

CTMS/CTIS INTEGRATION
 Contract Routing No. 04 HAA 0063

Software Architecture Assessment Document

Date: 12-May-2004

Version 1.2

This particular document identifies the various technologies considered for the CTMS/CTIS architecture and the

final choice.

Approved By

Robert Wycoff

CDOT ITS Office

Signature: ___________________________

Date: _______________________________

John Williams

CDOT ITS Office

Signature: ___________________________

Date: _______________________________

Prepared By:

CTMS/CTIS INTEGRATION Version: 1.2

Software Architecture Assessment Document Date: 12 Nov 2003

Confidential ©EnRoute Traffic Systems, Inc. Page 2 of 37

Revision History
Date Version Description Author

09-Jul-2003 0.1 Introduction to the Architecture elements Sachin Saindane

Pawan Kharbanda

16-Jul-2003 0.2 Significant Updates Sachin Saindane

Pawan Kharbanda

28-Jul-2003 0.3 Significant Updates Sachin Saindane

Pawan Kharbanda

01-Aug-2003 0.4 Additions, MDB, Recommendation section, Sachin Saindane

Pawan Kharbanda

11-Aug-2003 0.5 Section 3 added, all other sections modified Sachin Saindane

Pawan Kharbanda

12-Aug-2003 0.6 Portion on Datex added Sachin Saindane

Pawan Kharbanda

20-Oct-2003 0.7 Findings from new prototype development

added. Appendix changed

Sachin Saindane

Pawan Kharbanda

28-Oct-2003 0.8 Sections 3,4,5,7 updated Sachin Saindane

Pawan Kharbanda

06-Nov-2003 0.9 Updates to Metrics, Scoring sheet and

model 2.

Sachin Saindane

Pawan Kharbanda

10-Nov-2003 1.0 Final Version Sachin Saindane

Pawan Kharbanda

12-Nov-03 1.1 Added Findings, Executive Summary, front

page introduction, minor formatting.

Sachin Saindane

19-July-04 1.2 Updates with JBoss findings. Sachin Saindane

CTMS/CTIS INTEGRATION Version: 1.2

Software Architecture Assessment Document Date: 12 Nov 2003

Confidential ©EnRoute Traffic Systems, Inc. Page 3 of 37

Table of Contents

1. INTRODUCTION 5

1.1 Purpose 5
1.2 Scope 5
1.3 Audience 5
1.4 References 5

2. EXECUTIVE SUMMARY 6

2.1 Introduction 6
2.2 Background 6
2.3 Conclusion 6

3. INTRODUCTION TO ARCHITECTURAL ELEMENTS 7

3.1 Existing Technologies 7
3.2 Technologies Under Evaluation 8

4. OVERVIEW OF CTMS/CTIS ARCHITECTURE: 9

4.1 Architectural Goals 9
4.2 Architectural Components and Assumptions 10

5. CTMS/CTIS COMMUNICATION ARCHITECTURE ALTERNATIVES 11

5.1 Alternative 1: CORBA – Visinotify – EJB Model 13
5.2 Alternative 2: CORBA – JMS Model 15
5.3 Alternative 3: JMS – MDB Model 17
5.4 Alternative 4: J2EE - XML Model 19

6. CRITERIA FOR SELECTION 23

6.1 Cost 23
6.2 In-house Expertise 23
6.3 Complexity 24
6.4 Scalability 25
6.5 Network Overheads 25
6.6 Vendors Required 25
6.7 Vendors Supporting the Technology 26
6.8 Portability 26
6.9 Standards (Acceptance in ITS and/or IT) 26
6.10 Support of Asynchronous Communication 27
6.11 Risk 27
6.12 Ease of Implementation 28
6.13 Availability of Programmers 28
6.14 Conjecture about Future 28

7. COMPARISON OF ARCHITECTURES 29

7.1 Scoring Scheme 29
7.2 Scoring Sheet 30

8. SUMMARY: 31

CTMS/CTIS INTEGRATION Version: 1.2

Software Architecture Assessment Document Date: 12 Nov 2003

Confidential ©EnRoute Traffic Systems, Inc. Page 4 of 37

9. CONCLUSION/ RECOMMENDATION: 32

10. Appendices: 33

10.1 Appendix A: 33
10.2 Appendix B: 34
10.3 Appendix C: 34
10.4 Addendum: 35

CTMS/CTIS INTEGRATION Version: 1.2

Software Architecture Assessment Document Date: 12 Nov 2003

Confidential ©EnRoute Traffic Systems, Inc. Page 5 of 37

1. INTRODUCTION

The Software Architecture Assessment (SAA) document introduces the various technologies that were chosen and

evaluated in developing the overall CTMS/CTIS architecture. This document also describes the four architectural

alternatives that were prototyped as a part of the architecture assessment. Lastly it evaluates the architectures based

on well-defined metrics and concludes with a recommendation.

1.1 Purpose

The purpose of this document is:

• To serve as a prerequisite reading before any architecture related demonstrations or discussions.

• To supplement the technical information provided in the Software Architecture Document.

• To capture and convey the significant architectural issues and decisions which have been made during

meetings and discussions.

• To describe the evaluation process used to arrive at the final CTMS/CTIS architecture.

• To describe the final choice of architecture after evaluation.

1.2 Scope

The scope of this document is the CTMS/CTIS system.

1.3 Audience

This document describes the CTMS/CTIS architecture from various perspectives. The initial sections should help

ITS professionals understand the technologies that were considered, the technologies that were evaluated and the

reasons for doing so. The technical overview section is aimed at Software Professionals and assumes prior

participation in architecture related discussions or demonstrations at TOC. It also assumes knowledge of software

design, development, knowledge of Object Oriented Paradigm and basic object fundamentals (object life cycle,

interfaces, classes and object instances).

1.4 References

1. The CTMS/CTIS Document Index.

2. Several definitions have been used from The Software Engineering Institute website:

http://www.sei.cmu.edu/str/indexes/glossary/

3. Java technology related information found on Java homepage at:

http://java.sun.com

4. Description on Quality of Services (QoS) archived in VSS at:

$/ATMS_ATIS/Architecture Assessment/Architecture Assessment/QOS.doc

5. Various JMS related presentations archived in VSS at:

$/ATMS_ATIS/Tech Docs/JMS/JMS INTRODUCTION/JMS – presentation.ppt

6. Documents created for the MDOT CHART system, particularly, System Architecture Document

http://www.chart.state.md.us/readingroom/readingroom.asp

7. Choosing a Center-to-Center Communications Protocol: An Overview of DATEX, CORBA and XML by U.S.

Department of Transportation.

8. The ITS glossary for CTMS/CTIS

Important Note: The architecture assessment was conducted using Borland Enterprise Server (BES) and evaluation copies

of JMS brokers. A post evaluation decision was made to use JBoss and Jboss MQ instead of BES. The diagrams and

explanations in this document will still use Borland Enterprise Server. For explanation on use of JBoss and JBoss MQ over

Borland Enterprise Server please refer to section 10.4.1 and 10.4.2 addendum.

CTMS/CTIS INTEGRATION Version: 1.2

Software Architecture Assessment Document Date: 12 Nov 2003

Confidential ©EnRoute Traffic Systems, Inc. Page 6 of 37

2. EXECUTIVE SUMMARY

2.1 Introduction

This document describes the various technologies considered for the CTMS/CTIS software architecture, identifies

known architectural elements, and describes the alternatives being considered where there are questions or

unknowns.

An early evaluation of the proposed CTMS/CTIS architecture requirements revealed an area of potential risk in the

communications architecture component of the system. To mitigate this risk and better understand the issues,

several architectural prototypes were constructed. The basic choice was between a CORBA based architecture, or

a J2EE-XML based architecture for communication.

The project has chosen to use a J2EE-XML communication architecture.

2.2 Background

The CTMS/CTIS project architecture is based upon open standards as well as existing production systems

architectures. Most of the CTMS/CTIS architectural elements are standard, such as J2EE, Java Swing, EJB, and

Oracle. The communication architecture component that supports interaction between the CTMS/CTIS and field

deployed devices (C2F) had the most uncertainty. CORBA and J2EE both offered potential solutions, so prototypes

were developed to better understand each of the alternatives.

