xk)+qkp+5p Hp . (2.11)

The minimum of the Eq. 2.11 will be given by

p=-Hg, L (2.12)

This is the algorithm for Newton method. The rate of convergence for Newton’s method is
quadratic, which is higher than steepest descent method. However, computation of Hessian
matrix is very expensive for reservoir history matching problems. It requires a number of

reservoir simulations at least on the order of the dimensionality of the problems.

2.3.3 Sensitivity-based method

Gauss-Newton and Levenberg-Marquard methods are considered one of the Newton-type of
search algorithm. But they need to calculate the sensitivity coefficients which are the gradients
of production responses with respect to the model parameters, instead of the gradient of
objective function as steep-descent method does. They are commonly used to get the maximum a
posteriori estimate (MAP) form the posterior distribution by knowing the sensitivity coefficients.
2.3.3.1 Gauss-Newton method

Gauss-Newton method has avoided the computation of Hessian matrix in Newton method by

ignoring the second term in A, and computes a search direction by

JIIp,==Jle, (2.13)

C,"(d - g(x)}

where, ¢ is residual, e = { s
Co(x—p
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de, {— C;“G(x)}

and J is Jacobin matrix, J, , = ——=
o) Ox C—l/z
J x

G(x) in Eq2.15 is sensitivity coefficient matrix.
2.3.3.2 Levenberg-Marquardt method
The Gauss-Newton method can run into problems if J kT J, is singular or nearly singular.
This is corrected by Levenberg-Marquardt method by making the Hessian diagonally dominated,
JIJ, +2Dp, ==Jle, . (2.16)
Gauss-Newton and Levenberg-Marquardt method has fast quadratic convergence,
and can be computationally efficient in large-scale problems.

2.3.3.3 LSQR (Lease squares QR factorization)

LSQR method is developed to find a solution for solving equation Ax =b or minimize

||Ax—b|| ,- It’s based on the Lanczos bidiagonalization procedure of Golub and Kahan. It

generates a sequence of approximations {xk} such that the residual norm ||rk|| , = ||Ax—b|| )

decreases monotonically. In reservoir history matching problems, LSQR is used to minimize

jan—

)5 where, G is sensitivity coefficient matrix, om is the perturbation of reservoir

parameter, and ¢ is vector of data misfit.

LSQR is commonly used for large tomographic problems and especially suited for large
sparse system as encountered in reservoir simulation, and it can also works for ill-posed
matrices. LSQR method is extremely efficient, requiring only a few iterations.

Sensitivity-based method has faster convergence rate compared to derivative-free and
gradient-based method, and it is preferred for large-scale problems. For sensitivity-based

method, a key step is the computation of sensitivity coefficient matrix.
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24 Sensitivity coefficient computation

Sensitivity coefficients are partial derivatives of production response variables with respect to
reservoir parameters (permeability in my work). Calculation of sensitivity coefficients is a
critical part of inversion. Reducing the cost for calculating sensitivity coefficients can
significantly improve the computation efficiency of the whole inversion process. I investigated

several of methods for computation of sensitivity coefficients.'?

2.4.1 Direct method

The time-honored method for calculating sensitivities is the direct or influence coefficient
method."” In this method, I first run the simulator using an initial estimate of the permeability
distribution to obtain the first set of production responses. I then perturb one of the parameters,
e.g., permeability of one grid block, k;, and rerun the simulator to get the second set of
production responses. From these two simulations, I obtain the sensitivities of all the production
responses to the permeability &;. Thus, to determine all the sensitivity coefficients using this
method requires M+ simulation runs, where M is the number of parameters, in this case the
number of grid blocks. It is usually impractical to compute sensitivity coefficients using the
direct method. In addition, if the magnitude of the perturbation is poorly chosen, it is possible for

sensitivity coefficients from this direct method to be in error."®

2.4.2 Gradient Simulator Method
The Gradient Simulator Method was proposed first by Yeh" in ground water hydrology
literature as the Sensitivity Equation method. It was introduced to the petroleum engineering

literature by Anterion et al*® In this method, the sensitivity coefficients are obtained by
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differentiating the simulation equations. The advantage of the gradient simulator method is that
the matrix problem solved to obtain sensitivity coefficients involves the same coefficient matrix
as the one used to solve for production data at the same time step. With this method, in one
simulation run, one actually obtains the sensitivity coefficients of production responses for all
gridblocks with respect to each model parameter. However, since we only have observation data
in the gridblocks with wells, most of the calculated sensitivity coefficients are unnecessary,

which makes the Gradient Simulator Method low in computational efficiency.

2.43 MGPST method

To avoid calculation of the sensitivity coefficients for all gridblocks with respect to each model
parameter, Chu et al.'” used the basic ideas of Tang et al.*' to develop a Modified Generalized
Pulse-Spectrum Technique (MGPST). This method produces the sensitivity coefficients in one
simulation run. The linear system to be solved depends on the number of wells ( N,,) as opposed
to the number of parameters ( M ) for the direct method and Gradient Simulator method. Thus
the MGPST method is more efficient, particularly for determining sensitivity coefficients for a

large number of parameters.
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In my work, I calculated sensitivity coefficients with the MGPST method. As mentioned
before, typical applications of automatic history matching involve small-scale, high-resolution
problems. Wells are typically rate-constrained, using historical production rates. The derived
sensitivity coefficients are usually bottomhole pressure, water cut and/or gas-oil ratio with
respect to parameters such as permeability and porosity. In my approach, I constrain wells at
constant flowing bottomhole pressure and match on production data. Thus, the derived
sensitivity coefficients are production rate with respect to permeabilities. Derivation of the
sensitivity coefficients that I used in my approach is discussed below.

The simplified governing flow equation is,

Ap=b, (2.17)

where A is the matrix of flow elements, p is the vector of well block pressures, and & is
comprised of the known pressures, flow rate, and o (Eq. 2.5), which is related to time step,
isothermal compressibility and pore volume. "'

Taking the partial derivative of Eq. 2.17 with respect to the i-t4 grid block permeability,
and simplifying it, we obtain

Op _ ,a Ob 04 (2.18)
ok, = Gk T, P

Taking the partial derivative of Peaceman’s equation,

q=J(p-p.,) (2.19)

with respect to the i-th grid block permeability, we obtain

0q oJ op (2.20)
—_ = — ’ + J Y .
6k akl (p pnf) ak,

i

Substituting 97 from Eq. 2.18 into Eq. 2.20, I obtain the following expression for sensitivity
ok,

coefficients of production rate in all the grid blocks to one permeability value, ;.
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oq oJ 4
-2 (p- + JA
aki akl (p pwf) (

o oa
ok, ok,

i

Yy e (2.21)

When I calculate 99 in Eq. 2.21, I only need to calculate the sensitivity coefficients in the
ok,

gridblocks with wells. This means I do not need to calculate the inverse matrix of 4. I only need

to calculate the rows of 47 corresponding to the well blocks. This saves a lot of computation

0
time. If I use % for the sensitivity coefficient of block pressure of the /-th well with respect to

i

the i-th grid block permeability, Eq. 2.8 should be

P 94\ (2.22)
ok, | ok,

where, x; is the I-th column for A”.

2.5 Objective function
During inverse modeling, the objective is to minimize the differences between observed and

simulated responses. Mathematically, this can be expressed as
min|d -g[m=]) (2.23)

where d is the vector of N observation data points, g is the forward model, m is the vector of M

parameters (permeabilities in my problem), and ||||2 denotes the Euclidean norm.

At the [-th iteration step, I take a first order Taylor series expansion of g[m] around my,,
g[ml=¢[m,+G00, . (2.24)
where m; is the vector of M parameters at the /-th iteration step, G is the sensitivity coefficients

matrix, and om is the vector of parameter changes at the /-th iteration step.

The residual (data misfit) vector & at the /-th iteration will be given

e=d-gm] . (2.25)
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Now I solve Eq. 2.23 by minimizing

2
le = Gom|; = ZN:[gi _fgy_gmj] ........... (2.26)
j=1

i=1
and update the parameter vector
m=m, +om (2.27)

Since typically there are a large number of parameters compared to the amount of data,
the inverse problem is often ill-posed and can result in non-unique and unstable solutions. In
order to remedy the ill-posedness of the inverse problem, the objective function was augmented

by adding another two terms.”* Thus, the penalized objective function is given by
”g - G5m||§ + 7/1||5m||§ +75 “Lhﬁm“i ........... (2.28)

In Eq. 2.20, the first term is the data misfit term, which minimizes the difference
between the observed and calculated production responses. The second term, the norm
constraint, ensures that the final model is not significantly different from the initial model. This
helps preserve geologic realism because the initial model already contains available geologic and
static information related to the reservoir. The smoothness constraint, the third term in Eq. 2.20,
provides some spatial continuity of reservoir properties by resolving large-structures rather than
small-scale property variations. In this penalized objective function, vy, and y, are user-specified
weighting factors that determine the relative strengths of the prior model and the smoothness
term. In general, the inversion results will be sensitive to the choice of these weights. L, is the
second-order spatial-difference operator.” >

Mathematically, minimizing the objective function, Eq. 2.20, is equal to solving the

following augmented matrix,
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2

G &
min || |y /. [om-|O| . (2.29)
7.L, 0

2

I use LSQR™ to solve this augmented linear system efficiently. Solution yields the permeability
perturbations, om. I use dm to update the permeability field, iterating untill convergence is
obtained. In this study, the convergence criteria I used is that the objective function does not
have significant improvement in some (like 3 or 4 iterations) successive iterations. Or, from the
plot of the misfit versus the number of iteration, the curve becomes almost parallel to the x-

coordinate. Under either of these two conditions, I terminated the iteration of regression.

