

NONRESIDENT TRAINING COURSE

SEPTEMBER 1998

Navy Electricity and Electronics Training Series

Module 4—Introduction to Electrical Conductors, Wiring Techniques, and Schematic Reading

NAVEDTRA 14176

Although the words "he," "him," and "his" are used sparingly in this course to enhance communication, they are not intended to be gender driven or to affront or discriminate against anyone.

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

PREFACE

By enrolling in this self-study course, you have demonstrated a desire to improve yourself and the Navy. Remember, however, this self-study course is only one part of the total Navy training program. Practical experience, schools, selected reading, and your desire to succeed are also necessary to successfully round out a fully meaningful training program.

COURSE OVERVIEW: To introduce the student to the subject of Electrical Conductors, Wiring Techniques, and Schematic Reading who needs such a background in accomplishing daily work and/or in preparing for further study.

THE COURSE: This self-study course is organized into subject matter areas, each containing learning objectives to help you determine what you should learn along with text and illustrations to help you understand the information. The subject matter reflects day-to-day requirements and experiences of personnel in the rating or skill area. It also reflects guidance provided by Enlisted Community Managers (ECMs) and other senior personnel, technical references, instructions, etc., and either the occupational or naval standards, which are listed in the *Manual of Navy Enlisted Manpower Personnel Classifications and Occupational Standards*, NAVPERS 18068.

THE QUESTIONS: The questions that appear in this course are designed to help you understand the material in the text.

VALUE: In completing this course, you will improve your military and professional knowledge. Importantly, it can also help you study for the Navy-wide advancement in rate examination. If you are studying and discover a reference in the text to another publication for further information, look it up.

> 1998 Edition Prepared by AECS Steve Heartsfield

Published by NAVAL EDUCATION AND TRAINING PROFESSIONAL DEVELOPMENT AND TECHNOLOGY CENTER

> NAVSUP Logistics Tracking Number 0504-LP-026-8290

Sailor's Creed

"I am a United States Sailor.

I will support and defend the Constitution of the United States of America and I will obey the orders of those appointed over me.

I represent the fighting spirit of the Navy and those who have gone before me to defend freedom and democracy around the world.

I proudly serve my country's Navy combat team with honor, courage and commitment.

I am committed to excellence and the fair treatment of all."

TABLE OF CONTENTS

CHAPTER		PAGE	
1.	Electrical Conductors	1-1	
2.	Wiring Techniques	2-1	
3.	Schematic Reading	3-1	
APPEN	DIX		
T	Glossary	AI-1	

INDEX	1	INDEX-1
III.	References Used to Develop The Training Manual	AIII-1
II.	Electrical and electronic Symbols	AII-1
1.	Glossary	AI-1

NAVY ELECTRICITY AND ELECTRONICS TRAINING SERIES

The Navy Electricity and Electronics Training Series (NEETS) was developed for use by personnel in many electrical- and electronic-related Navy ratings. Written by, and with the advice of, senior technicians in these ratings, this series provides beginners with fundamental electrical and electronic concepts through self-study. The presentation of this series is not oriented to any specific rating structure, but is divided into modules containing related information organized into traditional paths of instruction.

The series is designed to give small amounts of information that can be easily digested before advancing further into the more complex material. For a student just becoming acquainted with electricity or electronics, it is highly recommended that the modules be studied in their suggested sequence. While there is a listing of NEETS by module title, the following brief descriptions give a quick overview of how the individual modules flow together.

Module 1, *Introduction to Matter, Energy, and Direct Current*, introduces the course with a short history of electricity and electronics and proceeds into the characteristics of matter, energy, and direct current (dc). It also describes some of the general safety precautions and first-aid procedures that should be common knowledge for a person working in the field of electricity. Related safety hints are located throughout the rest of the series, as well.

Module 2, *Introduction to Alternating Current and Transformers,* is an introduction to alternating current (ac) and transformers, including basic ac theory and fundamentals of electromagnetism, inductance, capacitance, impedance, and transformers.

Module 3, *Introduction to Circuit Protection, Control, and Measurement,* encompasses circuit breakers, fuses, and current limiters used in circuit protection, as well as the theory and use of meters as electrical measuring devices.

Module 4, *Introduction to Electrical Conductors, Wiring Techniques, and Schematic Reading,* presents conductor usage, insulation used as wire covering, splicing, termination of wiring, soldering, and reading electrical wiring diagrams.

Module 5, *Introduction to Generators and Motors,* is an introduction to generators and motors, and covers the uses of ac and dc generators and motors in the conversion of electrical and mechanical energies.