The prototypes were evaluated based upon CDOT-ITS architectural goals:

General Goals:

• Scalability: To evaluate the potential of the system to grow and support future needs.

• Maintainability: To analyze the maintainability of the system in the future with respect to technology

evolution and the introduction of new features and requirements.

• Availability: To evaluate the availability of support products involved in the overall architecture and the

availability of programmers required to implement the architecture.

• Prevalence: To check the prevalence of the technology choices in US and other state held DOT’s.

• Ease of Implementation: To study the ease of implementing the architecture.

• Standards: To study the support available for the standards.

Project Specific Goals:

• Use three tier (or n-tier) application architecture.

• Manage all application communication using Model View Controller (MVC) pattern.

• Place as much of the application as possible in the Application Server Container.

• Let the application layer manage communication between architectural components. (This is related to

keeping as much of the application in the container as possible.)

 Benefits:

• Application server based architecture will ensure future portability to other EJB Containers.

• Current CDOT staff is proficient with J2EE and EJB.

• Application Server based architecture will ensure ease of future maintenance since application logic and

business logic will be kept in one place, instead of being distributed to various architectural components.

2.3 Conclusion

Based upon the results of the Software Architecture Assessment, the communications architecture of the

CTMS/CTIS system will be J2EE-XML based.

CTMS/CTIS INTEGRATION Version: 1.2

Software Architecture Assessment Document Date: 12 Nov 2003

Confidential ©EnRoute Traffic Systems, Inc. Page 7 of 37

3. INTRODUCTION TO ARCHITECTURAL ELEMENTS

This section describes the various technologies being considered while developing the CTMS/CTIS core

architecture. The technologies have been classified into two sections. The Existing Technologies section lists

and describes all technologies currently used at CDOT-TOC. The Technologies Under Evaluation section

lists and describes all technologies that may become a part of the CTMS/CTIS architecture, however need to be

evaluated.

3.1 Existing Technologies

Following is a list of technologies that currently exist at CDOT. It was decided to use these technologies for

CTMS/CTIS. Applications currently used at CDOT–TOC such as the ‘www.COTRIP.org’ and device drivers for

RTMS have been developed using these technologies. Using the same technologies for CTMS/CTIS will help

define a standard set of technologies, and minimize integration issues.

• Java: Java is an object-oriented programming language that features "write once, run anywhere"

deployment to many popular computing platforms, without the need to redevelop or recompile. Due to the

numerous benefits of Java, and its increasing acceptance in the IT circles, Java has been the preferred

programming language at CDOT–TOC. The Courtesy Patrol application has been developed using Java.

Having a standard programming language will simplify the integration process.

• Java Virtual Machine (JVM): The JVM is an engine on which Java applications run (or are interpreted).

A JVM is required for each particular platform on which the application is to be run. The JVM is what

allows Java applications to be moved from platform to platform with no changes to the application itself.

• Java Foundation Classes (JFC)/ Swing: JFC is a set of Java class libraries provided to support building

graphics user interface (GUI) and graphics functionality for Java technology-based client applications.

With Java as a preferred programming language, JFC/Swing is the natural choice of any java related GUI

developments.

• Java2 Platform, Enterprise Edition (J2EE): J2EE is a standard architecture from Sun Microsystems

that defines and supports a multi-tiered programming model where client applications invoke business

logic that executes on an application server, which in turn interact with a separate layer of devices to store

and retrieve data. COTRIP.org and CPDS have designs that conform to the J2EE specifications.

• Enterprise Java Beans (EJB): EJB’s are a major portion of the J2EE platform. They are Java

components developed for the server. There are three types of enterprise beans: Entity EJBs, Session

EJBs, and Message Driven Beans (MDB). EJB’s have been widely used in COTRIP.org and CPDS.

• Session EJB’s: There are two types of Session EJBs – Stateful and Stateless. A stateful session bean

contains conversational state on behalf of the client. Stateless session beans do not have any state

information for a specific client.

• Entity EJB’s: An entity bean represents data in a database and the methods to act on that data. There are

two types of data access for entity beans: Container Managed Persistence (CMP), and Bean Managed

Persistence. CMP’s is the standard method for data access in most Java based application at TOC.

• Borland Enterprise Server (BES): BES is a J2EE/CORBA compliant application server. It is a

multithreaded server that listens on the network for a client request. On the back-end, the Borland

Enterprise Server can connect to virtually any network-accessible service. The Borland Enterprise Server

can be a primary web server or it can process requests redirected to it by an existing web server. CDOT–

TOC currently uses BES for its existing operations systems.

• XML: An eXtensible Markup Language that allows programmers to design their own markup language

for creating Web pages with dynamic meta-information. XML format is currently used by the CoTrip.org

website.

CTMS/CTIS INTEGRATION Version: 1.2

Software Architecture Assessment Document Date: 12 Nov 2003

Confidential ©EnRoute Traffic Systems, Inc. Page 8 of 37

ESRI Technologies

Following is a list of products developed by ESRI that support the management and manipulation of spatial and

graphical information. These products are currently used for development of various applications in TOC.

• MapObjects: a set of Java API’s for developing Map based GUIs.

• ArcSDE (Spatial Database Engine): a tool that supports the management and manipulation of spatial

and geographic information.

• ArcIMS (Internet Mapping Service): a tool that supports the management and manipulation of spatial

and geographic information in a internet environment.

3.2 Technologies Under Evaluation

Following is a list of technologies that are being evaluated for the CTMS/CTIS architecture.

• Message Oriented Middleware (MOM): Message-oriented middleware is software that resides in both

portions of client/server architecture and typically supports asynchronous calls between the client and

server applications. Message queues provide temporary storage when the destination program is busy or

not connected. MOM is an alternative to CORBA, hence it is important to analyze the tradeoffs.

• SonicMQ: SonicMQ is a Message Oriented Middleware from Sonic Software. It allows two entities to

communicate by sending and receiving messages with SoniqMQ managing the background complexity

and message volume.

• Common Object Request Broker Architecture(CORBA): The Common Object Request Broker

Architecture (CORBA) allows distributed applications to interoperate (application-to-application

communication), regardless of what language they are written in or where these applications reside.

• CORBA Interface Definition Language(IDL): A standard notation language for defining component

interfaces.

• CORBA Notification Service: The main design goal of the Notification Service architecture is to define

the service as a direct extension of the existing Object Management Group (OMG) Event Service,

enhancing the latter with important features, which are required to satisfy a variety of applications with a

broad range of scalability, performance, and quality of service (QoS) requirements.

• CORBA Trading Service: The Trading Service provides a sophisticated 'yellow pages' style object

directory that supports complex look-up queries.

• CORBA Naming Service: The Naming Service provides the principal mechanism through which most

clients of an Object Request Broker (ORB) -based system locate objects that they intend to use (make

requests of).

• Visinotify: Borland VisiNotify is an industrial strength implementation of OMG Event/

Notification Service. Instead of on implementing on the user level, VisiNotify is implemented on ORB

level.

• Portable Object Adapter (POA): is a particular type of object adapter that is defined by the CORBA

2.3.1 specification that connects a request using an object reference with the proper code to service that

request. POA replaces an obsolete object adapter called a Basic Object Adapter, or BOA.

CTMS/CTIS INTEGRATION Version: 1.2

Software Architecture Assessment Document Date: 12 Nov 2003

Confidential ©EnRoute Traffic Systems, Inc. Page 9 of 37

• PSA: Publish/Subscribe Adapter (PSA) is a programming model and software component supported by

VisiBroker 5.1. It is simply a wrapper of the MG Notification and Typed Notification Service. The idea of

PSA is to present a high level object-oriented abstraction for publish/subscribe and queued

communications.

• QoS: Quality of Service is used by OMG for providing and controlling reliability, queue management,

and event management.

• SOAP: Simple Object Access Protocol is a lightweight protocol for exchange of information in a

decentralized, distributed environment.

• XML: An eXtensible Markup Language that allows programmers to design their own markup language

for creating Web pages with dynamic meta-information. XML format is currently used by the CoTrip.org

website.

4. OVERVIEW OF CTMS/CTIS ARCHITECTURE:

4.1 Architectural Goals

The goals of the CTMS/CTIS/ATIS architecture are defined below and will be used to guide this evaluation:

General Goals:

• Feasibility: To assess the feasibility of the technology approach to successfully construct the application.

