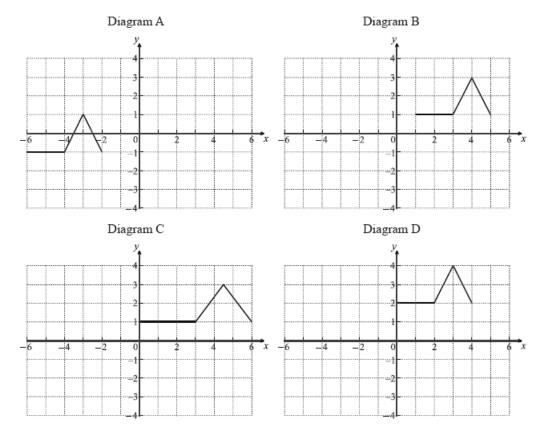

IB Practice Exam: 09 Paper 2 Zone 2 – 90 min, Calculator Allowed Note: The syllabus for Math SL changes with first exams starting May 2014. In particular, it no longer includes matrices. As such, you may skip those problems.



(Total 5 marks)

2. Consider the graph of *f* shown below.

(a) On the same grid sketch the graph of y = f(-x).

The following four diagrams show **images** of f under different transformations.

(b) Complete the following table.

Description of transformation	Diagram letter
Horizontal stretch with scale factor 1.5	
$\operatorname{Maps} f \operatorname{to} f(x) + 1$	

(2)

(c) Give a full geometric description of the transformation that gives the image in Diagram A.

(2) (Total 6 marks)

3. Solve the equation $e^x = 4 \sin x$, for $0 \le x \le 2\pi$.

(Total 5 marks)

4. The diagram below shows a triangle ABD with AB = 13 cm and AD = 6.5 cm. Let C be a point on the line BD such that BC = AC = 7 cm.

> 13 7 6.5 B 7 C D

> > diagram not to scale

- (a) Find the size of angle ACB.
- (b) Find the size of angle CAD.

5. (a) Expand
$$\sum_{r=4}^{7} 2^{r}$$
 as the sum of four terms.
(b) (i) Find the value of $\sum_{r=4}^{30} 2^{r}$.
(ii) Explain why $\sum_{r=4}^{\infty} 2^{r}$ cannot be evaluated.
(6)

6. Consider the curve $y = \ln(3x - 1)$. Let P be the point on the curve where x = 2.

- (a) Write down the gradient of the curve at P.
- (b) The normal to the curve at P cuts the *x*-axis at R. Find the coordinates of R.

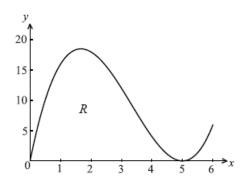
(5) (Total 7 marks)

3 of 6

Alei - Desert Academy

(3)

(2)

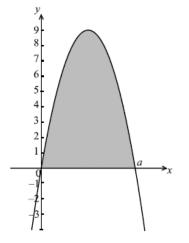

(Total 7 marks)

- 7. The quadratic equation $kx^2 + (k-3)x + 1 = 0$ has two equal real roots.
 - (a) Find the possible values of *k*.
 - (b) Write down the values of k for which $x^2 + (k-3)x + k = 0$ has two equal real roots.

(2) (Total 7 marks)

(5)

8. Let $f(x) = x(x-5)^2$, for $0 \le x \le 6$. The following diagram shows the graph of *f*.


Let R be the region enclosed by the *x*-axis and the curve of f.

(a) Find the area of R.

(3)

(4)

- (b) Find the volume of the solid formed when R is rotated through 360° about the x-axis.
- (c) The diagram below shows a part of the graph of a quadratic function g(x) = x(a x). The graph of g crosses the x-axis when x = a.

The area of the shaded region is equal to the area of R. Find the value of a.

(7) (Total 14 marks)

(2)

(3)

(3)

9. A van can take either Route A or Route B for a particular journey.

If Route A is taken, the journey time may be assumed to be normally distributed with mean 46 minutes and a standard deviation 10 minutes.

If Route B is taken, the journey time may be assumed to be normally distributed with mean μ minutes and standard deviation 12 minutes.

- (a) For Route A, find the probability that the journey takes **more** than 60 minutes.
- (b) For Route B, the probability that the journey takes less than 60 minutes is 0.85. Find the value of μ .
- (c) The van sets out at 06:00 and needs to arrive before 07:00.
 - (i) Which route should it take?
 - (ii) Justify your answer.
- (d) On five consecutive days the van sets out at 06:00 and takes Route B. Find the probability that
 - (i) it arrives before 07:00 on all five days;
 - (ii) it arrives before 07:00 on at least three days.