2.6 Calculating infill well performance

My method for calculating infill well performance is similar to the method proposed by Coats.’
In Coats’ paper, he proposed a two-dimensional numerical calculation for calculating semi-
steady-state pressure distribution and individual well deliverabilities in a producing gas field.
Being simulation-based, my method applies for both transient and pseudo-steady flow. We
estimate infill and recompletion potential using the reservoir model and the permeability field
resulting from inversion. We first make a base case forecast with existing wells. We then place a
new well in the first grid block of the reservoir model and make a forecast to determine the
incremental fieldwide production attributable to a new well in this grid block. We repeat this for
each grid block in the system, thus generating a distribution of the incremental fieldwide
production attributable to one new well at all the possible grid locations in the reservoir. With
this information we can generate colorfill maps of infill well production indicators that can be

used to assess infill drilling potential in different areas of the field.
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CHAPTER 1

VALIDATION OF INVERSE METHOD

In this chapter, I used four synthetic cases presented in Guan et al.'’ to evaluate the proposed
inverse method and compare it to the moving window methods proposed by Voneiff and

Cipolla.”

3.1 Synthetic case introduction

The four synthetic cases with varying heterogeneity were defined on a 54*54*1 simulation grid
of a 9-township area. Case 1 is the homogeneous case. For Cases 2-4, a log-normal distribution
was used to generate a base random permeability field. Heterogeneity increases with case
number, as indicated in Table 3.1 by the standard deviation and coefficient of variation. Average
permeability is the same for all four cases, 0.2 md. There are 100 wells in the reservoir, which
were drilled at different dates over approximately 40 years. Figure 3.1 shows the date of first
production for 100 wells which represents several rounds of infill drilling implemented. The
distributions of current well spacing and first production date are realistic as they were derived
from actual well data from a shallow gas basin in North America. Other parameters used in the
simulation, listed in Table 3.2, are the same for all 4 cases."

For each case, I generated the synthetic production history using the actual permeability
distribution, then inverted the synthetic production data using the methodology described in
Chapter IT to determine the permeability field. I matched on average production rate of every
other year, yielding a total of 752 observation points. In all 4 cases, all the other parameters are
known and fixed except permeability which is the only parameter to be matched. For the three

heterogeneous cases (Figs. 3.2-3.4), I started the regression with a uniform permeability field of
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k= 0.2 md. In the homogeneous case, 0.25 md was used as the initial uniform permeability since

the actual permeability value was 0.2 md.

Table 3.1 — Description of four synthetic cases

Case Average Standard deviation of | Coefficient of variation

permeability, md permeability, md of permeability

1 0.2 0 0

2 0.2 0.06 0.33

3 0.2 0.14 0.70

4 0.2 0.24 1.25
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Fig. 3.1 - Date of first production for 100 wells



Table 3.2 — The parameters used in the four synthetic cases

Number of wells 100
Porosity (%) 12
Initial reservoir pressure (psia) 1100
Flowing bottom hole pressure (psia) 250
Well skin factor -3
Well bore radius (ft) 0.3
Water saturation (%) 40

12/16/1962 00:00:00

0.0000 days

Fig. 3.2 - Actual permeability distribution for Case 2
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12/16/1962 00:00:00  0.0000 days

Fig. 3.3 - Actual permeability distribution for Case 3

12/16/1962 00:00:00  0.0000 days

Fig. 3.4 - Actual permeability distribution for Case 4
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3.2 Comparison with moving window method

3.2.1 Inversion results

History matching. I got good history matching results for all the four synthetic cases. Here 1
only show one of them, Case 2 which represents the quality of history match results of the other
three cases. Figs. 3.5-3.6 show fieldwide history match results for Case 2, while Figs. 3.7-3.10
show two of the best and two of the worst individual well history matches for the same case.
Apparently both field cumulative production and production rate were matched well. The
matches for Well 61(Fig. 3.9) and Well 94(Fig. 3.10) are not as good as most of the other wells. 1
believe, it is because Well 61 is located in the upper left corner of the reservoir near two
boundaries of the reservoir model. Well 94 was drilled late, so I have few observation points
used in the regression. However, even though the matches for Well 61 and Well 94 are not as

satisfying as most of the other wells, overall the match can still be considered to be very good.
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Fig. 3.5 - Field cumulative production history match for Case 2
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Fig. 3.10 - History match of Well 94 for Case 2

Objective function. In the four synthetic cases, convergence was achieved in 10 iterations or
less with most of the decline occurring in the first 3-4 iterations (Fig. 3.11). As I mentioned in
Chapter IT (page 16), the iteration is terminated when the convergence is achieved. In these four
synthetic cases, | terminated each iteration process when the objective function of each of them
has not been decreased significantly in several successive iterations. Objective function decline
ratio (Table 3.3) is the ratio of the objective function between the first and the last iteration. [ use
it to quantify how much the objective function decreases when the convergence occurs. Table
3.3 shows that the objective function decline ratio decreases from 148.11 to 11.71 with the
increase of heterogeneity. Thus, the objective function from the cases of less heterogeneous
reservoirs decreases with larger magnitude. Table 3.3 also lists smoothing and damping factors

used in the four cases. Since I had no prior information, I used a smaller value for the damping
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factor and started with a uniform permeability value. This is a good test for the robustness of the

algorithm.
Table 3.3 — Regression results for the four synthetic cases
Damping | Smoothing No. of Obj ecjtlve Permeability Normah@d
Case . . function . permeability
factor factor iterations . . misfit, md .
decline ratio misfit
Case 1 10 10000 10 148.11 0.0437 0.2185
Case 2 100 10000 5 34.78 0.0571 0.2855
Case 3 1000 10000 7 32.76 0.1349 0.6745
Case 4 10 50000 5 11.71 0.2247 1.1235
300000
250000 A
200000 -
k3]
n
& 150000 -
o
=
100000
50000 -

Number of iterations

Fig. 3.11 - Objective functions for the four synthetic cases

Estimated permeability field. Figs. 3.12 - 3.15 show the actual and estimated permeability

distributions for Cases 1-4, respectively. Note that a significant portion of the reservoir area is
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not developed with wells. Since well responses are sensitive only to permeabilities in their
vicinities, permeability distribution in the areas with wells agrees closely with the actual values.
In the areas undeveloped with wells, however, there is not much difference between the
estimated permeability and initial input values. Table 3.3 lists permeability misfit for the four
cases. Permeability misfit, the deviation of the estimated permeability field from the actual

values, is defined as:

M

Z (kest,i - kact,i )2

i=1
M

permeabili ty misfit =

where, k., ; and k,.,; denote the estimated and actual permeability values for grid block i, and M
is the total number of grid blocks. To make it easy to compare, I also listed normalized
permeability misfit, which is the permeability misfit divided by average permeability, 0.2 md, in
each case. Table 3.3 shows that with increase in heterogeneity (increasing case number)
normalized permeability misfit increases. This means the accuracy of estimated permeability

field decreases with increase of reservoir heterogeneity.

Case 1- estimated permeability
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Fig. 3.12 - Estimated permeability distribution for Case 1
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md
Fig. 3.15 - Actual and estimated permeability distribution for Case 4

The effect of smoothness factor on regression accuracy. Smoothness factor plays an important
part in the regression. I use Case 2 to investigate how smoothness factor affect permeability
misfit and objective function.

I did regression on Case 2 by giving 4 different smoothness factors, 0, 100, 1000 and
10000 respectively. Fig. 3.12 shows both permeability misfit and objective function decrease
with the increase of smoothness factor. This means the accuracy of regression increases with the

increase of smoothness factors.
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Fig.3.16 - The effect of smoothness factor on permeability misfit and objective function
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3.2.2 Calculation of infill potential

Using the estimated permeability distributions and forward model, I calculated infill potential for
each case. Fig. 3.17 shows calculated infill potential for Case 2. It is the incremental fieldwide
production gained by an infill in each grid block. The unit for infill potential is thousand cubic
meters. The infill potentials shown include the effects of reservoir quality (permeability),
depletion (pressure), and proximity to existing wells. The color in this map represents the
magnitude of infill potentials. In the areas with blue color shown in Fig. 3.16, there are higher
infill potentials due to the high permeability distribution indicated in Fig. 3.13 and the less
depletion shown in Fig. 3.18. So these areas are the better candidates for infill drilling. While, in
those areas with yellow or red color, the reservoir has been depleted very much and also has a

low permeability distribution. Thus, infill drilling may not be very optimistic in these areas.
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Fig. 3.17 - Infill potential map for Case 2
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Fig. 3.18 — Pressure map for Case 2

3.2.3 Comparison with moving window method

In this section, we compare infill potential calculated using the inverse method to results
calculated using the moving window method described in Guan et al.'® When I calculated infill
potentials in all 4 synthetic cases using the simulation-based method, I made the predictions for 1
year. In the moving window method, performance of existing wells is characterized using the
best year, BY, production indicator. BY is defined as the best 12 conservative months of
production divided by 12, and has been demonstrated to be a reasonable proxy for estimated
ultimate recovery (EUR). "I term the additional fieldwide production to be gained by an infill

well offsetting each existing well BY .