• Scalability: To evaluate the potential of the system to grow and support future needs arising from introduction

of new features and requirements.

• Maintainability: To analyze the maintainability of the system after assessing the overall complexity and

network overheads.

• Cost: To study the cost of the technology approach.

• Availability: To evaluate the availability of support products involved in the overall architecture and the

availability of programmers required to implement the architecture.

• Ease of Implementation: To study the ease of implementing the architecture.

• Standards: To study the vendor and industry support available for the standards.

• Prevalence: To check the prevalence of the technology choices in US and other state held DOT’s. Further to

assess the future of the technology choices.

Specific Goals:

• Use three tier (or n-tier) application architecture.

• Manage all application communication using Model View Controller (MVC) pattern.

• Place as much of the application as possible in the Application Server Container.

• Let the application layer manage communication between architectural components. (This is related to

keeping as much of the application in the container as possible.)

Application server based architecture will ensure future portability to other EJB Containers. Currently CDOT staff

is proficient with J2EE and EJB, this will ensure successful development. Application Server based architecture

will ensure ease of future maintenance since application logic and business logic will be kept in one place, instead

of being distributed to various architectural components.

CTMS/CTIS INTEGRATION Version: 1.2

Software Architecture Assessment Document Date: 12 Nov 2003

Confidential ©EnRoute Traffic Systems, Inc. Page 10 of 37

Figure 1, shows the CTMS/CTIS architecture framework, proposed by the team at TOC. This framework will serve

as a basis for any prototype developments. The architecture framework identifies the core pieces of the architecture

based on the functional requirements of the CTMS/CTIS system software. This architecture framework will be

comprised of six main components. Each component is essential to the overall system software. The six

components are briefly described.

Figure: 1. CTMS/CTIS architecture framework Figure 1

4.2 Architectural Components and Assumptions

1. GUI Clients: The GUI Clients will provide a Map based interface to the user/operator. The interface will also

act as an operator console to poll DMS signs, post messages on DMS signs and perform other device specific

operations. A fully functional GUI client will display events, logs, and generate operator reports. It will also

enable selection and display of messages on all other devices.

The user interface will be developed using Java, Java Swing/ Java Server Pages and MapObjects. All device

coordinates will be obtained from the spatial database, ArcSDE. MapObjects and ArcSDE will help obtain real

time information on the status of the devices.

CTMS/CTIS INTEGRATION Version: 1.2

Software Architecture Assessment Document Date: 12 Nov 2003

Confidential ©EnRoute Traffic Systems, Inc. Page 11 of 37

2. Enterprise Application Server: Borland Enterprise Server is a market leader in Enterprise Servers that

conform to the J2EE specifications from Sun Microsystems. Currently, CDOT-TOC uses Borland Enterprise

Server BES, version 5.2 for most of its applications. BES is therefore a very appropriate fit to the framework

and will be used in the overall architecture.

3. Communication Server: This component will be responsible for establishing communication with the devices

and managing the communication. The communication architecture of the CTMS/CTIS system is under review

because of a requirement for creating and managing a thread to communicate with a field device. The BES

EJB Container (and the EJB 2.1 Specification) prohibits explicit thread control in the container forcing us to

consider two different communication mechanisms: CORBA and JMS/MOM.

The CORBA (Common Object Request Broker Architecture) Model is an object-oriented model. In addition to

the basic CORBA model, several CORBA services will be required. CORBA services follow specific OMG

standards, however implementations of services vary from vendor to vendor. Borland and PrismTech are two

main vendors of these implementations and both will be evaluated during the process of prototype

development.

JMS/MOM (Java Message Service/Message Oriented Middleware) is a message-oriented model. JMS API’s

are part of the J2EE specification from Sun Microsystems. As with CORBA, implementation of these

standards varies from vendor to vendor. For purposes of architecture assessment products of Sonic Software

(SonicMQ) and TIBCO will be evaluated.

4. Spatial Database Engine: Arc SDE is a separate architectural component that sits on top of Oracle 9i and

manages spatial data. This has caused us to have a dual representation of the datastore object in the system.

Spatial data is managed in one table, and non-spatial data is managed in another table. Since we use EJB CMP

to manage persistence, it is unknown how we will integrate SDE and EJB.

5. Database (Oracle 9i): Oracle has been the chosen database for the architecture under assessment. The

database will have modem pool related information (e.g. Baud Rate, Com Port number etc.). Any information

obtained from polling the devices will also be stored in the database.

6. Devices: As integration software, the main intent of the CTMS/CTIS system is to communicate with various

ITS devices. Some of these ITS devices include DMS, ATR, RTMS, AWOS, HAR and others. (Refer to

Glossary for acronyms)

5. CTMS/CTIS COMMUNICATION ARCHITECTURE ALTERNATIVES

This section describes the alternative models evaluated for the communication architecture within the CTMS/CTIS

core architecture. As described earlier, for the CTMS/CTIS application architecture, technology choices have been

made for the GUI Client (J2EE, MapObjects), Spatial Database Engine (ArcSDE), the database (Oracle), and

Enterprise Application Server (BES). For the communication server, however, four alternative models have been

identified. Each model uses different technologies, programming model and product implementations.

Alternative1: CORBA – Visinotify – EJB Model.

The first alternative is the CORBA – Visinotify – EJB model. CORBA is the broker architecture. Visinotify is

Borland’s implementation of CORBA Notification service and will be used for asynchronous Notification to the

clients. PrismTech’s CORBA Notification service is also an alternative to Visinotify. While the overall model

remains the same, both Visinotify and PrismTech’s products can be used for asynchronous notification.EJB will be

used for database access. Alternative 1 has been prototyped and a working model is available for demonstration.

CTMS/CTIS INTEGRATION Version: 1.2

Software Architecture Assessment Document Date: 12 Nov 2003

Confidential ©EnRoute Traffic Systems, Inc. Page 12 of 37

Alternative 2: CORBA – JMS Model

This particular model is different from Model 1 and will use the Common Object Request Broker Architecture

(CORBA) for remote object invocation. CORBA Notification service has been replaced with Java Message

Service. Although both services were developed to solve different problems, both achieve similar goals. JMS

enables loose coupling of client and server and insures asynchronous communication. The JMS broker used for

developing this prototype is SonicMQ from Sonic Software.

Alternative 3: JMS – MDB Model

This model is different from models 1 and 2 and follows a message-oriented paradigm. The model conforms to the

JMS/J2EE specifications from Sun Microsystems. The implementations of these specifications vary from vendor to

vendor, however for purposes of prototyping SonicMQ and TIBCO have been used as the JMS brokers. EJB is

still used for persistence management. Alternative 3 has been prototyped and a working model is available for

demonstration.

Alternative 4: J2EE - XML Model

This model uses EJB’s for messaging, data access and business logic. The idea is to shift all functionalities inside

the Web container and check feasibility of the model. All device and socket communication will be message based

using a JMS Server. Message will be a standard XML packet. Option 3 differs from option 4, wherein, modules

such as alarm handler, scheduler are implemented as bean façade. Alternative 4 has been prototyped and a working

model is available for demonstration.

DATEX Protocol

The Datex protocol was not evaluated on this project. Rather, results from a US DOT study were used

which recommended XML over Datex.

For the communication between device server and the field devices, ITS standards conformance is important.

NTCIP protocol standards will be used for any such Center to Field communication. There were several

considerations in choosing the protocols. A major consideration was DATEX. However, DATEX fails to prove its

merit for the following reasons:

1. DATEX suffers from the fact that it is a protocol used exclusively for center–to–center ITS applications. The

market may simply be too small and it that jeopardizes the survival of this technology.

2. Currently, there is only one company, TRANSCOM that supports DATEX.

3. The availability of programmers familiar with this technology is very low.

4. There are not many implementations of DATEX nationwide.

5. A study by US DOT suggests that XML is a better option than DATEX.

CTMS/CTIS INTEGRATION Version: 1.2

Software Architecture Assessment Document Date: 12 Nov 2003

Confidential ©EnRoute Traffic Systems, Inc. Page 13 of 37

5.1 Alternative 1: CORBA – Visinotify – EJB Model

 (Additional information in Appendix A)

Objectives behind this development were:

1. To explore/understand the Java – CORBA programming combination.

2. To explore/understand CORBA Services, especially the Notification service.

3. To experiment with Borland’s implementation of Notification service - Visinotify

4. To check the feasibility of PrismTech’s CORBA Notification Service, called Open Fusion, as an

alternative to Borland’s Visinotify.