(5) (Total 13 marks)

- 10. Let $f(x) = 3\sin x + 4\cos x$, for $-2\pi \le x \le 2\pi$.
 - Sketch the graph of *f*. (a)
 - Write down (b)
 - (i) the amplitude;
 - the period; (ii)
 - the *x*-intercept that lies between $-\frac{\pi}{2}$ and 0. (iii)
 - (c) Hence write f(x) in the form $p \sin(qx + r)$. (3) (d) Write down one value of x such that f(x) = 0. (2) Write down the two values of k for which the equation f(x) = k has exactly two solutions. (e) (2) Let $g(x) = \ln(x + 1)$, for $0 \le x \le \pi$. There is a value of x, between 0 and 1, for which the (f) gradient of f is equal to the gradient of g. Find this value of x. (5)

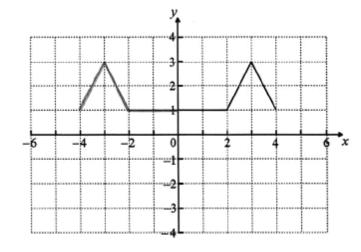
(Total 18 marks)

C:\Users\Bob\Documents\Dropbox\IB Curriculum\SL\Exams & Review\M09Exams\M09.Paper2Z2Exam.doc on 3/8/14 at 11:19 AM

6 of 6

(3)

(3)


Alei - Desert Academy

[5]

2. (a)

Description of transformation

Horizontal stretch with scale factor 1.5

Maps f to f(x) + 1

translation (accept move/shift/slide etc.) with vector

(b)

(c)

3.

4.

A2 N2

A1A1 N2

A1A1 N2

M1

A2A2 N2N2

(M1)

A1

A1 N2 [6]

[5]

(a) **METHOD 1** evidence of choosing the cosine formula correct substitution

evidence of appropriate approach

x = 0.371, x = 1.36

e.g. a sketch, writing $e^{x} - 4 \sin x = 0$

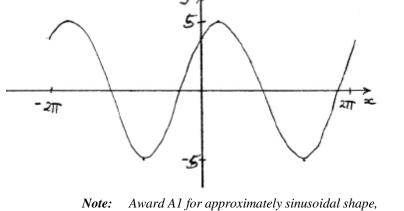
AB = 2.38 radians (= 136°)			
----------------------------	--	--	--

Diagram letter

С

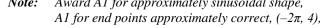
D

METHOD 2	
evidence of appropriate approach involving right-angled triangles	(M1)
correct substitution	A1


ACB = 2.38 radians (= 136°) A1 N2

(b)	METHOD 1	
(\mathbf{D})	METHODI	
	$ACC = \pi - 2.381 (180 - 136.4)$	(A1)