The moving window technique estimates infill well performance on a well basis; i.e., it

calculates the additional production to be gained by a new infill well offsetting each existing
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well. The simulation method estimates infill well performance on a cell basis. Thus, it was
necessary to convert the simulation-based results from a cell basis to a well basis in order to
compare the simulation results to those from the moving window technique. I first determined,
for each well, the region consisting of all simulation cells closer to that well than to any other
well, i.e., the gridded Voronoi region (Fig. 3.19). For unbounded wells, I limited the radius of
the region to a value consistent with the maximum search radius used in the moving window
analysis, 3000 acres. I next calculated infill potential for a new well offsetting each existing well
by averaging the individual cell values within the region for each existing well. I calculated infill
potential from simulated results using both the calculated and actual permeability fields. The true
infill potential determined using the actual permeability field provided the basis for determining
the relative accuracies of the moving window and simulation-based inverse methods, and we
named it as simulation method in the following comparison. The simulation software used for

calculating the infill potential is SABRE and Simulation Manager from Schlumberger.
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Fig. 3.19 - Simulation well regions

In the above, I used Case 2 as example case in the discussion of history matching results.
Here, I present first the results of inverse and moving window method for Case 2. Figs. 3.20 and
3.21 compare the inverse and moving window method by comparing the results of each to the
true results determined using the actual permeability distribution. In each plot in Fig. 3.20 and
3.21, the true infill potential is on the y-axis, while the infill potential from either the inverse or
moving window method is on the x-axis. The five lines in each plot show the extent of deviation
of estimated BY,s for the particular method from the true values. These figures are used to
demonstrate the accuracy of inverse and moving window method clearly. If the estimated BY ¢
are accurate, the estimated values in these figures should fall on the unit-slope line. The more
scattered the estimated points in these figures, the less accurate is the estimated BY;,; from this

particular method. In Figs. 3.20 and 3.21, I notice that most points are between the lines of +/-
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30% for the inverse method, but a lot of values from the moving window method are beyond
these two lines, and some are even outside the —50% line. In addition, more data points of
estimated BY,r from the inverse method fall on the unit-slope line compared with the moving

window method.
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Fig. 3.20 - Infill BY from simulation and inverse method for Case 2
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Fig. 3.21 - Infill BY from simulation and moving window method for Case 2

The comparison is also summarized in Table 3.4, which uses relative error and average
percent error (APE) to quantify the overall and individual well accuracy of the inverse and
moving window methods. Relative error is the error in fieldwide average BY, between each
method and the true value (labeled as “Simulation” in Table 3.4). It is defined as:

average estimated BY, . —average true BY,;

X100 eeeeeeenen 3.2)

relative error =
average true BY

For Case 2, both the inverse and moving window method underestimate average BY,;. However,
the relative error for the inverse method (-2.1%) is much less than that for the moving window
method (-8.3%). Average percent error (APE) quantifies the error in the individual-well values,
and is another way of evaluating the accuracy of the calculation methods. APE ( average percent

error) is the average of all the individual well percent errors. It is defined as:
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percent error of well i= |(estimated BY, —true BY,,),
| (true BY ),

x100| oo (3.3)

N,
Z (percent error ),

APE = (3.4)
N

where i is well number and N, is the number of wells.

APE is the average deviation from the unit-slope line in Figs. 3.20 and 3.21, and
increases as the scatter about the unit-slope line increases. The APE for the inversion method is
12.6%, compared to 31.7% for the moving window method. The inverse method is clearly more
accurate than the moving window method for Case 2.

Table 3.4 also compares the standard deviations of inverse, moving window and true
BYi. The variability in BY;,; from the moving window method is too high; however, the
variability in BY;,s from the inverse method is significantly less than actual. This results
primarily from the uniform starting permeability value used in the regression and the norm
constraint, which dampens change from the starting values when there is not enough response
for the data misfit term to dominate.

Thus, for Case 2, based on the comparison of the individual and average predicted infill
well performance from the inverse and moving window methods, the inverse method is

considered more accurate than the moving window method.



Table 3.4 Comparison of the inverse and moving window method

Case Average BY s, MSCM/M Relative error of Average percent Standard deviation of BY ¢,
Average BY e, %0 error, % MSCM/M
Simulation | Moving | Inverse Moving Inverse | Moving | Inverse | Simulation Moving Inverse
window window window window
Case 1 542.67 513.08 530.87 -5.45 -2.17 16.51 6.97 70.38 40.5 89.92
Case 2 564.28 517.09 551.66 -8.33 -2.15 31.70 12.61 137.64 149.52 79.68
Case 3 517.24 458.51 531.17 -11.35 2.69 38.57 24.20 195.01 188.49 90.00
Case 4 520.78 532.54 530.90 2.3 1.9 56.13 33.80 259.19 350.92 102.45

8¢
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Case 1 is the homogeneous case. Figs. 3.22 and 3.23 show that the estimated infill

potentials from the inverse method are much closer to the true BY;,s than the moving window

method, since most BY ;s values from the inverse method are along the unit-slope line, while, for

the moving window method, the estimated BY;, is more deviated between the +/-30% lines.

Table 3.4 shows the relative error for the inverse method (-2.17%) is less than that for the

moving window method (-5.45%). The APE for the inverse method is 6.97%, less than 16.51%

for the moving window method. Thus in this homogenous case, the inverse method predicts infill

performance better than the moving window method.
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Fig. 3.22 - Infill BY from simulation and inverse method for Case 1
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Fig. 3.23 - Infill BY from simulation and moving window method for Case 1

Case 3 and Case 4 are more heterogeneous cases compared with Case 2. Figs. 3.24 -
3.27 show that compared with the moving window method, there are a lot fewer data points
outside the +/-50% lines for the inverse method. The relative error in Table 3.4 also indicates
that the average BY,s from the inverse method is much closer to the “true” average predicted
BY,r than the moving window method for both Case 3 and Case 4. Therefore, the inverse
method outperforms the moving window method in all four synthetic cases. However, the
prediction accuracy of infill performance decreases with the increase of reservoir heterogeneity
as well. It is shown in Table 3.4 that the APE goes up from Case 1 to Case 4 for both the inverse
and moving window method. However, the APE from the inverse method only increases from

6.97% to 33.80%, but for the moving window method, it increases from 16.51% to 56.13%.
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Infill BY from simulation, MSCM/M
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Fig. 3.24 - Infill BY from simulation and inverse method for Case 3
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Fig. 3.25 - Infill BY from simulation and moving window method for Case 3
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Fig. 3.26 - Infill BY from simulation and inverse method for Case 4
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Based on the above comparisons, I conclude that the inverse method is more accurate
than the moving window method for both average BY;,; and individual well BY, for all the 4
synthetic cases. However, as with the moving window method, accuracy of the inverse method
decreases with increasing heterogeneity, particularly for individual well predictions. The method
appears to predict infill potential of a group of wells accurately. The iverse method requires
about the same data preparation and computation times as the moving window method. Thus, the
simulation inversion approach appears to be superior to the moving window method for rapid
assessment of infill potential. It can be very useful in targeting areas for infill development or in
scoping studies that precede more detailed evaluations. Another advantage of the inverse method
is that, being simulation based, it is easier to transition from scoping analyses to more detailed
analyses by simply refining the reservoir description to include additional data and

interpretations, which is an important improvement over the moving window method.

33 Comparison of inverse method with SimOpt for Case 2

3.31 Introduction

SimOpt™ is a computer program included with Eclipse which can aid a history matching of
observed reservoir data with Eclipse 100/300 simulation models. In this chapter I compare the
accuracy, efficiency and speed of the inverse method with Eclipse/Simopt based on one of the

synthetic cases used above, Case 2.

3.3.2 Technical description of SimOpt
SimOpt uses mathematical optimization techniques to vary specified reservoir parameters, such

as permeability and pore volume, to minimize the difference between observed and simulated
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production data. It can also take into account prior geological information, when available, in

the regression.

The objective function, f°, that is minimized in SimOpt is a modified form of the

commonly used simple sum-of-the-squares.

a
f=7"foior +3rTr ......... (3.5)
Where
a,y - the overall weights for production and prior terms respectively.
S prior - the objective function prior term, which accounts for prior knowledge of the statistical
distribution of parameter modifier values.

r  -the weighted production difference between an observed and a simulated response, which

is defined as

(0, —¢,
r=Ew,w———— (3.6)
O,
where
d - one set of observed data of a given type at a given well
i - an individual data point for the d’th item of observed data

0;,c,; -the observed and calculated values, respectively

0, - the measurement error for the d’th data set
w,  -anoverall weighting for the d’th production data set
w, - a weighting for the i’th production data point

The algorithm that SimOpt uses to minimize the objective function is Levenberg-

Marquardt, which is a combination of the Newton method and a steepest descent scheme.
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Denoting the vector of current parameter normalized modifier values as v¥, then the algorithm
estimates the change, av’, required to minimize the objective function as

v =H+uh)'vVEGOH (3.7)
where the Hessian matrix, H, is the matrix of second derivatives of f and [/ is the identity
matrix. The parameter u is free and is varied so that, away from the solution where the quadratic
Newton model may have less validity, it takes large values and biases the step towards the
steepest descent direction. While near the solution, it takes small values to make the best
possible use of the fast quadratic convergence rate of the Newton step.