5. To document any issues.

Visinotify is Borland’s implementation of CORBA Notification Service while Open Fusion is PrismTech’s

implementation of CORBA Notification Service. The team’s evaluation of Visinotify and Open Fusion have

concluded that both products conform to CORBA specifications and can be used for CORBA based model. For this

particular prototype the team chose to use PrismTech Notification.

This application prototype is structured into 3 packages Visinotify.driver, Visinotify.map and Visinotify.idl.

Source codes of these packages have been archived in Visual Source Safe,

$/CTMS/CTIS_ATIS/Architecture Assessment/src folder.

1. Visinotify.Map: Client

This package contains classes that do the following:

• Start.java sets the frame for Map (start.java)

• MapFrame.java Initializes the Object Request Broker, PSA and resolves POA references.

• ConsumerNotificationHandler.java creates the structured event and publish/subscribe to the

notification channel

2. Visinotify.Idl: Device Server

• DS_VMS.idl is the main idl file that defines the operations that can be performed on the device.

• Conversion of idl file to java generates 7 files (Stub, POA, POATie, Operations, Holder, Helper).

Each file has different objectives depending on the Java-CORBA communication.

• DS_VMSImpl.java has the implementation for the “idl” file that defines the main operations to be

performed on the particular device (e.g. poll, check, connect etc)

• StartServer.java contains classes required for instantiating the Notification service, creating channels,

activating POA manager and setting the POA policies.

• EventGenerate.java creates the structured event and publishes the actual event onto PSA.

 3. Visinotify.Driver: Communication API’s

• Contains java classes that constitute the communication API’s for communication with the devices

through a modem pool.

• For purposes of this application prototype, the Visinotify.driver also contains driver classes that

establish communication with the Display Solution VMS signs.

5.1.1 STRUCTURE:

CTMS/CTIS INTEGRATION Version: 1.2

Software Architecture Assessment Document Date: 12 Nov 2003

Confidential ©EnRoute Traffic Systems, Inc. Page 14 of 37

Figure 2. CORBA – Visinotify – EJB model

5.1.2 EXECUTION

This portion elaborates the execution sequence of this CORBA application prototype.

1. Initializing various services:

It is important to have Borland Application Server, Visinotify (or any other Notification service), Visibroker (or

any other ORB) and the Visinotify.idl (the device server) up and running. These pieces form the basic blocks of the

communication framework for this particular architecture.

2. Starting MapObjects:

With the services running, the MapObjects client can be executed. Each device is associated with an object id,

references of which are obtained through the POA Manager.

CTMS/CTIS INTEGRATION Version: 1.2

Software Architecture Assessment Document Date: 12 Nov 2003

Confidential ©EnRoute Traffic Systems, Inc. Page 15 of 37

5.1.3 ISSUES

1. Any communication between the client and server requires the client and server to be subscribers or publishers

to a channel. Each time the client or server is disconnected, the subscription is lost; hence channel and

subscription management is important.

2. To guarantee delivery of structured events to the client and/or server, additional QoS properties have to be set.

Not all notification services implement these QoS properties. E.g. Visinotify support fewer QoS properties

than PrismTech Notification service.

3. Each time a client is closed (shutdown) and restarted, the proxies created during previous subscription persist

and continue to consume resources. These proxies have to be managed.

4. This architecture requires transaction management to be in the client for synchronized updates to SDE and

database through entity beans. This also indicates a thicker client, which will make design and implementation

complex.

5.2 Alternative 2: CORBA – JMS Model

Objectives behind this development were:

1. To explore/understand the CORBA – JMS programming combination.

2. To explore/understand the Java Message Service as an alternative to CORBA Notification service.

3. To explore/understands the features of a Message Oriented Middleware.

Packages used in constructing this particular prototype were also used in the previous model. The JMS related

packages have been designed keeping possible reuse in mind. Prototypes 3 and 4 may very well use packages

designed in this particular model. Source codes of these packages have been archived in Visual Source Safe,

$/CTMS/CTIS_ATIS/Architecture Assessment/src folder.

1. Visinotify.Map: Client

This package contains classes that do the following:

• Start.java sets the frame for Map (start.java)

• MapFrame.java Initializes the Object Request Broker and resolves POA references.

• DS_VMS.idl is the main idl file that defines the operations that can be performed on the device.

• Conversion of idl file to java generates 7 files (Stub, POA, POATie, Operations, Holder, Helper).

Each file has different objectives depending on the Java-CORBA communication.

2. jmstester.Driver: Communication API’s

• Contains java classes that constitute the communication API’s for communication with the

devices through a modem pool.

• For purposes of this application prototype, the jmstester.driver also contains driver classes that

establish communication with the Display Solution VMS signs.

3. jmstester.MDB: MDB and Entity Beans

• MDB_first.java implements the MDB façade.

• CommTypeBean.java is the Entity bean (Container Managed Persistence).

• CommTypeHome.java is the home interfaces for the CMP.

CTMS/CTIS INTEGRATION Version: 1.2

Software Architecture Assessment Document Date: 12 Nov 2003

Confidential ©EnRoute Traffic Systems, Inc. Page 16 of 37

5.2.1 STRUCTURE:

 Figure 3. CORBA – JMS Model

5.2.2 EXECUTION

1. It is essential to have SonicMQ and BES running before executing this application.

2. With the services running, the MapObjects client can be executed. Each device is associated with an object id,

references of which are obtained through the POA Manager.

3. Two topics: ClientToServer and ServerToClient have been created in mainJMS.java

4. The text message created by leftpanel.java is published onto topic ClientToServer. Mainjms.java interprets the

messages and calls the driver api’s.

5. Message received upon polling the VMS is published onto the topic ServerToClient as a JMS object message

and is interpret by the ClientSubscriber.java

6. ClientSubscriber.java forwards the message to leftpanel.java which displays the message.

CTMS/CTIS INTEGRATION Version: 1.2

Software Architecture Assessment Document Date: 12 Nov 2003

Confidential ©EnRoute Traffic Systems, Inc. Page 17 of 37

5.2.3 ISSUES

1. Each time a client is closed (shutdown) and restarted, the proxies created during previous subscription persist

and continue to consume resources. These proxies have to be managed.

3. This architecture requires transaction management to be in the client for synchronized updates to SDE and

database through entity beans. This also indicates a thicker client, which will make design and implementation

complex.

4. For larger applications, it is very important to design the topics and queues looking at the scope of the

application.

5.3 Alternative 3: JMS – MDB Model

(Additional information in Appendix B)

JMS are portable API’s that set standards for any Java based client to connect to an MOM. MOM’s are therefore at

the heart of any JMS architecture. This application prototype was intended at:

1. Exploring/Understanding features provided by the MOM.

2. Exploring/Understanding a JMS based architecture.

3. List issues involved.

This JMS application prototype was built using JMS broker – SonicMQ from Sonic Software. This application

prototype is structured into 3 packages jmstester.driver, jmstester.map and jmstester.MDB. Source codes of

these packages have been archived in Visual Source Safe,

$/CTMS/CTIS_ATIS/Architecture Assessment/src folder.

1. jmstester.Map: Client

This package contain classes that do the following:

• Start.java sets the frame for Map (start.java)

• MapFrame.java Initializes the Object Request Broker, PSA and resolves POA references.

• ConsumerNotificationHandler.java creates the structured event and publish/subscribe to the

notification channel

2. jmstester.Driver: Communication API’s

• Contains java classes that constitute the communication API’s for communication with the

devices through a modem pool.

• For purposes of this application prototype, the Visinotify.driver also contains driver classes that

establish communication with the Display Solution VMS signs.

3.Jmstester.MDB: MDB and Entity Beans

• MDB_first.java implements the MDB façade.

• CommTypeBean.java is the Entity bean (Container Managed Persistence).

• CommTypeHome.java is the home interfaces for the CMP.