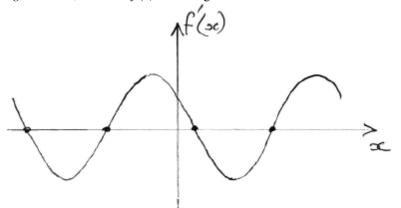
	ndard Level Year 2: May '09 Paper 2, TZ2: MarkScheme	Alei - Desert Ad	cade
	evidence of choosing the sine rule in triangle ACD correct substitution	(M1) A1	
	[®] s G76Qiĥ		
	$\hat{ADC} = 0.836 (= 47.9^{\circ})$	A1	
	$\widehat{\mathbf{CAC}} = \pi - (0.760 + 0.836) (180 - (43.5 + 47.9))$		
	= 1.54 (= 88.5°)	A1	
		N3	
	METHOD 2		
		(A1)	
	evidence of choosing the sine rule in triangle ABD	(M1)	
	correct substitution	A1	
	6 13		
	$e.g. \frac{\texttt{G}}{\texttt{sBSQi}} \frac{12}{\texttt{sBSQi}}$		
	ACC = 0.836 (= 47.9°)	A1	
	$\widehat{\mathbf{A}} = \pi - 0.836 (\pi - 2.381) \ (= 180 - 47.9 (180 - 136.4))$		
	$= 1.54 (= 88.5^{\circ})$	A1	
		N3	
	<i>Note:</i> Two triangles are possible with the given information.		
	If candidate finds $\widehat{ADC} = 2.31 (132^\circ)$ leading to		
	$\hat{CAD} = 0.076 \ (4.35^\circ)$, award marks as		
	per markscheme.		
(a)	A (accept 16 + 32 + 64 + 128)	.1 N1	
(4)	P4		
(b)	(i) METHOD 1		
	recognizing a GP	(M1)	
	$u_1 = 2^4, r = 2, n = 27$	(A1)	
	correct substitution into formula for sum		
		(A1)	
	$a = \frac{2^4}{2^{-1}}$	(A1)	
	<i>e.g.</i> $S_{27} = \frac{2^4 (2^{27} - 1)}{2 - 1}$		
	$e.g. S_{27} = \frac{2^4 (2^{27} - 1)}{2 - 1}$ S_{27} = 2147483632	A1	
	$S_{27} = 2147483632$		
	<i>S</i> ₂₇ = 2147483632 METHOD 2	A1	
	<i>S</i> ₂₇ = 2147483632 METHOD 2	A1	
	$S_{27} = 2147483632$ METHOD 2 recognizing $\sum_{r=4}^{30} \sum_{r=1}^{30} \sum_{r=1}^{3}$	A1 N4 (M1)	
	$S_{27} = 2147483632$ METHOD 2 recognizing $\sum_{r=4}^{30} \sum_{r=1}^{30} \sum_{r=1}^{3}$ recognizing GP with $u_1 = 2, r = 2, n = 30$	A1 N4	
	S ₂₇ = 2147483632 METHOD 2 recognizing $\sum_{r=4}^{30} \sum_{r=1}^{30} \sum_{r=1}^{3}$ recognizing GP with $u_1 = 2, r = 2, n = 30$ correct substitution into formula for sum	A1 N4 (M1)	
	S ₂₇ = 2147483632 METHOD 2 recognizing $\sum_{r=4}^{30} \sum_{r=1}^{30} \sum_{r=1}^{3}$ recognizing GP with $u_1 = 2, r = 2, n = 30$ correct substitution into formula for sum	A1 N4 (M1) (A1)	
	$S_{27} = 2147483632$ METHOD 2 recognizing $\sum_{r=4}^{30} \sum_{r=1}^{30} \sum_{r=4}^{3}$ recognizing GP with $u_1 = 2, r = 2, n = 30$ correct substitution into formula for sum $S_{30} = \frac{2(2^{30} - 1)}{2 - 1}$	A1 N4 (M1)	
	$S_{27} = 2147483632$ METHOD 2 $recognizing \underbrace{\sum_{r=4}^{30} \underbrace{30}_{r=1}^{3} \underbrace{\sum_{r=4}^{30} \underbrace{30}_{r=1}^{3}}_{r=4}}_{r=1}, r=2, n=30$ correct substitution into formula for sum $S_{30} = \frac{2(2^{30}-1)}{2-1}$ $= 2147483646$	A1 N4 (M1) (A1)	
	$S_{27} = 2147483632$ METHOD 2 $recognizing \underbrace{\sum_{r=4}^{30} \underbrace{30}_{r=1}^{3} \underbrace{\sum_{r=4}^{30} \underbrace{30}_{r=1}^{3}}_{r=4}}_{r=1}, r=2, n=30$ correct substitution into formula for sum $S_{30} = \frac{2(2^{30}-1)}{2-1}$ $= 2147483646$	A1 N4 (M1) (A1)	
	$S_{27} = 2147483632$ METHOD 2 recognizing $\sum_{r=4}^{30} \sum_{r=1}^{30} \sum_{r=4}^{3}$ recognizing GP with $u_1 = 2, r = 2, n = 30$ correct substitution into formula for sum $S_{30} = \frac{2(2^{30} - 1)}{2 - 1}$	A1 N4 (M1) (A1)	
	$S_{27} = 2147483632$ METHOD 2 $recognizing \underbrace{\sum_{r=4}^{30} \underbrace{30}_{r=1}^{3} \underbrace{\sum_{r=4}^{30} \underbrace{30}_{r=1}^{3}}_{r=4}}_{r=1}, r=2, n=30$ correct substitution into formula for sum $S_{30} = \frac{2(2^{30}-1)}{2-1}$ $= 2147483646$	A1 N4 (M1) (A1) (A1)	
	$S_{27} = 2147483632$ METHOD 2 $recognizing \sum_{r=4}^{30} \sum_{r=1}^{30} \sum_{r=1}^{3} \sum_{r=1}^{30} 2^{r} = 2147483646 - (2 + 4 + 8)$	A1 N4 (M1) (A1) (A1)	


