\qquad
Date \qquad

This is a "dry" activity, one in which you don't collect your own data but instead, use the data of others. In this case you will graph and interpret data from a study in which the growth of a bacteria population was investigated.

Problem

What is the shape of a bacterial population growth curve? Why does it have that shape?

Materials \quad Graph paper pencil

Procedure

a. Study the table to the right closely. These data were obtained by a scientist as follows:
A suitable nutrient medium was inoculated with a small number of a certain species of bacterium. The resulting culture was incubated at the optimum temperature for this organism. Every hour the number of bacteria in a drop of the culture was counted. A sampling method was used, so the scientist did not actually count every bacterium.
b. Graph the data in the table. Put the time in hours on the horizontal axis and the population number on the vertical axis.
c. Examine your graph. Mark the following regions on it:

- region of slow but progressive population growth
- region of rapid population growth
- region of population decline
- region of population stability

Table: Growth of a Bacterium Population

Discussion

1. Explain the region of slow growth.
2. Why does the growth rate eventually increase a great deal?
3. What factors may be responsible for the peaking and subsequent decline in numbers?
4. This population could eventually crash to zero. Why?

Time (h)	Population
0	150
1	190
2	380
3	700
4	1450
5	3000
6	5600
7	7000
8	7600
9	7650
10	7400
11	6600
12	6100
13	5500
14	5300
15	5400
16	5600
17	5500
18	5300
19	5400
20	5500