5.3.1 STRUCTURE

CTMS/CTIS INTEGRATION Version: 1.2

Software Architecture Assessment Document Date: 12 Nov 2003

Confidential ©EnRoute Traffic Systems, Inc. Page 18 of 37

Figure 4. Java – JMS – MDB model

5.3.2 EXECUTION

7. It is essential to have SonicMQ running before running this application.

8. Start.java within jmstester.map package has the main class. Upon execution, a text message with the

appropriate operation (E.g. Poll) is created by leftpanel.java.

9. Two topics: ClientToServer and ServerToClient have been created in mainJMS.java

10. The text message created by leftpanel.java is published onto topic ClientToServer. Mainjms.java interprets the

messages and calls the driver api’s.

11. Message received upon polling the VMS is published onto the topic ServerToClient as a JMS object message

and is interpret by the ClientSubscriber.java

CTMS/CTIS INTEGRATION Version: 1.2

Software Architecture Assessment Document Date: 12 Nov 2003

Confidential ©EnRoute Traffic Systems, Inc. Page 19 of 37

MDB Communication:

1. Message received by mainJMS.java is published to MDB façade via topic STOC. MDB is accessed via JNDI

lookups.

2. Upon receiving the message OnMessage(), MDB calls getCommType () from CommTypeBean.

3. The get method executes a Select query to test the MDB – Entity Bean interaction.

5.3.3 ISSUES

1. A pure JMS architecture is not possible. For example, API’s that extend Connectionfactory depend upon the

type of broker used. Hence a JMS client that connects to SonicMQ broker cannot be ported to any other broker

(E.g. TIBCO) without changes.

2. For larger applications, it is very important to design the topics and queues looking at the scope of the

application.

3. This architecture requires transaction management to be in the client for synchronized updates to SDE and

database through entity beans. This also indicates a thicker client, which will make it more difficult to manage

during maintenance and operations.

5.4 Alternative 4: J2EE - XML Model

(Additional Information in Appendix C)

JMS are portable API’s that set standards for any Java based client to connect to an MOM. MOM’s are therefore at

the heart of any JMS architecture. This application prototype was intended at:

1. Exploring/Understanding EJB container’s ability to handle communication with devices.

2. Exploring/Understanding a JMS based architecture.

3. List issues involved.

This JMS application prototype was built using JMS broker – SonicMQ from Sonic Software. This application

prototype is structured into 3 packages cdot.its.assess4.bean, cdot.its.assess4.server and cdot.its.assess4.util.

Source codes of these packages have been archived in Visual Source Safe,

$/CTMS/CTIS_ATIS/Architecture Assessment/src folder.

1. cdot.its.assess4.util: Client

This package contain classes that do the following:

• Message.java message class that defines the common packet to be sent to the modules.

• Client_Side.java Publishes messages to the EJB container and listens for messages retrieved from

the devices.

2. cdot.its.assess4.server: Communication API’s (Refer to Appendix entry 4 for message class)

• JMS_Server.java Listens for messages published out of the container and publishes messages

obtained from the devices.

• Message.java this class represents the common message packet containing routing information.

CTMS/CTIS INTEGRATION Version: 1.2

Software Architecture Assessment Document Date: 12 Nov 2003

Confidential ©EnRoute Traffic Systems, Inc. Page 20 of 37

3. codt.its.assess4.Jmstester.bean: MDB and Entity Beans (Refer to Appendix entry 3 for details)

• DelegatorMessageBeanMBFBean.java delegates message published by the JMS Server to

session bean for further processing.

• DeviceControllerSSBFBean.java and AlarmHandlerSSBFBean.java are stateless session beans

that represent modules and are responsible for the module specific processing of the message

packet. E.g. AlarmHandlerSSBFBean is responsible for checking Alarm Handler related logic

before message processing.

• RTMSUnitIdCMPBBean.java is a CMP bean to access the relational values of the device from

database.

• MessageQueueBeanSSBFBean.java is message driven bean that publishes messages outside the

container and to the JMS Server using a JMS queue.

• CmdBean.java accepts message sent by client and delegates it to the bean façade specific to the

module.

CTMS/CTIS INTEGRATION Version: 1.2

Software Architecture Assessment Document Date: 12 Nov 2003

Confidential ©EnRoute Traffic Systems, Inc. Page 21 of 37

5.4.1 STRUCTURE

Figure5. J2EE-XML Model

CTMS/CTIS INTEGRATION Version: 1.2

Software Architecture Assessment Document Date: 12 Nov 2003

Confidential ©EnRoute Traffic Systems, Inc. Page 22 of 37

5.4.2 EXECUTION

1. It is essential to have SonicMQ broker and BES running before running this application.

2. Client_Side.java is the client program that sends message packet to the CmdBean on JMS queue named

SampleQ1.

EJB Communication:

1. CmdBean is an interpreter bean and exposes one remote method executeMessage() which takes a serialize

object message as an argument. Once this method is remotely activated by the Client, the CmdBean checks

attributes set by the client on the object message and forwards the message to the appropriate session bean.

2. DeviceControllerSSBFBean.java and AlarmHandlerSSBFBean.java are stateless session beans which expose

method to executeCommand which accepts message object forwarded by the command bean.

3. RTMSUnitIdCMPBBean.java accesses the relational values of the device specified by the client in the

message packet. These value are send by the messagequeuebean to the JMS Server.

4. JMS Server loads the device specific drivers, establishes connection with the devices and performs the

required operation such as polling. The message retrieved from the polling operation is send to the

ClientPublisher bean via a MDB.

5. ClientPublisherSSBFBean.java finally publishes the retrieved message to the client interface.

5.4.3 ISSUES

1. In this particular architecture flexibility may be an issue. Since most modules are implemented as EJB’s, every

change to the bean would require redeployment of the bean. Application servers such as JBoss use time

efficient techniques for deployment.

CTMS/CTIS INTEGRATION Version: 1.2

Software Architecture Assessment Document Date: 12 Nov 2003

Confidential ©EnRoute Traffic Systems, Inc. Page 23 of 37

6. CRITERIA FOR SELECTION

This section describes various metrics used to compare and contrast the communication architectures. Definitions

of each metric are as defined by the Software Engineering Institute. Several criteria may compare the technology as

against the overall architecture. For example, complexity considers CORBA and JMS instead of CORBA and

J2EE-XML.

6.1 Cost

• CORBA

PrismTech Notification, OpenFusion: (Prices have been obtained from the Sales Quote)

Development License (Name User based): $6000

Testing/Production License (Per CPU): $4000

Oracle Persistence Plug in (Per CPU): $1000

• J2EE-XML

SonicMQ: (Price Quotes were given by the Sales Manager of Sonic Software)

SonicMQ Professional Developer edition: standards based messaging backbone that supports dynamic routing,

RSA security, and server clustering (Licensed for development use only. No Deployment) - $2500 per named user

includes client plus functionality

SonicMQ Enterprise Edition: for deployment – standards based messaging backbone that supports RSA security.

No dynamic routing, no clustering, no SonicMQ client plus functionality included - $5000 per CPU

Sonic MQ Enterprise Edition Plus: for deployment - standards based messaging backbone that supports dynamic

routing, RSA security, and server clustering, includes 10 licenses for SonicMQ Client Plus - $7500 per CPU

Sonic MQ Client Plus: Extended messaging client that supports local persistence and large message support -

$2500 per 10 machine license pack.

A quick evaluation proves that implementation of CORBA notification service such as Open Fusion is more

expensive than a JMS broker such as Sonic MQ.

6.2 In-house Expertise

The following expertise is available in house right now.

1. John Williams: Expert in Java, Java Server side technologies, Oracle, Web technologies

2. Greg Arbon: Expert in Java, Server side technologies, Oracle, Web technologies

3. Pawan Kharbanda: Expert in Java, Server side technologies, CORBA, JMS, Oracle, Web technologies.

4. Sachin Saindane: Java, Server side technolgies, JMS and JMS Brokers such as SonicMQ.

5. Kim Hubbard: Java, Oracle, ArcSDE.

To summarize, on the whole the team has significant experience with Java, Java Server side technologies and JMS

CTMS/CTIS INTEGRATION Version: 1.2

Software Architecture Assessment Document Date: 12 Nov 2003

Confidential ©EnRoute Traffic Systems, Inc. Page 24 of 37

6.3 Complexity

Complexity is defined as the degree to which a system or component has a design or implementation that is

difficult to understand and verify. It is determined by such factors as the number and intricacy of interfaces, the

degree of nesting, and the types of data structures.