Module 6, *Introduction to Electronic Emission, Tubes, and Power Supplies,* ties the first five modules together in an introduction to vacuum tubes and vacuum-tube power supplies.

Module 7, *Introduction to Solid-State Devices and Power Supplies*, is similar to module 6, but it is in reference to solid-state devices.

Module 8, Introduction to Amplifiers, covers amplifiers.

Module 9, *Introduction to Wave-Generation and Wave-Shaping Circuits,* discusses wave generation and wave-shaping circuits.

Module 10, *Introduction to Wave Propagation, Transmission Lines, and Antennas,* presents the characteristics of wave propagation, transmission lines, and antennas.

Module 11, Microwave Principles, explains microwave oscillators, amplifiers, and waveguides.

Module 12, Modulation Principles, discusses the principles of modulation.

Module 13, *Introduction to Number Systems and Logic Circuits*, presents the fundamental concepts of number systems, Boolean algebra, and logic circuits, all of which pertain to digital computers.

Module 14, *Introduction to Microelectronics*, covers microelectronics technology and miniature and microminiature circuit repair.

Module 15, *Principles of Synchros, Servos, and Gyros*, provides the basic principles, operations, functions, and applications of synchro, servo, and gyro mechanisms.

Module 16, *Introduction to Test Equipment*, is an introduction to some of the more commonly used test equipments and their applications.

Module 17, *Radio-Frequency Communications Principles*, presents the fundamentals of a radio-frequency communications system.

Module 18, Radar Principles, covers the fundamentals of a radar system.

Module 19, *The Technician's Handbook*, is a handy reference of commonly used general information, such as electrical and electronic formulas, color coding, and naval supply system data.

Module 20, Master Glossary, is the glossary of terms for the series.

Module 21, Test Methods and Practices, describes basic test methods and practices.

Module 22, Introduction to Digital Computers, is an introduction to digital computers.

Module 23, *Magnetic Recording,* is an introduction to the use and maintenance of magnetic recorders and the concepts of recording on magnetic tape and disks.

Module 24, Introduction to Fiber Optics, is an introduction to fiber optics.

Embedded questions are inserted throughout each module, except for modules 19 and 20, which are reference books. If you have any difficulty in answering any of the questions, restudy the applicable section.

Although an attempt has been made to use simple language, various technical words and phrases have necessarily been included. Specific terms are defined in Module 20, *Master Glossary*.

Considerable emphasis has been placed on illustrations to provide a maximum amount of information. In some instances, a knowledge of basic algebra may be required.

Assignments are provided for each module, with the exceptions of Module 19, *The Technician's Handbook*; and Module 20, *Master Glossary*. Course descriptions and ordering information are in NAVEDTRA 12061, *Catalog of Nonresident Training Courses*.

Throughout the text of this course and while using technical manuals associated with the equipment you will be working on, you will find the below notations at the end of some paragraphs. The notations are used to emphasize that safety hazards exist and care must be taken or observed.

WARNING

AN OPERATING PROCEDURE, PRACTICE, OR CONDITION, ETC., WHICH MAY RESULT IN INJURY OR DEATH IF NOT CAREFULLY OBSERVED OR FOLLOWED.

CAUTION

AN OPERATING PROCEDURE, PRACTICE, OR CONDITION, ETC., WHICH MAY RESULT IN DAMAGE TO EQUIPMENT IF NOT CAREFULLY OBSERVED OR FOLLOWED.

NOTE

An operating procedure, practice, or condition, etc., which is essential to emphasize.

INSTRUCTIONS FOR TAKING THE COURSE

ASSIGNMENTS

The text pages that you are to study are listed at the beginning of each assignment. Study these pages carefully before attempting to answer the questions. Pay close attention to tables and illustrations and read the learning objectives. The learning objectives state what you should be able to do after studying the material. Answering the questions correctly helps you accomplish the objectives.

SELECTING YOUR ANSWERS

Read each question carefully, then select the BEST answer. You may refer freely to the text. The answers must be the result of your own work and decisions. You are prohibited from referring to or copying the answers of others and from giving answers to anyone else taking the course.

SUBMITTING YOUR ASSIGNMENTS

To have your assignments graded, you must be enrolled in the course with the Nonresident Training Course Administration Branch at the Naval Education and Training Professional Development and Technology Center (NETPDTC). Following enrollment, there are two ways of having your assignments graded: (1) use the Internet to submit your assignments as you complete them, or (2) send all the assignments at one time by mail to NETPDTC.

Grading on the Internet: Advantages to Internet grading are:

- you may submit your answers as soon as you complete an assignment, and
- you get your results faster; usually by the next working day (approximately 24 hours).

