IB Practice Exam: 09 Paper 2 Zone $2-90 \mathrm{~min}$, Calculator Allowed Note: The syllabus for Math SL changes with first exams starting May 2014. In particular, it no longer includes matrices. As such, you may skip those problems.

Name: \qquad Date: \qquad Class: \qquad

1. The following diagram is a box and whisker plot for a set of data.

The interquartile range is 20 and the range is 40 .
(a) Write down the median value.
(b) Find the value of
(i) a;
(ii) b.
2. Consider the graph of f shown below.

(a) On the same grid sketch the graph of $y=f(-x)$.

The following four diagrams show images of f under different transformations.

Diagram A

Diagram C

Diagram B

Diagram D
(b) Complete the following table.

Description of transformation	Diagram letter
Horizontal stretch with scale factor 1.5	
Maps f to $f(x)+1$	

(c) Give a full geometric description of the transformation that gives the image in Diagram A.
(Total 6 marks)
3. Solve the equation $\mathrm{e}^{x}=4 \sin x$, for $0 \leq x \leq 2 \pi$.
(Total 5 marks)
4. The diagram below shows a triangle ABD with $\mathrm{AB}=13 \mathrm{~cm}$ and $\mathrm{AD}=6.5 \mathrm{~cm}$.

Let C be a point on the line BD such that $\mathrm{BC}=\mathrm{AC}=7 \mathrm{~cm}$.

diagram not to scale

(a) Find the size of angle ACB .
(b) Find the size of angle CAD.
5. (a) Expand $\sum_{r=4}^{7} 2^{r}$ as the sum of four terms.
(b) (i) Find the value of $\sum_{r=4}^{30} 2^{r}$.
(ii) Explain why $\sum_{r=4}^{\infty} 2^{r}$ cannot be evaluated.
6. Consider the curve $y=\ln (3 x-1)$. Let P be the point on the curve where $x=2$.
(a) Write down the gradient of the curve at P .
(b) The normal to the curve at P cuts the x-axis at R. Find the coordinates of R.
7. The quadratic equation $k x^{2}+(k-3) x+1=0$ has two equal real roots.
(a) Find the possible values of k.
(b) Write down the values of k for which $x^{2}+(k-3) x+k=0$ has two equal real roots.
(Total 7 marks)
8. Let $f(x)=x(x-5)^{2}$, for $0 \leq x \leq 6$. The following diagram shows the graph of f.

Let R be the region enclosed by the x-axis and the curve of f.
(a) Find the area of R.
(b) Find the volume of the solid formed when R is rotated through 360° about the x-axis.
(c) The diagram below shows a part of the graph of a quadratic function $g(x)=x(a-x)$. The graph of g crosses the x-axis when $x=a$.

The area of the shaded region is equal to the area of R. Find the value of a.
9. A van can take either Route A or Route B for a particular journey.

If Route A is taken, the journey time may be assumed to be normally distributed with mean 46 minutes and a standard deviation 10 minutes.

If Route B is taken, the journey time may be assumed to be normally distributed with mean μ minutes and standard deviation 12 minutes.
(a) For Route A, find the probability that the journey takes more than 60 minutes.
(b) For Route B, the probability that the journey takes less than 60 minutes is 0.85 . Find the value of μ.
(c) The van sets out at 06:00 and needs to arrive before 07:00.
(i) Which route should it take?
(ii) Justify your answer.
(d) On five consecutive days the van sets out at 06:00 and takes Route B. Find the probability that
(i) it arrives before 07:00 on all five days;
(ii) it arrives before 07:00 on at least three days.
10. Let $f(x)=3 \sin x+4 \cos x$, for $-2 \pi \leq x \leq 2 \pi$.
(a) Sketch the graph of f.
(b) Write down
(i) the amplitude;
(ii) the period;
(iii) the x-intercept that lies between $-\frac{\pi}{2}$ and 0 .
(c) Hence write $f(x)$ in the form $p \sin (q x+r)$.
(d) Write down one value of x such that $f^{\prime}(x)=0$.
(e) Write down the two values of k for which the equation $f(x)=k$ has exactly two solutions.
(f) Let $g(x)=\ln (x+1)$, for $0 \leq x \leq \pi$. There is a value of x, between 0 and 1 , for which the gradient of f is equal to the gradient of g. Find this value of x.

A1 N1
(b) (i) 10

A2
N2
A2
N2
2. (a)

(b)

Description of transformation	Diagram letter
Horizontal stretch with scale factor 1.5	C
Maps f to $f(x)+1$	D

(c) translation (accept move/shift/slide etc.) with vector
3. evidence of appropriate approach
e.g. a sketch, writing $\mathrm{e}^{x}-4 \sin x=0$
$x=0.371, x=1.36$
evidence of choosing the sine rule in triangle ACD
(M1) correct substitution
e.g. $\frac{\sqrt{5}}{\sin 5 \sqrt{6}}$
$\hat{\mathbf{X C}}=0.836 \ldots\left(=47.9 . .{ }^{\circ}\right)$
A1
$\hat{\mathbf{C}} \mathbf{D}=\pi-(0.760 \ldots+0.836 \ldots) \quad(180-(43.5 \ldots+47.9 \ldots))$
$=1.54\left(=88.5^{\circ}\right)$

METHOD 2

evidence of choosing the sine rule in triangle ABD correct substitution

$\hat{\mathbf{N C}}=0.836 \ldots\left(=47.9 \ldots{ }^{\circ}\right)$
$\widehat{\hat{A} \mathbf{D}}=\pi-0.836 \ldots-(\pi-2.381 \ldots) \quad(=180-47.9 \ldots-(180-136.4))$
$=1.54\left(=88.5^{\circ}\right)$
Note: \quad Two triangles are possible with the given information.
If candidate finds $\hat{\mathbf{A}} \mathbf{C}=2.31\left(132^{\circ}\right)$ leading to
$\hat{\hat{A} \boldsymbol{C}}=0.076\left(4.35^{\circ}\right)$, award marks as per markscheme.
5. (a)