CORBA:

• Key to any CORBA based application is the design of the interface definition language (idl) file. The idl file

defines the publicly available operations that can be invoked on the CORBA objects. Available operations are

implemented as Java classes and are termed ‘servants’. Idl file is compiled to generate platform specific

classes. Idl2Java compiler creates 7 java specific files, each handles a separate function. Managing these files

add to the complexity of the program.

• Default environment set for CORBA objects are different than the ones desired. Behavior of the objects can be

changed by setting different POA policies. Managing these POA policies often add to the complexity of the

system.

• Programming model used by CORBA Notification service (refer Appendix A – item 2) requires management

of admin objects, proxies and consumer objects. As the number of CORBA objects increase, managing the

proxies and admin objects add to the complexity of the application.

• Another key requirement of this application is guaranteed delivery of structured events. QoS properties applied

to the filters can ensure guaranteed delivery, however all notification services may not support all QoS

properties. Choice of service becomes important at this point. Furthermore, setting these properties depends on

the number of filters added to the design. (More information on QoS is available in the appendix).

• While a CORBA based application may have a defined structure consisting of idl files and implementation

files, design decisions vary depending upon the number of consumers and suppliers. This makes it difficult to

come up with a standard design pattern. Furthermore, steps related to management of POA appear to make the

programming detailed, no level of abstraction provided here. PSA provides abstraction to a certain extent,

however it is proprietary to Borland.

J2EE-XML:

• JMS based applications follow message oriented paradigm. Hence all applications should be designed around

the JMS messages that will be passed.

• As the number of messages increase, managing the messages and the topics/queues becomes critical. This task

is far less complex in JMS than it is in CORBA Notification service

• Since there are five types of JMS messages available, each message is treated differently by the subscriber. If

more than one type of message is published onto the same topic, complexity of the application increases.

 In conclusion, CORBA based application is more complex than JMS.

CTMS/CTIS INTEGRATION Version: 1.2

Software Architecture Assessment Document Date: 12 Nov 2003

Confidential ©EnRoute Traffic Systems, Inc. Page 25 of 37

6.4 Scalability

As defined by SEI, Scalability is the ease with which a system or component can be modified to fit the problem

area. In simple terms it is the ability of a computer application to continue to function well when it is changed in

size or volume in order to meet a user need.

CORBA:

Scalability of the application in this context may require, adding devices, increasing number of client and/or EJB’s.

Adding devices to the CORBA model requires changes to the communication server. A careful analysis of the

overall design and design patterns is important. Further it requires creating additional idl files for each device and

implementing operations in additional Java classes. With the standard structure available, scaling up a CORBA

application is feasible but tedious.

J2EE-XML:

For JMS architecture, scaling up an application is feasible. If the numbers of clients are increased, the overall

architecture can handle increased client requests. A very large number of topics and queues can be managed by

increasing the number of brokers. SonicMQ supports ‘dynamic routing architecture’ to help scale up applications.

Brokers can be used in a clustered environment for enterprise wide application.

In conclusion, J2EE-XML model is more scalable than the CORBA model.

6.5 Network Overheads

Overheads are a relative term and may imply additional property bytes or additional properties set for more

features.

 CORBA MODEL:

• For a CORBA model, overheads are associated with the design of the structured event. It is important to keep a

close eye on the headers of these structured events since they directly affect complexity.

• For features such as guaranteed delivery, additional QoS properties may be set on filters. Adding these

properties increase overhead in terms of additional bytes to the vector (structured event).

J2EE-XML:

• In the JMS Model message, overheads are associated with the use of message properties. SonicMQ provides

proprietary properties to a JMS message. Using these properties will add to the overheads. Further, type of

messages itself add to the overheads (e.g. XML message will have more properties than Text Message)

In conclusion, CORBA Model has higher network overheads than the J2EE-XML model.

6.6 Vendors Required

Vendor support involvement implies the number of vendors or vendor products utilized in developing the

architecture. More products will increase dependency on the vendor for version upgrades, support and licenses.

CORBA MODEL:

• For Visinotify model, Borland becomes the sole vendor that is involved. While the number of vendor products

may not change, the interactions will be limited to Borland and ESRI

• For PrismTech model, Prismtech in addition to Borland is involved. Implications of dependencies on the

number of vendors may be worth a consideration.

J2EE-XML:

• For JMS model, Sonic Software becomes involved in addition to Borland.

CTMS/CTIS INTEGRATION Version: 1.2

Software Architecture Assessment Document Date: 12 Nov 2003

Confidential ©EnRoute Traffic Systems, Inc. Page 26 of 37

In conclusion, both models may require interaction with at least three commercial vendors.

6.7 Vendors Supporting the Technology

This particular measure looks at technology from the vendor support perspective. While commercial

implementations of both CORBA and JMS are available, the number of vendors supporting these technologies will

give an indication of vendor’s faith in the technology.

CORBA:

• The advent of CORBA as a specification dates to early 199o’s. After the formation of the Object Management

Group (OMG), a lot of vendors participated in keeping CORBA open standard and developing CORBA related

products. As of today there are at least 200 known vendors supporting CORBA. The number has grown in the

past few years.

J2EE-XML:

• The advent of JMS as a specification dates to late 1990’s. Although the technology has gained increasing

popularity, there are a few well established vendors including IBM, Sun Microsystems, Sonic Software etc.

The total number of vendors may amount to about 75. A research report from Wintergreen research has shown

that the JMS/MOM market is projected to triple in the next four years.

In conclusion, the number of vendors supporting CORBA is more than the number of vendors supporting JMS.

However the JMS market has increased at a growth higher than the market for CORBA products.

6.8 Portability

Portability is defined by SEI, as the ease with which a system or component can be transferred from one hardware

or software environment to another.

CORBA MODEL:

• CORBA model was not deployed on another hardware/software environment. However the standards

development body (Object Management Group) claims CORBA to be platform independent.

J2EE-XML:

• Portability of JMS based applications depends on JMS service provider. Whether JMS brokers run on different

hardware and software platforms depends on the JMS provider.

In conclusion, within the context of CTMS/CTIS, portability may not be an issue with either technology.

6.9 Standards (Acceptance in ITS and/or IT)

This particular metric looks at the acceptance of CORBA and JMS in the overall IT market and later in the ITS

market.

CORBA:

• The CORBA development follows specification from Object Management Group. There is considerable

support to these standards and a lot of active work going amongst OMG members to continually improve the

specifications.

• CORBA as a technology exists since early 1990’s and hence has been adopted widely in IT related projects. Of

the state held DOT’s the CHART II system developed for Maryland Department of Transportation uses

CORBA

CTMS/CTIS INTEGRATION Version: 1.2

Software Architecture Assessment Document Date: 12 Nov 2003

Confidential ©EnRoute Traffic Systems, Inc. Page 27 of 37

.

J2EE-XML:

• JMS standards follow specifications from Sun Microsystems. Considering its onset in 1998, JMS has

observed several revisions. The most current version is version 1.1 and was released on March 2002.

• Since JMS is a relatively new technology, it has not been used by any of the Department of Transportation

within United States. Internet has tremendously encourages adoption of B2B and B2C models. JMS

brokers have been extensively used in web based models.

In conclusion, CORBA has been preferred over JMS in ITS, however JMS has been preferred over CORBA in

the IT circles. One may account JMS’s late penetration in the IT market as a reason for not being widely

adopted.

6.10 Support of Asynchronous Communication

CORBA MODEL:

• CORBA was intended to solve computing problems associated with heterogeneous environment. The

objective was to enable natural interoperability regardless of platform, operating system, programming

language, even network hardware and software. Remote calls on CORBA objects are synchronous calls.

Notification service makes asynchronous behavior possible. Hence, to have asynchronous communication,

it is important to have CORBA Notification service in the overall architecture.

J2EE-XML:

• JMS was intended to enable legacy applications to integrate with Java based applications. One benefit of

JMS is that it provides asynchronous communication with JMS applications. All versions of JMS

specification have supported asynchronous consumption of JMS messages.