In addition to receiving grade results for each assignment, you will receive course completion confirmation once you have completed all the assignments. To submit your assignment answers via the Internet, go to:

http://courses.cnet.navy.mil

Grading by Mail: When you submit answer sheets by mail, send all of your assignments at one time. Do NOT submit individual answer sheets for grading. Mail all of your assignments in an envelope, which you either provide yourself or obtain from your nearest Educational Services Officer (ESO). Submit answer sheets to:

> COMMANDING OFFICER NETPDTC N331 6490 SAUFLEY FIELD ROAD PENSACOLA FL 32559-5000

Answer Sheets: All courses include one "scannable" answer sheet for each assignment. These answer sheets are preprinted with your SSN, name, assignment number, and course number. Explanations for completing the answer sheets are on the answer sheet.

Do not use answer sheet reproductions: Use only the original answer sheets that we provide—reproductions will not work with our scanning equipment and cannot be processed.

Follow the instructions for marking your answers on the answer sheet. Be sure that blocks 1, 2, and 3 are filled in correctly. This information is necessary for your course to be properly processed and for you to receive credit for your work.

COMPLETION TIME

Courses must be completed within 12 months from the date of enrollment. This includes time required to resubmit failed assignments.

PASS/FAIL ASSIGNMENT PROCEDURES

If your overall course score is 3.2 or higher, you will pass the course and will not be required to resubmit assignments. Once your assignments have been graded you will receive course completion confirmation.

If you receive less than a 3.2 on any assignment and your overall course score is below 3.2, you will be given the opportunity to resubmit failed assignments. You may resubmit failed assignments only once. Internet students will receive notification when they have failed an assignment--they may then resubmit failed assignments on the web site. Internet students may view and print results for failed assignments from the web site. Students who submit by mail will receive a failing result letter and a new answer sheet for resubmission of each failed assignment.

COMPLETION CONFIRMATION

After successfully completing this course, you will receive a letter of completion.

ERRATA

Errata are used to correct minor errors or delete obsolete information in a course. Errata may also be used to provide instructions to the student. If a course has an errata, it will be included as the first page(s) after the front cover. Errata for all courses can be accessed and viewed/downloaded at:

http://www.advancement.cnet.navy.mil

STUDENT FEEDBACK QUESTIONS

We value your suggestions, questions, and criticisms on our courses. If you would like to communicate with us regarding this course, we encourage you, if possible, to use e-mail. If you write or fax, please use a copy of the Student Comment form that follows this page.

For subject matter questions:

E-mail:	n315.products@cnet.navy.mil
Phone:	Comm: (850) 452-1001, ext. 1728
	DSN: 922-1001, ext. 1728
	FAX: (850) 452-1370
	(Do not fax answer sheets.)
Address:	COMMANDING OFFICER
	NETPDTC N315
	6490 SAUFLEY FIELD ROAD
	PENSACOLA FL 32509-5237

For enrollment, shipping, grading, or completion letter questions

E-mail:	fleetservices@cnet.navy.mil
Phone:	Toll Free: 877-264-8583
	Comm: (850) 452-1511/1181/1859
	DSN: 922-1511/1181/1859
	FAX: (850) 452-1370
	(Do not fax answer sheets.)
Address:	COMMANDING OFFICER
	NETPDTC N331
	6490 SAUFLEY FIELD ROAD
	PENSACOLA FL 32559-5000

NAVAL RESERVE RETIREMENT CREDIT

If you are a member of the Naval Reserve, you will receive retirement points if you are authorized to receive them under current directives governing retirement of Naval Reserve personnel. For Naval Reserve retirement, this course is evaluated at 3 points. (Refer to Administrative Procedures for Naval Reservists on Inactive Duty, BUPERSINST 1001.39, for more information about retirement points.)

Student Comments

Course Title:	NEETS Module 4 Introduction to Electrical Conductors, Wiring Techniques, and Schematic Reading				
NAVEDTRA:	14176		Date:		
We need some inf	formation about ye	<u>ou</u> :			
Rate/Rank and Name:		SSN:	Command/Unit		
Street Address:		City:	State/FPO:	Zip	

Your comments, suggestions, etc.:

Privacy Act Statement: Under authority of Title 5, USC 301, information regarding your military status is requested in processing your comments and in preparing a reply. This information will not be divulged without written authorization to anyone other than those within DOD for official use in determining performance.