In solving Eq. 3.7, SimOpt requires the first and second derivatives of the objective
function (Eq. 3.5) with respect to the normalized parameter modifiers. The first derivatives are

the components of the gradient vector of the objective function,
VO, =7V v’ (V) L (3.8)
The second derivatives are the components of the Hessian matrix of the objective function
[H1y =V [ =1V fr (VD) (V)P VRf (39)

It is common to ignore the term involving second derivatives of the simulated value in Eq. 3.9;
this is the Gauss-Newton approximation. A justification for this is that it is frequently small in
comparison to the first term. Also, it is premultiplied by a residual term, which is small near the
solution, although the approximation is used even when it is far from the solution. Thus, the
second term in Eq. 3.9 can be solved with first derivatives of the simulated quantity with respect
to the parameters. These derivatives are obtained from the run of Eclipse 100 at the same time as
the simulated quantities themselves, and in just one run.

SimOpt expresses the overall measure of the history match as a Root Mean Square

(RMS) index formed from the regression objective function:



46

RMS= 2L (3.10)
m

obs
where m, is the total number of observations over which the index is formed, and f is the
objective function. This RMS index provides a normalized value of the deviation between

simulated and observed data.

3.3.3 Comparison of inverse method and SimOpt by synthetic case
One synthetic case, Case 2, is used to compare the accuracy and efficiency of the inverse method
and SimOpt. In the inverse method, I match on reservoir properties (permeability in this case) on
a cell basis. Instead of matching on individual cell values of reservoir properties (permeability in
this case), SimOpt matches on constant values of permeability within the Voronoi regions
around each well. Thus, the number of regression parameters is reduced to the number of wells
in SimOpt. However, SimOpt is limited in the number of regression parameters. Thus, it is not
suited for the reservoirs with large number of wells, such as 1000-well case.

Figs. 3.28 and 3.29 show the decreasing RMS by the inverse method and SimOpt. For
both these two methods, objective function goes down smoothly. But RMS from inverse method

has more decrease in fewer iterations.
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Fig 3.30 shows history match of fieldwide production rate from SimOpt, which is as

good as the match from the inverse method (Fig. 3.6). Figs. 3.30 and 3.31 show some of the best

and worst well matches by SimOpt, which were selected based on the RMS index.
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Fig. 3.30 - History match of field production rate by SimOpt
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Fig. 3.32 - Bad individual history match from SimOpt for Case 2 — Well 42

Since production responses are sensitive only to permeabilities in their vicinities, both of
these methods regenerate permeability distribution only in areas with producing wells. The
estimated permeability distributions in Figs. 3.14 and 3.33 do not replicate exactly the actual
permeability distribution. However, the regressed permeability field resembles the heterogeneity
of the known permeability field in the areas where production data and well locations are

available.
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Case2 - Estimated Permeability by Region
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Fig.3.33 - Estimated permeability distribution for Case 2 by SimOpt

Table 3.5 compares the accuracy of the inverse method, the moving window method and
SimOpt. BY;,s from simulation method is the true BY;, using from actual permeability
distribution. For Case 2, all the three methods underestimate average estimated BY;,r. However,
the relative error from the inverse method (-2.15%) is still less than that from SimOpt (-4.10%)
and the moving window method (-8.13%). Table 3.6 summarizes the comparison of average
percent error for individual wells from all three methods. The APE for the inversion method is
12.6%, compared to 12.97% for SimOpt and 31.7% from the moving window method.
Therefore, SimOpt has approximately the same accuracy as the inverse method and thus, more
accuracy than the moving window method. Table 3.7 compares the computation efficiency of
the inverse method and SimOpt. It takes about 3 minutes to finish one regression for the inverse

method as opposed to 8 minutes for SimOpt. To have approximately the same objective function
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value, the inverse method needs only 5 iterations, fewer than 35 iterations needed with SimOpt.

Thus, the inverse method I proposed works more efficiently than SimOpt with approximate

accuracy.

Table 3.5 - Comparison of average BY ¢ for three methods

Case 2 Calculated Calculated Calculated Calculated
BY s from from moving from inverse from
simulation window method SimOpt
method method
Average BY;,, MSCM/M 564 517 551.65 540.86
Standard deviation, md 137.64 149.52 79.68 93.65
Relative error, % - -8.33 -2.15 -4.10

Table 3.6 - Comparison of average percent error of individual wells for three methods

Case 2 Calculated from moving Calculated from Calculated from
window method inverse method SimOpt
APE, % 31.70 12.61 12.97

Table 3.7 - Comparison of computation efficiency of the inverse method and SimOpt in

synthetic case

Method Inverse method SimOpt
CPU time for 1 iteration 3 mins 27 secs 8 mins
Iteration number needed 5 35
Total time required 18 mins 280 mins
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CHAPTER 1V

RESERVOIR PARAMETERS SENSITIVITY STUDY

As 1 discussed in Chapter I1, I do not conduct a detailed reservoir characterization study in the
presented inverse method, since my goal is rapid, approximate estimation of infill potential. In
an initial application, I simply use whatever data are available. I initialize my reservoir model
with uniform average values if the reservoir property maps are not available. For example, I
assume a uniform value of the individual well skin factors for all wells if skin factor estimates
are not available. I use constant pore volume in the reservoir model as well, if the porosity and
thickness maps are not available. But these estimated uniform pore volume and skin factors may
be far off from the actual values, and may affect the prediction accuracy of infill potential
significantly. In this chapter, I made a sensitivity study to investigate and quantify the influence
of the estimated uniform pore volume and skin factors on the prediction accuracy for infill
drilling.

To do this, I generated a synthetic case (called base case in the following) with variable
permeability, porosity and thickness distributions. The skin factor for each well is generated
randomly, and ranges from -3 to 7. In the sensitivity study, I matched on permeability only as
well. I quantified the influence of pore volume and skin factors on the prediction accuracy from
several cases with different pore volume or skin factors in the reservoir model. The following

sections provide give detailed description of the sensitivity study.

4.1 Introduction of synthetic case generated for sensitivity study
A synthetic case was generated as the actual field for the sensitivity study (labeled as the base

case). The base case is similar to Case 2, one of synthetic cases I used in Chapter Il for
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comparing the accuracy of the inverse and moving window methods. The base case was defined
on a 54*54*] simulation grid of a 9-township area. There are 130 wells in the reservoir, which
were drilled at different dates over approximately 40 years. Fig. 4.1 shows the date of first
production for the 130 wells, which represents several rounds of infill drilling. The distributions
of current well spacing and first production date are realistic as they were derived from actual
well data from a shallow gas basin in North America. The actual porosity, thickness and
permeability distributions are shown in Figs. 4.2, 4.3 and 3.2. The average thickness and
porosity in this base case is 110 ft and 8.5%. I use variable skin factors in the base case. The
property of skin factors for the base case is shown in section 4.3. Other parameters used in the
simulation are listed in Table 4.1.

The regression is based on the synthetic production history from 1962 to 2000. After this
I made a prediction for 3 years (2001-2003). In the prediction time, 30 new wells have been
drilled, as indicated in Fig. 4.4.

I generated the synthetic production history using the actual permeability distribution,
then inverted the synthetic production data to determine the permeability field for the sensitivity
study. I matched on average production rate of every other year, yielding a total of about 700

observation points.
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Fig 4.1 - The distribution of date of first production for the base case
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Fig 4.2 - The distribution of actual thickness for the base case



Fig 4.3 - The distribution of actual porosity for the base case

Table 4.1 — The parameters used in the base case

Number of wells 130
Initial reservoir pressure (psia) 1100
Flowing bottom hole pressure (psia) 250
Well bore radius (ft) 0.3

porosity|
24.7072|
23.5729
22.4386|
21.3043|
20.1699
19.0356
17.9013
16.767

15.6326
14.4983
13.364

12.2297
11.0953
9.96101
8.82668|

%
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Fig. 4.4 - Well locations in the base case

( °-existing well, x - infill well, + - step-out well)

4.2 The effect of pore volume on predicted infill performance

To quantify the influence of pore volume on predicted infill performance, I built reservoir
simulation models with four different pore volume distribution. Table 4.2 shows the names and
descriptions of cases involved in this study. The first case, Pvl actual, uses the actual pore
volume distribution based on actual thickness (Fig. 4.2) and porosity (Fig. 4.3) maps, which
represent variable thickness and porosity distributions. The second case is Pv2 average, which
initializes the reservoir model with average uniform thickness (110 ft) and porosity values
(8.5%) that yield a total pore volume very close to the actual value. The third case is called
Pv3_high, which uses uniform thickness (150 ft) and porosity (15%) values. The pore volume

input in Pv3_high is about 1.5 times higher than the average pore volume. The fourth case,
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Pv4 low, has very low uniform thickness (60 ft) and porosity values (5%) in the reservoir
model. The pore volume in Pv4_low is about 1.7 times lower than the average value.

In all 4 cases, all the other parameters are known and fixed except permeability which is
the only parameter to be matched. I started the regression with a uniform permeability field of k

= 0.2 md in all 4 cases.