In conclusion, both JMS supports asynchronous communication and loose coupling while CORBA services such as

Notification service supports asynchronous communication.

6.11 Risk

Risk implies the potential loss associated with the usage of a particular technology.

 CORBA MODEL:

• CORBA model is definitely a feasible model and can be adopted. Use of Notification Service can help

achieve asynchronous communication. However, to the CTMS/CTIS project, use of Notification service

poses a potential risk. An evaluation of Visinotify and Prismtech proved that not all commercial

implementations of Notification service conform to OMG standards. Using CORBA Notification service

can therefore pose risk of increased vendor dependability. CORBA also has restrictions on explicit thread

management.

J2EE-XML:

• JMS model fits all architecture requirements. Asynchronous communication is inherent to the JMS

technology and is well supported by all JMS providers. An evaluation of SonicMQ and TIBCO proved

that risks involved in using these products are far less. Although these implementations provide a lot of

vendor proprietary features, they closely conform to JMS specifications. Having chosen one particular

product, one may successfully use another product to accomplish the same JMS related tasks.

In conclusion, CORBA poses a potential risk.

CTMS/CTIS INTEGRATION Version: 1.2

Software Architecture Assessment Document Date: 12 Nov 2003

Confidential ©EnRoute Traffic Systems, Inc. Page 28 of 37

6.12 Ease of Implementation

CORBA:

• Although a mature technology, CORBA has been known for the complexities involved in its

implementation. Furthermore, CORBA ITS standards have not been completed, including the CORBA

ITS object model. Until the object model is complete, deployers must develop their own object model.

This complicates implementation, and increases cost.

J2EE-XML:

• JMS technology is compatible with any Java based client. It is easier for an experienced Java programmer

to familiarize himself with JMS API’s than CORBA technology.

In conclusion, it is easier to use JMS than CORBA.

6.13 Availability of Programmers

CORBA:

• Successful CORBA implementation often requires senior programmers. Specialized programmers may be

hard to find. Furthermore, additional training of required CORBA services may also have to be

considered.

J2EE-XML:

• Since several companies are adopting JMS technology, programmers are easy to find. Furthemore, since

JMS is a technology from sun and uses features similar to that of Java Language specification, a Java

programmer will find it easier to learn JMS.

In conclusion, it is relatively easier to find Java/JMS programmers than the specialized CORBA programmers.

6.14 Conjecture about Future

CORBA:

• Since CORBA is used in a variety of applications, its future depends on what happens in the wider IT

industry. CORBA’s complexity may ultimately be its downfall. There are several proprietary products on

the market that can do what CORBA does but without CORBA’s complexity. However, even if the

broader computer industry opts for these simpler proprietary technologies, companies supporting CORBA

with software and technical assistance will probably continue to support it in the short term because of the

number of existing CORBA applications in a variety of industries.

J2EE-XML:

• The worldwide middleware messaging market at $415 million in 2002 is expected to reach $822 million

by 2006 The market will increase over the 2003-2008 forecast period as new systems are designed to

support mission critical transport of integration modules. Mission critical messaging system management

accounted for 63% of the markets in 2002. EAI broker system management accounted for 37%. By 2008,

the percentages shift.

• http://www.wintergreenresearch.com/reports/MOM_Final.htm

In conclusion, JMS has a bright and encouraging future in comparison to CORBA.

CTMS/CTIS INTEGRATION Version: 1.2

Software Architecture Assessment Document Date: 12 Nov 2003

Confidential ©EnRoute Traffic Systems, Inc. Page 29 of 37

7. COMPARISON OF ARCHITECTURES

7.1 Scoring Scheme

Metrics

Scoring Scheme

(0 = low score , 10 = high score)

1. Cost 0 => High Cost, 10=> Low Cost

2. In-House Expertise 0 => No Expertise , 10=> High Levels of Expertise

3. Complexity 0 => High Complexity, 10=> Low Complexity

4. Scalability 0 => Low Scalability, 10=> High Scalability

5. Network Overheads 0 => High Overheads, 10=> Very low Overheads

6. Portability 0 => Not portable, 10=> Highly portable

7. Vendors Required
0 => High dependability on vendors.

10=> Very low dependability on vendors.

8. Vendor Support
0 => Very low support from vendors

10 =>Very high support from vendors

9. Standards (acceptance in ITS and/or IT)

0 => Very low acceptance/ adoption in ITS and/or IT

10 => Very high acceptance / adoption in ITS and/or IT

10. Support of Asynchronous Communication
0 => Poor support of asynchronous communication

10=> Very good support of asynchronous communication

11. Risk 0 => High Risk, 10=> Low Risk

12. Ease of Implementation 0 => Hard, 10=> Very easy

13. Availability of programmers 0 => Low availability, 10=> High Availability

14. Conjecture of future. 0 => No future, 10=> Very bright future

CTMS/CTIS INTEGRATION Version: 1.2

Software Architecture Assessment Document Date: 12 Nov 2003

Confidential ©EnRoute Traffic Systems, Inc. Page 30 of 37

7.2 Scoring Sheet

Metrics

Model 1:

CORBA - Visinotify

Model 2:

CORBA - JMS

Model 3:

JMS - MDBs

Model 4:

J2EE– XML

1. Cost 3 4 6 6

2. In-House

 Expertise
2 3 7 7

3. Complexity 3 3 5 6

4. Scalability 5 5 5 6

5. Network

Overheads
3 3 6 6

6. Portability 3 3 6 8

7. Vendors Required 7 7 8 8

8. Vendor Support 7 6 7 8

9. Standards

(acceptance in ITS

and/or IT)

5 5 4 6

10. Support of

Asynchronous

 Communication

5 5 6 6

11. Risk 3 3 5 6

12. Ease of

Implementation
3 3 5 6

13. Availability of

programmers
3 3 7 7

14. Conjecture of

future.
4 4 5 6

T O T A L S C O R E 56 57 82 92

CTMS/CTIS INTEGRATION Version: 1.2

Software Architecture Assessment Document Date: 12 Nov 2003

Confidential ©EnRoute Traffic Systems, Inc. Page 31 of 37

8. SUMMARY:

The Architecture Assessment conducted by the team followed four distinct phases. Each phase has been briefly

described below. The team arrived at the core architecture choice after the fourth phase of assessment.

1. Discovery Phase: The team started with a brainstorming session to conduct a high level review of the business

requirements. There were six elements identified (described in Section 3) that would make the architecture

framework. Technology components were identified that would implement the six core requirements. The

brainstorming session concluded with possible alternative architectures and a list of technologies. These

technologies have been listed in section 2 (Introduction to Architectural Elements)

2. Architecture Review Phase: A series of group meetings and architecture review meetings were planned to

discuss and communicate the technologies to the group. Each week, participants presented their views on specific

technologies based on prototype development, case studies and research. The architecture assessment document

uses the research conducted by the participants. Four prototype models were designed in this particular phase.

3. High Level Code Review Phase: Prototype models were constructed in this phase and were review by the team

to gain a better understanding of the technologies involved. Furthermore, issues were identified, discussed and

documented. All findings have been documented in the Architecture Assessment document.

4. Final Assessment Phase: In this final phase, all prototypes developed were compared along well defined

metrics. The final decision was made based on comparisons and scores given to each model.

CTMS/CTIS INTEGRATION Version: 1.2

Software Architecture Assessment Document Date: 12 Nov 2003

Confidential ©EnRoute Traffic Systems, Inc. Page 32 of 37

9. CONCLUSION/ RECOMMENDATION:

Assumptions:

Before starting prototype development, the technical requirements in terms of synchronous, asynchronous

communication, persistence and type of events were gathered. The prototypes take the technical requirements into

consideration. The operational pieces aimed at evaluating the technologies and locating their position in the

architecture. A few assumptions were made while constructing the prototypes.

1. It was assumed that durable subscription would be required in the final application. Durable subscription

implies guaranteed delivery of messages from producer of the messages to the consumer.

2. It was assumed that the communication with devices would be asynchronous.

Conclusions:

• JMS and Notification Service provide the same basic functionalities such as, synchronous

communication, asynchronous communication, structured events (JMS messages), and filters. Upon

comparison, the difference can be observed in terms of programming complexity. It was observed that

it is much easier (fewer steps and classes) to implement Publish Subscribe model in JMS than it is to

implement in the Notification model. In this regard (ease of programming), JMS is a preferred choice.