NETPDTC 1550/41 (Rev 4-00)

CHAPTER 1 ELECTRICAL CONDUCTORS

LEARNING OBJECTIVES

Learning objectives are stated at the beginning of each chapter. These learning objectives serve as a preview of the information you are expected to learn in the chapter. The comprehensive check questions are based on the objectives. By successfully completing the OCC-ECC, you indicate that you have met the objectives and have learned the information. The learning objectives are listed below.

Upon completing this chapter, you should be able to:

- 1. Recall the definitions of unit size, mil-foot, square mil, and circular mil and the mathematical equations and calculations for each.
- 2. Define specific resistance and recall the three factors used to calculate it in ohms.
- 3. Describe the proper use of the American Wire Gauge when making wire measurements.
- 4. Recall the factors required in selecting proper size wire.
- 5. State the advantages and disadvantages of copper or aluminum as conductors.
- 6. Define insulation resistance and dielectric strength including how the dielectric strength of an insulator is determined.
- 7. Identify the safety precautions to be taken when working with insulating materials.
- 8. Recall the most common insulators used for extremely high voltages.
- 9. State the type of conductor protection normally used for shipboard wiring.
- 10. Recall the design and use of coaxial cable.

ELECTRICAL CONDUCTORS

In the previous modules of this training series, you have learned about various circuit components. These components provide the majority of the operating characteristics of any electrical circuit. They are useless, however, if they are not connected together. Conductors are the means used to tie these components together.

Many factors determine the type of electrical conductor used to connect components. Some of these factors are the physical size of the conductor, its composition, and its electrical characteristics. Other factors that can determine the choice of a conductor are the weight, the cost, and the environment where the conductor will be used.

CONDUCTOR SIZES

To compare the resistance and size of one conductor with that of another, we need to establish a standard or unit size. A convenient unit of measurement of the diameter of a conductor is the mil (0.001, or one-thousandth of an inch). A convenient unit of conductor length is the foot. The standard unit of size in most cases is the MIL-FOOT. A wire will have a unit size if it has a diameter of 1 mil and a length of 1 foot.

SQUARE MIL

The square mil is a unit of measurement used to determine the cross-sectional area of a square or rectangular conductor (views A and B of figure 1-1). A square mil is defined as the area of a square, the sides of which are each 1 mil. To obtain the cross-sectional area of a square conductor, multiply the dimension of any side of the square by itself. For example, assume that you have a square conductor with a side dimension of 3 mils. Multiply 3 mils by itself (3 mils \times 3 mils). This gives you a cross-sectional area of 9 square mils.

Figure 1-1.—Cross-sectional areas of conductors.

- Q1. State the reason for the establishment of a "unit size" for conductors.
- *Q2.* Calculate the diameter in MILS of a conductor that has a diameter of 0.375 inch.
- *Q3. Define a mil-foot.*

To determine the cross-sectional area of a rectangular conductor, multiply the length times the width of the end face of the conductor (side is expressed in mils). For example, assume that one side of the rectangular cross-sectional area is 6 mils and the other side is 3 mils. Multiply 6 mils \times 3 mils, which equals 18 square mils. Here is another example. Assume that a conductor is 3/8 inch thick and 4 inches wide. The 3/8 inch can be expressed in decimal form as 0.375 inch. Since 1 mil equals 0.001 inch, the thickness of the conductor will be 0.001 \times 0.375, or 375 mils. Since the width is 4 inches and there are 1,000 mils per inch, the width will be 4 \times 1,000, or 4,000 mils. To determine the cross-sectional area, multiply the length by the width; or 375 mils \times 4,000 mils. The area will be 1,500,000 square mils.

Q4. Define a square mil as it relates to a square conductor.

CIRCULAR MIL

The circular mil is the standard unit of measurement of a round wire cross-sectional area (view C of figure 1-1). This unit of measurement is found in American and English wire tables. The diameter of a round conductor (wire) used to conduct electricity may be only a fraction of an inch. Therefore, it is convenient to express this diameter in mils to avoid using decimals. For example, the diameter of a wire is expressed as 25 mils instead of 0.025 inch. A circular mil is the area of a circle having a diameter of 1 mil, as shown in view B of figure 1-2. The area in circular mils of a round conductor is obtained by squaring the diameter, measured in mils. Thus, a wire having a diameter of 25 mils has an area of 25^2 , or 625 circular mils. To determine the number of square mils in the same conductor, apply the conventional formula for determining the area of a circle (A = πr^2). In this formula, A (area) is the unknown and is equal to the cross-sectional area in square mils, π is the constant 3.14, and r is the radius of the circle, or half the diameter (D). Through substitution, A = 3.14, and (12.5)²; therefore, 3.14 × 156.25 = 490.625