Table 4.2 — Description of the four synthetic cases in sensitivity study of pore volume

Cases Net thickness ,ft Porosity, %
Pvl actual actual actual
Pv2 close 110 8.0

Pv3 high 150 15.0
Pv4 low 60 5.0

4.2.1 History matching results

Fig. 4.5 shows the decreasing objective function in the four cases. In all the 4 cases, objective
functions decrease greatly in the first 3 iterations, and go into a slow decline after that.
Compared with Pv3 high and Pv4 low, Pvl actual and Pv2 average have a lower misfit with
the same number of iterations. This is because I use either the actual pore volume or average
uniform pore volume in each grid of reservoir model, instead of a uniform value far from the
average value as in Pv3 high and Pv4 low. Pv3 high shows a lower misfit than pv4 low. But
this is not the case all the time. In some other studies I did, the misfit with high pore volume
input sometimes has a higher value than that with low pore volume input. It is evident that the
objective function can decrease to a lower value if the reservoir model has a reasonable pore

volume distribution input.



58

140000
120000 —&— Pv1_actual
)ﬁ Pv2_average

100000 Pv3_high

% —X¥—Pv4_low

o 80000 -

E

2 60000 -

=

40000 \

|\

0,—;;5______
0 2 4 6 8 10 12

Iteration number

Fig. 4.5 - Objective function for the four synthetic cases

Figs. 4.6-4.9 show estimated permeability distribution for all the four synthetic cases. As
I mentioned in Chapter I, the inverse method only reproduces the local permeability. For the
reservoir areas which are not developed with wells, the estimated permeability keeps the initial
input values. Compared with the actual permeability distribution (Fig. 3.2), the estimated
permeability distribution based on actual pore volume resembles the true heterogeneity in the
areas with wells and production data very well (Fig. 4.6). The estimated permeability
distribution from pv2 average regenerates the heterogeneity of actual permeability field in the
areas with wells (Fig. 4.7). But the estimated permeability values from Pv2_average are a little
higher compared with actual values. For Pv3 high and Pv4 low, the estimated permeability
distributions based on high and low pore volume input are far off the actual distribution. Both of
them could not regenerate the heterogeneity of the actual permeability distribution. The

estimated permeability values are a lot lower in the high pore volume case, and higher in the low
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pore volume case. This means the estimated permeability compensates the inaccuracies in pore

volume. As shown by the high objective function values in Fig. 4.5 for these two cases, the

extent of the compensation is limited. Thus, poor pore volume estimation appears to have a

significant effect on the estimated permeability distribution.

Fig. 4.6 - Estimated permeability for Pvl_actual
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Fig. 4.7 - Estimated permeability for Pv2 average
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Fig. 4.8 - Estimated permeability for Pv3_high
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Fig. 4.9 - Estimated permeability for Pv4_low

4.2.2 Infill performance prediction

Based on the estimated permeability distribution of each case (Figs. 4.6-4.9), I calculated infill
well performance. When I calculated infill potentials in all 4 synthetic cases, I made the
prediction for 3 years. In this sensitivity study, I use Inf Per to represent the infill performance
of the 30 new wells. I calculated relative error and average percent error of individual-well

Inf Per in each case to quantify the prediction accuracy.

Table 4.3 demonstrates the relative error for the four synthetic cases. Relative error of
Inf Per is the error in the 130-well Inf Per between each case and the true value. For infill
wells, notice that, relative errors from Pv1_actual (9.5%) and Pv2_average (11.6%) are a lot
lower than that from Pv4 low (30.94%). But relative error from Pv3 high (6.84%) is very low as
compared to those from other 3 cases. [ think this is just coincidence because I got very high

relative error in most of other cases I studied.
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Table 4.4 shows average percent error for the four synthetic cases. Average percent
error quantifies the error on an individual well basis. For infill wells, Table 4.4 shows that
average percent error from Pvl_actual (14.62%) and Pv2_average (21.21%) are a lot lower than
that from both Pv3_high (47.16%) and Pv4_low (33.48%).

From the above discussion, I conclude that if I construct my reservoir model with a
uniform thickness and porosity values that are about 1.5 higher than their average values as in
Pv4 low, the infill prediction errors can be off by 30% to 40% on both a fieldwide and
individual-well basis. Thus, pore volume has a significant effect on the prediction accuracy of
infill wells. However, if I use average values of thickness and porosity in my reservoir model,
like Pv2_average, there is not too much deviation of prediction accuracy from that with actual
thickness and porosity maps. This is reassuring, since it will often be necessary to initialize

reservoir models with estimated average values if reservoir property maps are not available.

Table 4.3 - Relative error with different pore volume

cases Existing wells Infill wells Step-out wells
Pvl_actual, % -0.019 9.50 14.59
Pv2_average, % 0.37 11.16 72.83
Pv3_high, % 1.84 6.84 142.83
Pv4 low, % -6.69 30.94 -9.67
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Table 4.4 - Average percent error with different pore volume

cases Existing wells Infill wells Step-out wells
Pvl _actual, % 0.22 14.62 30.97
Pv2 average, % 0.84 21.21 70.26
Pv3 high, % 2.32 47.16 138.53
Pv4_low, % 6.39 33.48 26.52

4.3 The effect of skin factors on predicted infill performance

The skin factor is a dimensionless quantity used to quantify the additional pressure drop from a
zone of altered permeability in the formation immediately adjacent to the wellbore. Because of
drilling and/or completion operations, this near-wellbore zone can be damaged, resulting in a
permeability that is lower than the unaltered, in-situ formation permeability. Under these
conditions, the skin factor is a positive quantity. Larger positive values of skin factors indicate
greater reductions in near-wellbore permeability. Conversely, if the formation around the
wellbore is stimulated, such as by acidizing or fracturing, the skin factor is negative."

The skin factor for a well can be estimated in various ways. The best way is from a
pressure transient test tests in the same formation and in wells with similar completions, or it can
be approximated from the well’s completion and/or stimulation type. If measured data are not
available, it may be possible to develop from known data a correlation against stimulation type
and use this where you do not have skin factor data. As I mentioned before, individual well skin
factors are usually not available. In my study, I assume zero or another uniform value for skin
factors of all wells.

I used two synthetic cases, one with actual skin factors and the other with zero skin

factors for all the wells, to quantify how the skin factors affect the prediction accuracy. The
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observed data I generated for regression is based on variable skin factors. Properties of the
generated skin factor distribution for 130 wells are shown in Table 4.5. The synthetic case with
actual skin factors is exactly same as case Pvl actual I used above, and I called it as Sk1 actual
here. The other case with zero skin factors is called Sk2 zero. The only difference between these
two cases is the input value of skin factors, one with actual variable skin factors and the other
using uniform zero for skin factor of each well. As in the previous sensitivity study, I inverted
synthetic production data to determine the permeability field. In both cases, all the other

parameters were known and fixed except permeability, which was the only parameter matched.

Table 4.5 - The property of skin factors

Mean 1.8588
Standard Error 0.2376
Median 1.8180
Standard Deviation 2.7095
Sample Variance 7.3414
Kurtosis -1.1427
Skewness -0.0067
Range 9.8953
Minimum -2.9313
Maximum 6.9640
Sum 241.6492
Count 130.0000

Fig. 4.10 shows that the objective functions decrease smoothly in both cases. Note that,
importantly, the misfit is lower in Skl actual. The objective function with actual skin factors

decreases to a lower value with the same number of iterations.
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The estimated permeability distribution for Sk1 actual is shown in Fig. 4.6. Fig 4.11
shows the estimated permeability distribution for Sk2 zero. Compared with the actual
permeability distribution (Fig. 3.2), the estimated permeability in both cases regenerates the
heterogeneity of the reservoir well. But in Sk2 zero, the permeability values in some areas are
lower than the actual values.

Tables 4.6 and 4.7 show the relative error and average percent error of Inf Per for both
cases. For infill wells, the relative error in Sk2 zero, -3.40%, is lower than that in Sk1 actual, -
9.50%. But the average percent error in Sk2 zero is 37.23%, which is about twice the error in

Skl actual, 14.62%. Thus, skin factors have a big effect on prediction accuracy.
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Fig. 4.10 - Objective function with different skin factors
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Fig. 4.11 - Estimated permeability distribution for Sk2_zero
Table 4.6 - Percent error distribution for Sk1_actual
Existing wells Infill wells Step-out wells
-0.019 -9.50 14.59
Relative error, %
APE(average percent 0.22 14.62 30.97
error),%
Table 4.7 - Percent error distribution for Sk2 zero
Existing wells Infill wells Step-out wells

-0.31 -3.40 41.99
Relative error, %

APE(average percent 1.14 37.23 61.92
error),%
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CHAPTER V

FIELD CASE APPLICATION OF INVERSE METHOD

In Chapter LI, I compared the inverse method with the moving window technology for four
synthetic cases. In this Chapter, I applied the simulation inversion method to actual production
data from the 9-township area from which the synthetic cases were derived. To evaluate the
accuracy of the inverse method, I performed a blind validation study in which I excluded part of

data set to compare my prediction results with observed infill performance.

5.1 Field case description

The reservoir in study is located in the Viking Formation of the Western Canada Sedimentary
Basin, which is equivalent in age to the Muddy Sandstone of Wyoming and the Newcastle
Sandstone of Montana and North Dakota. There are more than 75 fields in the Viking Formation.
Estimated original recoverable resources for the formation are 9.8 Tcf of gas and 558 million bbl
of oil. Through 1991, cumulative Viking production was 3.65 Tcf of gas and 420 million bbl of
0il.*

« . 27-30
Several studies

have established the geologic framework and controls on
hydrocarbon producibility of the Viking Formation. Viking production is primarily from
stratigraphic traps in shoreline deposits and incised-valley, channel-fill sandstones. Porosity
variations and directional permeability of Viking Formation reservoirs are pronounced and are
controlled by sedimentary facies, which in turn, are related to the depositional history. Viking
progradational shoreface bar reservoirs are comprised of fine- to medium-grained sandstones 5-

10 meters thick that were deposited during a regressive phase. Transgressive bar and sheet

sandstone reservoirs range from coarse-grained sandstone to conglomeratic sandstone that are 1
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to 4 meters thick. Both progradational shoreface and transgressive bar facies are tens of
kilometers long, several kilometers wide, and trend northwestward. Estuary and incised valley
fill reservoir sandstones occur as north-trending isolated channel sandbodies that are usually less
than 10 meters thick and are comprised of fine-grained to conglomeratic sandstone.