A1 N1
(b) (i) METHOD 1
recognizing a GP
$u_{1}=2^{4}, r=2, n=27$
e.g. $S_{27}=\frac{2^{4}\left(2^{27}-1\right)}{2-1}$
$S_{27}=2147483632$
METHOD 2
recognizing $\sum_{r=4}^{30} \sum_{r=1}^{30} \sum_{r=1}^{3}$
recognizing GP with $u_{1}=2, r=2, n=30$
(M1)
correct substitution into formula for sum
$S_{30}=\frac{2\left(2^{30}-1\right)}{2-1}$
$=2147483646$
$\sum_{r=4}^{30} 2^{r}=2147483646-(2+4+8)$
$=2147483632$
(ii) valid reason (e.g. infinite GP, diverging series), and $r \geq 1$ (accept $r>1$) R1R1

N2
6. (a) gradient is 0.6
(b) at $\mathrm{R}, y=0$ (seen anywhere)
at $x=2, y=\ln 5$ (= 1.609...)
gradient of normal $=-1.6666 \ldots$
evidence of finding correct equation of normal
e.g. $y-\ln 5=-\frac{5}{3}(x-2), y=-1.67 x+c$
$x=2.97$ (accept 2.96)
coordinates of R are $(2.97,0)$
7. (a) attempt to use discriminant
correct substitution, $(k-3)^{2}-4 \times k \times 1$
(M1)
(A1)
setting their discriminant equal to zero
e.g. $(k-3)^{2}-4 \times k \times 1=0, k^{2}-10 k+9=0$
$k=1, k=9$
(b) $k=1, k=9$
8. (a) finding the limits $x=0, x=5$
integral expression
(A1)
A1
e.g. $\int_{0}^{5} f(x) \mathrm{d} x$
area $=52.1$
A1 N2
(b) evidence of using formula $v=\int \pi y^{2} d x$
correct expression
e.g. volume $=\pi \int_{5}^{5}(x-54 d$
volume $=2340$
(c) area is $f^{2} x+a x$

$$
=\left[\frac{a x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{a}
$$

e.g. $\frac{a^{3}}{2}-\frac{a^{3}}{3}$
setting expression equal to area of R
correct equation
e.g. $\frac{a^{2}}{2}-\frac{a^{3}}{3}=52.1, a^{3}=6 \times 52.1$,
$a=6.79$
9. $\quad A \sim \mathrm{~N}\left(46,10^{2}\right) B \sim \mathrm{~N}\left(\mu, 12^{2}\right)$
(a) $\mathrm{P}(A>60)=0.0808$
(b) correct approach

A1A1
N3
A2
N2

A2
N2

A1
e.g. $\mathrm{P}\left(Z<\frac{6 \Theta_{\mu} \lambda}{12}\right)=0.85$, sketch
$\frac{60-\mu}{12}=1.036 \ldots$
$\mu=47.6$
(c) (i) route A

(ii) METHOD 1

$\mathrm{P}(A<60)=1-0.0808=0.9192$
A1
valid reason R1
e.g. probability of A getting there on time is greater than probability of B
$0.9192>0.85$

METHOD 2

$\mathrm{P}(B>60)=1-0.85=0.15$
A1
valid reason
R1
e.g. probability of A getting there late is less than probability of B $0.0808<0.15$
(d) (i) let X be the number of days when the van arrives before 07:00

$$
\begin{align*}
& \mathrm{P}(X=5)=(0.85)^{5} \tag{A1}\\
& =0.444
\end{align*}
$$

A1
(ii) METHOD 1
evidence of adding correct probabilities
e.g. $\mathrm{P}(X \geq 3)=\mathrm{P}(X=3)+\mathrm{P}(X=4)+\mathrm{P}(X=5)$
correct values $0.1382+0.3915+0.4437$

$$
\begin{equation*}
\mathrm{P}(X \geq 3)=0.973 \tag{A1}
\end{equation*}
$$

A1
N3

METHOD 2

evidence of using the complement
e.g. $\mathrm{P}(X \geq 3)=1-\mathrm{P}(X \leq 2), 1-p$
correct values $1-0.02661$

$$
\begin{equation*}
\mathrm{P}(X \geq 3)=0.973 \tag{A1}
\end{equation*}
$$

10. (a)

Note: Award A1 for approximately sinusoidal shape, A1 for end points approximately correct, $(-2 \pi, 4)$,
$(2 \pi, 4)$ Al for approximately correct position of graph, (y-intercept $(0,4)$ maximum to right of y-axis).
(b) (i) 5
$\begin{array}{ll} & \text { (ii) } 2 \pi(6.28) \\ \text { N1 } \\ \text { A1 }\end{array}$
(iii) -0.927

A1
(c) $\quad f(x)=5 \sin (x+0.927)($ accept $p=5, q=1, r=0.927)$
(d) evidence of correct approach
e.g. max/min, sketch of $f^{\prime}(x)$ indicating roots

one 3 s.f. value which rounds to one of $-5.6,-2.5,0.64,3.8$
(e) $k=-5, k=5$
(f) METHOD 1
graphical approach (but must involve derivative functions)
M1
e.g.

each curve
$x=0.511$

METHOD 2

$g^{\prime}(x)=\frac{1}{x+1}$
$f(x)=3 \cos x-4 \sin x \quad(5 \cos (x+0.927))$
A1
evidence of attempt to solve $g^{\prime}(x)=f^{\prime}(x)$
A1
$x=0.511$