6.	(a)	gradient is 0.6	A2	N2	[7]
0.	(a) (b)	at R, $y = 0$ (seen anywhere)	742	A1	
	(-)	at $x = 2$, $y = \ln 5$ (= 1.609)		(A1)	
		gradient of normal $= -1.6666$		(A1)	
		evidence of finding correct equation of normal		A1	
		<i>e.g.</i> $y - \ln 5 = -\frac{5}{3}(x-2), y = -1.67x + c$			
		x = 2.97 (accept 2.96)		A1	
		coordinates of R are (2.97, 0)		N3	[7]
7.	(a)	attempt to use discriminant	(M1)		[,]
		correct substitution, $(k-3)^2 - 4 \times k \times 1$ setting their discriminant equal to zero	(A1) M1		
		<i>e.g.</i> $(k-3)^2 - 4 \times k \times 1 = 0, k^2 - 10k + 9 = 0$			
		k = 1, k = 9		A1A1	
				N3	
	(b)	k = 1, k = 9		A2 N2	
				112	[7]
8.	(a)	finding the limits $x = 0, x = 5$	(A1)		
		integral expression e.g. $\int_{a}^{b} f(x) dx$	A1		
		$e.g. \int_{0}^{1} (x) dx$ area = 52.1	A1	N2	
	(b)	evidence of using formula $v = \int \pi y^2 dx$	AI	(M1)	
	(0)	5		(MI) A1	
		correct expression e.g. volume = $\pi \int \mathcal{R} \mathcal{R}$		AI	
		volume = 2340		A2	
		volume - 2340		N2	
	(c)	area is		A1	
		\sim			
		$= \left[\frac{ax^2}{2} - \frac{x^3}{3}\right]_0^a$		A1A1	
		substituting limits		(M1)	
		e.g. $\frac{a^3}{2} - \frac{a^3}{3}$			
		setting expression equal to area of R		(M1)	
		correct equation -2 -3		A1	
		<i>e.g.</i> $\frac{a^2}{2} - \frac{a^3}{3} = 52.1, a^3 = 6 \times 52.1,$			
		a = 6.79		A1	
				N3	
_					[14]
).	$A \sim N$ (a)	$N(46, 10^2) B \sim N(\mu, 12^2)$ P(A > 60) = 0.0808		A2	
	<i>(a)</i>	1(1 < 00) = 0.0000		A2 N2	
	(b)	correct approach		(A1)	

	<i>e.g.</i> I	$P\left(Z < \frac{60\mu}{12}\right) = 0.85$, sketch	
	$\frac{60}{1}$	$P\left(Z < \frac{6 \Theta \mu}{12}\right) = 0.85, \text{ sketch}$ $\frac{-\mu}{2} = 1.036$	(A1)
	$\mu = 4$		A1
(c)	(i)	route A	N2 A1 N1
	(ii)	METHOD 1 P(A < 60) = 1 - 0.0808 = 0.9192 valid reason <i>e.g.</i> probability of <i>A</i> getting there on time is greater than probability of <i>B</i> 0.9192 > 0.85	A1 R1
			N2
		METHOD 2 P(B > 60) = 1 - 0.85 = 0.15 valid reason <i>e.g.</i> probability of <i>A</i> getting there late is less than probability of <i>B</i> 0.0808 < 0.15	A1 R1
			N2
(d)	(i)	let X be the number of days when the van arrives before $07:00$	
		$P(X = 5) = (0.85)^5 = 0.444$	(A1) A1
	(ii)	METHOD 1	N2
		evidence of adding correct probabilities e.g. $P(X \ge 3) = P(X = 3) + P(X = 4) + P(X = 5)$	(M1)
		correct values $0.1382 + 0.3915 + 0.4437$ P(X \ge 3) = 0.973	(A1) A1 N3
		METHOD 2	
		evidence of using the complement e.g. $P(X \ge 3) = 1 - P(X \le 2), 1 - p$	(M1)
		correct values $1 - 0.02661$ P($X \ge 3$) = 0.973	(A1) A1 N3
(a)			
(u)		1 د	

10.

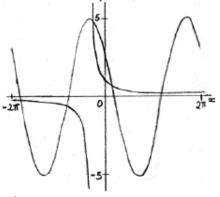
A1A1A1 N3


[13]

(M1)

 $(2\pi, 4)$ A1 for approximately correct position of graph, (y-intercept (0, 4) maximum to right of y-axis).

(b)	(i)	5	A1
			N1
	(ii)	2π (6.28)	A1
			N1
	(iii)	-0.927	A1
			N1
(c)	f(x) =	$5 \sin(x + 0.927)$ (accept $p = 5, q = 1, r = 0.927$)	A1A1A1
			N3


(d) evidence of correct approach *e.g.* max/min, sketch of f(x) indicating roots

one 3 s.f. value which rounds to one of -5.6, -2.5, 0.64, 3.8 A1

(e)
$$k = -5, k = 5$$
 N2
A1A1
N2

graphical approac *e.g.*

each curve x = 0.511

METHOD 2

$g'(x) = \frac{1}{x+1}$	A1
$f'(x) = 3\cos x - 4\sin x \qquad (5\cos(x + 0.927))$ evidence of attempt to solve $g'(x) = f'(x)$	A1 M1
x = 0.511	A2 N2

[18]

A1A1

A2 N2