The reservoir in study is a shallow gas reservoir with approximately 40 years of
production history. There are approximately 201 wells with production through December 31,
2004. The distribution of date of first production (Fig. 5.1) shows that several rounds of infill
drilling have already been implemented in parts of the reservoir. I produced the wells at an
estimated flowing bottomhole pressure of 250 psia in the simulations, and honored shut-in

periods with durations of one month or longer.
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Fig. 5.1 - Histogram of date of first production for the field case
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5.2 Procedures for dealing with the new field database

The field data I use to build my reservoir models are based on a database from company. This
database includes two tables. One of the tables called “Texas Accumap Dump 9 Townships”
includes well and formation information, such as UWI, well name, latitude & longitude, spud
date, and formation name and so on. The other table is “Texas A&M 9 townships_viking
production”, which provides monthly production data. In table
“Texas_Accumap_Dump 9 Townships”, then some were wells, that are not from Viking and its
equivalent formation, are included. These wells need to be excluded from validation study of this
field case. There are also some multi-completion wells in this table, which were treated as
different wells in the table “Texas A&M_9 townships viking production”. It was necessary to
find these wells and put their production together as one well.

From these two tables, I generated well location data and observation data needed for
running my simulation model. These two tables include the well and production information of
261 wells with 40 years production history, so it is important to process these data efficiently.
Following are the specific procedures I used in this field study.

3 Step 1: Check formation ID in the table “Texas Accumap Dump 9 Townships”.
(1) There are 261 total wells in this table. The column named as “Prd Zone” summarizes all

the formation IDs for each well. I need to know what this formation ID represents, so I

can confirm if this well is from Viking and its equivalent formation based on the

stratigraphic chart for this area. Another table called “Formation Ids Sorted by

FORM ID” gives the formation name corresponding to each formation ID. Table 5.1

lists the formation name and ID of 8 formations found in “Prd Zone”.
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Table 5.1 - Formation ID corresponding to formation name

Formation ID Formation Name

BCDS BASAL COLORADO SS.
BSLD BOW ISLAND

MNVL MANNVILLE

VKNG VIKING ZONE

CLRD COLORADO

MLKR MILK RIVER

MDCN MEDICINE RIVER

SSPK SECOND WHITE SPECKS

(2) “Stratigraphic Correlation Chart” presents the stratigraphic information about BRITISH
COLUMBIA, ALBERTA, SASKATCHEWAN and so on. This charts shows that the
first four formations, i.e., BASAL COLORADO SS., BOW ISLAND, MANNVILLE
AND VILING, are in Viking and its equivalent formation. Wells from the remaining
four formations were found to not be Viking equivalent and were not included in this
Viking study.

(3) Remove all the wells in the database that were not found to be Viking equivalent wells.
There are 49 of these wells, so the total number of wells in this field case study was 212.

e Step 2: Define well locations and grids.

(1) In table “Texas_Accumap Dump 9 Townships”, I found that the UWI showed in this
table has different format as that shown in table
“Texas A&M_9 townships_Viking production”. So I need to modify the name of

UWI in these two tables to correlate them for finding multi-completion wells and
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summarizing the well and observation data for each well. To do this, I generate
“UWI(revised)” based on “UWI” given based on the format with “UWI” in table
“Texas A&M 9 Townships Viking Production”. Second, I sorted all the wells by
“On Prod” which give the date of first production, to give the order of producing date.
Based on this production date, I gave a new well ID such as “A1”, “A2”, to each well
which is easy to tell early or late wells.
(2) Generate structure map and well location map based on the longitude and latitude given
in table “Texas Accumap Dump 9 Townships”. I used GeoGraphix in this study.
(3) Input structure map and well location map into a software (CMG in my study) to choose
grid to make sure all the wells included. The way I calculated grids is:
It is a 9 township areas, so the length of the study area is 95040 ft since one township is
6 miles long. I define one grid size as 1760 ft, like what I used in the four synthetic
cases in Chapter I1I. So the number of grids is 54.
e Step 3: Generate observation data for doing regression
Calculate the average gas production rate in each year for each well, i.e., yearly production
divided by the actual producing days. But since I did regression for 152 wells with 40 years of
production history, too many data points were involved in the regression if I used observation
data from each year, which makes the regression very slow. Thus, I selected the observation data

of each well from every other year.

5.3 Construct reservoir model
I used the same 54x54x1 simulation grid as in the synthetic cases. I started with a uniform
permeability of 0.1 md, and inverted the actual production data using the methodology described

in Chapter I1 to determine the permeability field. I matched on average production rate of every
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other year, generating a total of 1180 data points for regression. Other reservoir and well
parameters used in the reservoir model are listed in Table 5.2, which are estimated average
values from actual field data. I conducted a blind validation study in which I performed
regression on production data from 1962 to December 31, 2000, then compared the predicted to
observed performance from January 1, 2001 through January 31, 2004. The regression consisted

of 2916 parameters (permeability in this case).

Table 5.2 - Other parameters used in the field case

Number of wells 212
Porosity (%) 15
Initial reservoir pressure (psia) 1100
Flowing bottom hole pressure (psia) 250
Well skin factor -3
Well bore radius (ft) 0.3
Net thickness (ft) 15

5.4 Field test results
Field test results include objective function, estimated permeability distribution, history

matching production data and validation.

5.4.1 Objective function and estimated permeability distribution
Fig. 5.2 shows that the objective function declines rapidly in the first few iterations then settles
into a slower, constant decline. The iteration of regression is terminated when convergence is

achieved, i.e, the objective function in this case does not decrease significantly for several
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successive iterations. Fig. 5.3 shows the estimated permeability distribution after 10 iterations. 1
did not use norm constraints in the regression, because we had no prior information on the
permeability distribution. Smoothness constraints provide the spatial continuity that is exhibited
in Fig. 5.3. The selection of smoothness factor is somewhat subjective.'”*** I tried it with
different values based on my experience. The final selection is based on a compromise between
having a small misfit and having a geologically reasonable permeability distribution. Note that
the permeability distribution is affected only in the vicinity of wells, where the influence of

production is felt.
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Fig. 5.2 - Objective function for the field case
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Fig. 5.3 - Estimated permeability for the field case at the end of the 152-well history

5.4.2 History matching

From 1962 to December 31, 2000, there are 152 wells that produce during this period. Figs. 5.4-
5.5 show field-wide history match results. I believe the results are acceptable over most of the
history, given that I have used only well locations, production data, and estimated average values
for other reservoir properties. The calculated results began to diverge from the observed values
near the end of history. I think this divergence results from the large number of new wells drilled
in the last two years of history (Fig. 5.1). For these new wells, I usually only have one or two
observed data points in the regression, which limits the accuracy of the calculated permeability
around these wells. Figs. 5.6-5.9 show four examples of individual well history matches. Good
matches are obtained for Wells 12, 48 and 53 (Figs. 5.6-5.8). A poorer match is obtained for
Well 2 (Fig. 5.9), which began producing in the 1960’s. Well 2 is close to the boundary in the

reservoir model, which does not necessarily correspond to the reservoir boundary, since I am
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modeling only a part of the reservoir. This may affect the accuracy of the history match for this

well.
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Fig. 5.4 - History match of field cumulative production
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5.4.3 Validation

Using the estimated permeability distribution I obtained by history matching production data
through 12/31/2000, I forecasted reservoir performance through 1/31/2004. There were 49 new
wells that began production during this 3-year period, which are indicated by symbols “+” or “x”
in Fig. 5.10. Figs. 5.11-5.13 show fieldwide predicted performance for three different groups of
wells. Fig. 5.11 is the prediction for existing wells, i.c., those wells first produced before
1/1/2001. Among 152 existing wells, some of them stopped producing before 1/1/2001, so there
is only 105 existing wells included in the prediction. Fig. 5.12 is the prediction for infill wells,
those wells first produced after 2001 and close to existing wells. Fig. 5.13 is the predicted
performance for step-out wells, those wells first produced after 2001, but far from existing wells.
Infill wells are indicated by the symbol “+” in Fig. 5.10, while step-out wells are indicated by the
symbol “x”.

I expected performance to be predicted more accurately for infill wells than step-out
wells since infill wells benefit from the more accurate permeability distribution resulting from
the production influence of nearby existing wells. However, Figs. 5.12, 5.13 and Table 5.3 show
that, on a group average basis, there is not much difference in fieldwide predictions for these two
groups of wells, and step-out wells get predicted even a little better. Table 5.3 shows that, on an
individual well basis, the prediction error of infill wells is 62.67% compared with 311.68% in
step-out wells. Thus, the field case demonstrates that infill wells can be better predicted than
step-out wells as expected. I expected to obtain the most accurate prediction for existing wells
because of their involvement in history matching. However, Fig. 5.11 shows that this is not the
case. Prediction error for the existing wells, even on an individual well basis, is larger than the
error for the infill wells. I attribute this poor prediction for existing wells to the larger error in the

last couple of years of the history match, due to the addition of many new wells late in history. In
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the next section, I investigated use of different weighting factors to put more weight on late wells

to improve this prediction.