• From a product features standpoint, Visinotify does not conform to all OMG standards (E.g. QoS

properties), PrismTech’s product does conform to most standards. If Notification service is used,

PrismTech is a preferred choice. For JMS Model, SonicMQ and TIBCO were evaluated, while

functionalities of JMS brokers remain the similar, Sonic MQ has proved to be faster than TIBCO.

• From a cost standpoint, we concluded that it may be less expensive to use visinotify in a Notification

Model. PrismTech / SonicMQ is expensive than Visinotify and would add to the cost.

• From a portability standpoint, CORBA model is more portable as long as proprietary API’s are not

used. Within the context of Notification Service, CORBA based application can be ported from

Notification service of one manufacturer to another if proprietary API’s are not used. In a JMS model,

portability is still at question. Since only two JMS broker has been evaluated, portability could not be

fully tested. However, it was observed that the JMS brokers comply with Sun’s JMS specifications.

• Keeping the future of technologies in mind, market share of MOM’s is projected to increase to $822

million according to a report from Wintergreen Research.

To conclude with, J2EE-XML is an easier, cost effective solution and will be preferred over CORBA. A score

comparison of the four architectures reveals that the J2EE-XML model received the highest scores and hence

will be chosen as the core architecture framework.

CTMS/CTIS INTEGRATION Version: 1.2

Software Architecture Assessment Document Date: 12 Nov 2003

Confidential ©EnRoute Traffic Systems, Inc. Page 33 of 37

10. Appendices:

10.1 Appendix A:

1. QoS Document highlighting differences between Visinotify and PrismTech.

Document is archived in VSS under $/CTMS/CTIS_ATIS/Architecture Assessment//QOS.doc

2. Notification service

Figure 6: Notification Service

CTMS/CTIS INTEGRATION Version: 1.2

Software Architecture Assessment Document Date: 12 Nov 2003

Confidential ©EnRoute Traffic Systems, Inc. Page 34 of 37

10.2 Appendix B:

1. JMS introductory presentation

2. SonicMQ presentation from Sonic Software

Both are archived under;

VSS $/CTMS/CTIS_ATIS/Tech Docs/JMS/JMS Introduction

10.3 Appendix C:

1. EJB Designs

Figure 7: EJB Designs

CTMS/CTIS INTEGRATION Version: 1.2

Software Architecture Assessment Document Date: 12 Nov 2003

Confidential ©EnRoute Traffic Systems, Inc. Page 35 of 37

2. Message Packet

Figure 8: Message Packet

10.4 Addendum:

10.4.1 Rationale for selection of JBoss

The following documents why JBoss was chosen as the preferred vendor for the CTMS project.

Speed of Development

There are numerous ways to measure speed of development. For instance, there is “compilation and build times” as well as

the time it takes to implement a technical area like security or clustering. JBoss development time is 6x faster than other

application servers requiring stub generation. JBoss is built from the ground-up on Java and its use of Java technology is

years ahead of any other vendor product, especially products built on top of older technologies like CORBA (products

requiring stub generation include servers from BEA, IBM, and Borland).

Example A: Implementing Security

JBoss’ large developer following and market share has created a wealth of examples in all areas of development and a solid

Open Source product. The product and its examples are standard, not proprietary and they are easy to use. For example, the

security examples used to incorporate security in CTMS included work from Sun Microsystems documentation, JBoss

documentation, and JBoss sample code from both its product and its web forum – contributed by fellow JBoss developers.

It took only 1 person 1 hour to build a rudimentary, yet workable security example in JBoss.

On the other hand, for Borland, the security still does not work, even after 2 people tried for several days and several cases

were opened with technical support. There are no other examples (e.g., contributions from Borland users) to use because of

the lack of adoption of the Borland product. Several outstanding security cases submitted by the Enroute team remain to be

solved by Borland even after more than a week.

Example: Implementing Clustering

With JBoss installed on multiple machines, it took only a morning to cluster the servers and another hour to have a test

application load balancing requests across the cluster.

CTMS/CTIS INTEGRATION Version: 1.2

Software Architecture Assessment Document Date: 12 Nov 2003

Confidential ©EnRoute Traffic Systems, Inc. Page 36 of 37

Borland requires a separate clustering license, which has yet to be functional in the project environment.

Performance

Products such as WebSphere and Borland that are built on top of existing, outdated CORBA technologies are slower and

less integrated. While CORBA is already a large burden, adding a J2EE layer onto the CORBA servers adds additional

overhead. Borland is actually changing features in its code-base to be like JBoss because of the performance gains inherent

in “dynamic proxying” versus using generated IIOP stubs to make EJB calls.

JBoss’ Licensing: Hassel-free and Cost-Free

JBoss is Open Source and free for all uses (Open Source does not equate to free, so this is important). Its license requires

that it remain free, so there is never a fear of lock-in in the future or extra licensing surprises.

Market Position

Market share is a good indicator of a product’s viability and future shelf life. JBoss is not far behind BEA and IBM, whose

WebLogic and WebSphere servers hold the #1 and #2 positions in the market. 3-4 years ago, the market was saturated with

numerous J2EE vendors including BEA, Bluestone/HP, Borland, IBM, Enhydra, JBoss, Jonas, JRun, Merant, SilverStream,

and Unify. Now, there are 3 contenders: BEA, IBM, and JBoss. Together these 3 vendors dominate ~99% of the market

leaving 1% to split between the survivors. To go with any vendor besides the top 3 is to be siding with a losing cause. This

results include lower levels of support (already seen in Borland support for 6.0), longer release cycles between products

versions, less support for latest standards, and worst of all a high probability of the product being discontinued altogether.

JBoss’ Viablility in the Long-term

JBoss is not a new company. It has been in business for several years based on revenues from its consulting, training, and

production support. As of February 2004, JBoss is backed by a first-round of $10 million dollars in venture capital .The

newly infused $10 million in capital, and a large J2EE market share JBoss will be around in the long term.

Also, JBoss is bundled in product from major vendors across both the hardware and software industries. HP has an “Open

Source” architecture that includes Jboss and HP supports the software in this configuration

Support for JBoss

JBoss is a real product. It is supported via the company, JBoss, LLC. JBoss, LLC offers various professional support

contracts and numerous training courses given around the globe. Also, there are numerous technical books written about the

JBoss server including a server administration book and a book on JMX (the technology from Sun Microsystem’s that is the

unifying backbone of JBoss). Finally, the wealth of information on the Web about JBoss is critical to its successThe

following tables describe the cost structure of J2EE application servers from BEA, IBM, Borland, and JBoss.

Pricing Models

Vendor/Product Cost/CPU Number

of CPUs

Total Cost

IBM WebSphere $35,000 10 $350,000

BEA WebLogic -

clustered

$14,000 (CSC discount

price)

10 $140,000

Borland Enterprise $12,000 10 $12,000

JBoss 0 10 $0

CTMS/CTIS INTEGRATION Version: 1.2

Software Architecture Assessment Document Date: 12 Nov 2003

Confidential ©EnRoute Traffic Systems, Inc. Page 37 of 37

Development Licenses

Vendor/Product Cost Total Cost

IBM

BEA $850/developer $4250

Borland $0 $0

JBoss $0 $0

Support and Maintenance Models

Vendor/Product Cost Total Cost

IBM

BEA

Borland

JBoss $8,000 $8,000

10.4.2 Rationale for Selection of JBoss MQ

Although the JMS brokers Sonic MQ and TIBCO were used for evaluation, the final architecture will use JBoss MQ.

Reasons for this choice is documented below

JBoss MQ is deployed as part of the "all" configuration bundled with the JBoss distribution. Thus JBoss MQ comes at no

additional cost. In this regard, SonicMQ and TIBCO are priced above $ 10,000.

Features

JBoss MQ offers the following really attractive features;

1. Automatic server fail-over

2. Remote client connectivity to JBossMQ

3. Lossless recovery after fail-over for messages targeted to durable subscribers

4. Client notification via connection ExceptionListener on fail-over

5. Easily configurable load-balancing setup.