+ infill wells, x step-out wells

Fig. 5.10 Estimated permeability distribution for the field case
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Table 5.3 - Summary of percent error for group wells

Existing wells Infill wells | Step-outs wells
Relative error, % 48.56 15.96 14.96
APE(average percent error),% 240.48 62.67 311.68
Median of percent error, % 61.72 31.78 81.94
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Figs. 5.14-5.17 show example predictions for four individual wells. Well 163 (Fig. 5.14)

and Well 173 (Fig. 5.15), two infill wells located in the northern ellipse in Fig. 5.10, have good

predictions of cumulative production. Large errors in predicted cumulative production are

obtained for Well 170 (Fig. 5.16) and Well 177 (Fig. 5.17), two step-out wells located in the

southern ellipse in Fig. 5.10.
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These results show that in areas with existing wells with sufficient production data to
quantify reservoir quality, it may be possible to accurately predict the production potential of
infill wells. Since the method is based primarily on well locations and production data for a rapid
screening evaluation, predictions for individual well locations can be substantially in error for
step-out wells or locations without sufficient production data. Predictions for step-out wells can
be improved only by including other types of data, e.g., seismic data. Of course, this will require
transitioning to more rigorous reservoir characterization, at greater costs. However, this

transition is greatly facilitated because the screening method is simulation based.
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5.5 Sensitivity to weighting factors
In the analysis above, I give the same weight to all the observation data points. I tried to improve
the prediction results by assigning different weightings to particular production data points. In

the following sections, I discuss four different ways for assigning weighting factors.

5.5.1 Objective function with weighting factors

I am trying to minimize
N
lod - glm)|. = (@,d, - g [m])> (5.1)
i=1

At the /-th iteration step, I take a first order Taylor series expansion of g[m] around m,,

e[m)=glm)+G6m . (5.2)

where m; is the vector of M parameters at the /-th iteration step, G is the sensitivity coefficients
matrix, and om is the vector of parameter changes at the /-th iteration step. Thus, I obtain the
data misfit vector ¢ at the /-th iteration step,

8:d—g[m,J=G5m ........... (5.3)

Substituting Eq. 5.3 into Eq. 5.1, [ obtain

Z(a)i(di - gi[m]))2 =D (o, _ZGi,/§m/))2

= s (5.4)

5.5.2 Different types of weighting factors investigated
To evaluate how the weight factors affect the prediction results, I generated four different types
of weighting factors, which put emphasis on late wells.

Type 1 : I use the same weighting factors for all the wells.
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Type 2 : For each well, weighting factors are inversely proportional to the number of
observation data points for the well. So the more data points we have a well, the less weight we
give to each data point for the well.

1
W, = ———
(Nobx )i

where @, ; is the weighting factor of well i for j-th observation point, and (N, ), is the total

number of observation data points of well i.
Type 3 : Data points in late wells and data points at late times in the same well have
more significant weightings. For example, if I have four data points for well 7, the sum of these

123 4

y—» . Thus,
10 10 10 10

four data points are 1+2+3+4 =10. Then the weight factors will be

5

_ J
@;; = (Noss )i (5.6)
> ()
1
Type 4 : Late wells have greater weightings than earlier wells.

I (5.7)

;=
time ; ;
where @, ; is the weighting factor corresponding to the j-th observation data point for well i,

and time, ; is the cumulative production days corresponding to the j-zh observation data point

for well i.

I repeated the field case using these different types of weighting factors and some

combinations of the different types.

5.5.3 Summary of results with different weighting factors



87

I investigated 6 different schemes for weighting factors as shown in Table 5.4. In this
field case, I used BY ;s to represent the well cumulative production in 3 years for each well. For
the 3 different types of group wells (existing, infill and step-out wells ), I calculated percent error
of BY s both on a groupwide and on an individual well basis. Figs. 5.18 and 5.19 summarize
relative error of BYj,r for 6 different weighting schemes. It is apparent that for existing and infill
wells, combinations 3 and 6 work better both on a groupwide and on an individual well basis.
Tables 5.5 — 5.10 list the prediction results for all 6 schemes. Figs. 5.20-5.22 demonstrate how
the predicted field cumulative production and field rate matches changed after using weighting
scheme 6. Compared to the prediction of field cumulative production for infill wells shown in
Fig. 5.12, there is significant improvement in prediction using weighting scheme 6 (Fig. 5.21).
Fig. 5.20 shows that the prediction of field cumulative production for existing wells is not much
different from that without using weighting factors. Thus, it is helpful for infill well prediction to
put more emphasis on late wells and/or at late times for the same well. But this does not cause
much change for existing wells. I believe the reason for poor prediction in existing wells is
probably the minimum shut-in time I assigned in my model. As I mentioned above, I honored
shut-in periods of one month or longer. But some existing wells did not produce for the entire
month in months in which there is non-zero monthly production. This could be responsible for
the calculated cumulative production being higher than the observed value, even far off in some

cascs.
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Table 5.4 - Different combination of weighting factors
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Fig. 5.18 - Distribution of relative percent error for 3 group wells

88



90

80 e
— 70 N
H 60 — " / \
Z = ~— \
S 50
: N
°5 m— g
S o= 40
— 5
°
£ -2 30 l/
[Tee
° 8 20
c @ |
§ o 10
s 0 ‘ ‘ ‘ ‘ ‘ ‘
0 1 2 3 4 5 6 7
Type of schemes
‘—Q—existing well —l—infill well step-out well ‘
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Table 5.5 - Percent error distribution using weighting factors as 1(Type 1)

Existing wells Infill wells Step-out wells
Relative error, % 48.56 15.96 14.96
APE(average
percent error),% 240.48 62.67 311.68
Median of percent
error, % 61.72 31.78 81.94

Table 5.6 - Percent Error distribution with Type 2 weighting factors

Existing wells Infill wells Step-out wells

Relative error, % 47.23 17.12 -32.81
APE(average
percent error),% 227.55 67.58 179.72

Median of percent
error, % 63.98 43.49 79.40




Table 5.7 - Percent error distribution with Type 3 weighting factors (normalized)

Existing wells Infill wells Step-out wells
Relative error, % 38.60 7.25 -32.62
APE(average
percent error),% 138.37 63.16 149.39
Median of percent
error, % 56.58 45.06 70.45

Table 5.8 - Percent error distribution with Type 4 weighting factors

Existing wells | Infill wells | Step-out wells
Relative error, % 4591 15.35 -24.06
APE(average
percent error),% 161.74 68.91 192.71
Median of
percent error, % 63.42 43.07 70.87

Table 5.9 - Percent error distribution with schemes of Type 2 and Type 3 weighting

Existing wells | Infill wells | Step-out wells

Relative error, % 45.35 14.61 -10.94
APE(average

percent error),% 163.22 65.03 294.74
Median of

percent error, % 73.03 37.00 81.51




Table 5.10 - Percent error distribution with schemes of Type 2 and Type 4 weighting

Existing wells Infill wells Step-out wells
Relative error, % 37.02 7.57 -8.17
APE(average
percent error),% 118.06 58.08 269.67
Median of
percent error, % 52.53 36.09 77.86
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Fig. 5.20 - Predicted field cumulative production for 105 existing wells with weighting scheme 6
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5.6 Comparison of inverse method and SimOpt by field case

I also applied SimOpt in this field case to compare the accuracy and efficiency of these two
methods. In addition, since SimOpt can estimate two parameters (permeability and pore volume)
at the same time rather than one (permeability) estimated with the inverse method, I tried to
quantify how much the prediction results can be improved by matching both pore volume and
permeability. Note that, when I match only the permeability field either by the inverse method or

SimOpt, I start regression with a uniform value for pore volume.

5.6.1 History matching results
Figs 5.23 and 5.24 show the decreasing objective functions from SimOpt by matching on
permeability field only and by matching on both permeability and pore volume. The objective
function in Fig. 5.24 is continuing to decrease at the point of termination. There are two reasons
why I terminated it at this iteration. First, the misfit does not change very much after iteration 16.
Second, I want to compare the misfits in Fig. 5.23 and 5.24 when they are terminated with the
same number of iterations. The misfit by matching on two parameters is less than that by only
matching the permeability field, but there is not much practical difference. Compared to the
misfit from inverse method in this field case (Fig. 5.2), the misfit from SimOpt by either
matching on permeability only (Fig. 5.23) or pore volume and permeability (Fig. 5.24) has less
decrease with the same number of iterations.

Figs. 5.25 and 5.26 show the estimated permeability distributions for matching only
permeability and both permeability and pore volume by SimOpt, which are very similar. As |
mentioned before, SimOpt is matching by regions, as is apparent in these two figures. The two

maps also indicate that permeability can only be estimated in the areas with or near wells. Fig.
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5.27 is the estimated pore volume distribution from SimOpt, which was estimated by regions as

well.
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Fig.5.27 Estimated pore volume distribution by SimOpt matching on permeability and porosity

5.6.2 Infill drilling predictions

Tables 5.11-5.13 show the prediction error for the inverse method and SimOpt. Inverse
method gives better predictions than SimOpt in all 3 groupings of wells. Thus, the inverse
method predicts infill potential more accurately than SimOpt. There is not much improvement in
prediction accuracy by matching on both pore volume and permeability instead of matching on

permeability only by SimOpt. This may be due to matching by regions with SimOpt.
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Table 5.11 - Percent error by inverse method

Existing well Infill well | Step-out wells

48.56 32.01 -76.35
Relative error, %

240.48 130.17 77.70
IAPE(average percent error),%

61.72 48.32 77.59

Median of percent error, %

Table 5.12 - Percent error by SimOpt matching only on permeability

Existing wells Infill wells Step-out wells

60.23 69.22 38.56
Relative error, %
APE(average percent 438.85 170.50 245.65
error),%

77.96 62.16 128.63

Median of percent error, %

Table 5.13 - Percent error by SimOpt matching both on permeability and pore volume

Existing wells Infill wells Step-out wells

56.16 70.33 40.44
Relative error, %
APE(average percent 437.87 186.20 232.56
error),%

76.12 60.06 128.38

Median of percent error, %

Table 5.14 shows it takes about 8 minutes to finish one regression for the inverse
method as opposed to 45 minutes for SimOpt. To have similar objective function value, the

inverse method only needs 10 iterations, fewer than 16 needed from SimOpt. Total CPU time
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need for the inverse method is only 1 hour 20 minutes, much faster than the 12 hours required

for SimOpt. Thus, inverse method is considerably more efficient than SimOpt.

Table 5.14 - Comparison of computation efficiency in field case

CPU time

for 1 iteration

Total iterations

Total CPU time

Inverse Method

8 mins

10

1 hour 20 mins

SimOpt

45 mins

16

12 hours

Based on the above study, it is demonstrated that the inverse method is more accurate

than SimOpt in prediction accuracy. In addition, inverse method is a lot faster than SimOpt. The

difference in speed is due in part to the different minimization methods they used. The inverse

method uses LSQR in minimization, which is an extremely efficient method compared with the

Levenberg-Marquardt used in SimOpt.
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CHAPTER VI

SUMMARY AND CONCLUSIONS

A simulation-based inversion approach has been presented to predict infill drilling potential as
an alternative to conventional reservoir studies and moving window statistical methods. This
proposed method combines reservoir simulation with automatic history matching. It does not
include detailed reservoir characterization, and uses available data only. It relies primarily on
well location and production data, inverting production data with constant flowing bottomhole
pressure well constraints. The focus is on large-scale, coarse-resolution rather than small-scale,
high-resolution modeling.

The calculation of sensitivity coefficients is the critical part to improve the efficiency of
the whole process. In the past decades, many methods for calculating sensitivity coefficients
have been proposed. I used the MGPST method due to its high efficiency. Inverse modeling is
used to minimize the difference between observed and calculated values, and adjust reservoir
parameters based on the difference. In order to remedy the ill-posedness of the inverse problem,
I augmented the objective function by adding two terms, norm constraints which ensures that the
final model is not too deviated from the initial geologic model, and smoothness constraints,
which help to keep spatial continuity. I used LSQR, a mathematic optimization method and also
an iterative sparse matrix solver, to solve this augmented linear system. The calculation of infill
predictions is based on the above reservoir model and estimated permeability distributions. My
infill performance is quantified on a cell basis.

To validate the proposed method, I applied the inverse method to four synthetic test
cases with varying degrees of heterogeneity. Followings are the conclusions of the synthetic case

study.
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e The inverse method can predict infill drilling performance more accurately compared with
the moving window statistical method.

e Predictions with the inversion approach were more accurate for both individual wells and the
average infill potential for a group of wells.

e Pore volume has a significant effect on prediction accuracy. In the reservoir model with a
uniform pore volume about 1.5 higher than average values, the fieldwide prediction error
was off by 30%, and the individual-well basis prediction error was approximately 40% high.

e Skin factors have a large effect on prediction accuracy.

I also applied inverse method to a field case, in the Viking Formation of the Western Canada
Sedimentary Basin. To validate my predictions, I excluded part of the data set and compared the
predicted with observed performance for 3 years. The conclusions are as followed:

e The predictions for existing wells are not as good as what I expected. I attributed this to the
minimum shut-in time I assigned in my model. My analysis is based on monthly production
data, so I produce wells in the simulation at constant flowing bottomhole pressure for the
entire month in months in which there is non-zero monthly production. This results in an
overprediction of production when wells do not produce for the entire month.

e The inverse method was able to accurately predict performance for infill wells in areas with
sufficient production from existing wells to effectively quantify reservoir quality. Predictions
for step-out wells were also good on a fieldwide basis, but much less accurate on an
individual well basis.

e Predictions for step-out wells or infill wells in areas with insufficient production can be
improved only by including other types of data. Since the proposed method is simulation

based, it can easily incorporate other types of data and enables a smooth transition to more
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detailed studies, which is an improvement over moving window statistical methods.

Finally, I compared my inverse method with SimOpt in both synthetic cases and field
cases. SimOpt is a computer program included with Eclipse that uses mathematical optimization
techniques to vary specified reservoir parameters, such as permeability and pore volume, to
minimize the difference between observed and simulated production data. The minimization
method SimOpt uses is Levenberg-Marquardt method, which is different with the inverse
method uses, LSQR method. Both synthetic cases and field cases demonstrate the inverse
method is more accurate and efficient compared with SimOpt. Predictions did not get much
improved by matching two parameters (permeability and pore volume) rather than one (only
permeability) using SimOpt in my study. I think using regions to match may be part of reasons
for the poor results. The presented inversion approach matches on reservoir properties on a cell
basis. However, instead of matching on individual cell values of reservoir properties, SimOpt
matches on constant values of permeability within the gridded Voronoi regions around each well
because of the limited number of parameters SimOpt can use in the regression.

Based on all the studies using the inverse method, I conclude that the inverse method is
able to identify potential areas or groups of wells for infill development quickly and
inexpensively. Prediction accuracy can be increased commensurate with reservoir
characterization effort, time and costs. Thus, the method can be a useful and reliable screening
tool in large gas infill drilling projects.

Future work should focus on continuing improvement of the accuracy and efficiency of
this simulation based inversion method. The specific recommendations are as follows:

e Match using two reservoir parameters, i,e. permeability and porosity, as opposed to just

permeability. I should also investigate trying to match using porosity and permeability
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on a cell basis rather than matching on constant values of permeability or porosity within
the regions.

Modify the code to match on a region as well as cell basis. Compare the accuracy and
efficiency of these two different ways of matching reservoir properties.

Provide for incorporation of pressure data in the inversion. Incorporating shut-in
pressure data will require additional sensitivity calculations, while flowing pressure data
may be incorporated through the well constraint mechanism.

Test the method on larger problems — 1000’s to 10,000’s of wells.

Quantify the uncertainty of the infill and recompletion performance predictions.
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NOMENCLATURE

= the matrix of flow element

= north and west flow coefficient, scf - cp/psi2 - D

= east and south flow coefficient, scf - cp/psi2 ‘D

= main diagonal of coefficient Matrix A, scf - cp/psi2 - D

= average percent difference, %

= the knowns including wellblock pressure of last time step
and bottomhole pressure , psi

= best 12 conservative months of production
divided by 12, MSCM/M

= infill drilling production, MSCM/M

= the calculated production value

= the vector of N observation data

= right-side column vector of Eq. 2.2

= objective function in SimOpt

= the objective function prior term

forward model

= the matrix of sensitivity coefficients

= the Hessian matrix

= unity matrix

well constant of well /

well index



kj
Kesti
Kacti
kh
Ly
M
m

Mops

MSCM/M

Ppisi,

n+l

Ppisi,j

104

permeability in wellblock j,md

= estimated permeability value for gridblock i

= actual permeability value for gridblock i

permeability in wellblock ,md.ft
second-order spatial-difference operator
the number of parameters

the vector or M Parameters

the total number of observations
thousand standard cubic meter per month
the number of observed data

number of wells

the observed production value

the vector of well block pressure, psi

real-gas pseudopressure, m/Lt’ , psi’/cp

real-gas pseudopressure at bottomhole, m/Lt’ , psi*/cp

real-gas pseudopressure in (i,j) grid at n time step, m/Lt> , psi®/cp
real-gas pseudopressure in (i,j-1) grid at n+1 time step, m/Lt> , psi* /cp
real-gas pseudopressure in (i-1,j) grid at n+1 time step, m/Lt> , psi* /cp
real-gas pseudopressure in (i+1,j) grid at n+1 time step, m/Lt’ , psi*/cp
real-gas pseudopressure in (i+1,j) grid at n+1 time step, m/Lt’ , psi*/cp

production rate, L* /t, scf/D
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the weighted production data difference

equivalent radius of well gridblock, L, ft

wellbore radius, L, ft

the root mean square
skin factor, dimensionless
standard deviation

temperature, T, °R

temperature at standard condition, °R

= timestep, t, days

pore volume of gridblock, L*, ft’

arow in matrix 4 (Eq. 2.10) with corresponding to well /
z factors

coefficient in Eq. 2.4

weighting factor

viscosity, m/Lt, cp

the vector of current parameter normalized modifier

data misfit vector, L’ /t, scf/D

perturbation of permeability field, md

pore volume, ft

an overall weighting for the d’th production data set

a weighting for the i’th production data point
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