

A5300/A562 Junction Major Scheme Business
 Case

Economic Appraisal Report
August 2014
Knowsley Borough Council

A5300/A562 Junction Major Scheme Business Case

Economic Appraisal Report

August 2014

Knowsley Borough Council

Issue and revision record

Revision	Date	Originator	Checker	Approver	Description	Standard
A	$17 / 08 / 14$	Manila Wisten	lain Conway / Sarah Pierce	Manila Wisten	Draft	
B	$26 / 08 / 14$	Manila Wisten	lan Conway / Sarah Pierce	Manila Wisten	Draft (with cost updates)	

This document is issued for the party which commissioned it and for specific purposes connected with the above-captioned project only. It should not be relied upon by any other party or used for any other purpose.

We accept no responsibility for the consequences of this document being relied upon by any other party, or being used for any other purpose, or containing any error or omission which is due to an error or omission in data supplied to us by other parties.

This document contains confidential information and proprietary intellectual property. It should not be shown to other parties without consent from us and from the party which commissioned it.

Contents

Chapter Title Page
Executive Summary i
1 Introduction 1
1 Modelling Methodology and Assumptions 1
1.1 Introduction 1
1.2 Scope of the Appraisal 2
1.3 Assumptions 2
1.3.1 Appraisal period 3
1.3.2 Modelled years 3
1.3.3 Annualisation 3
1.3.4 Scheme Costs for Appraisal 3
2 Economic appraisal results 4
2.1 Economic Appraisal Results 5
3 Conclusions and Value for Money Statement 9
4 Appendix: Economic Appraisal Listings 10
4.1 Wider Economic Impacts - WITA/OWeL Run Output 10
4.2 Main Economic Appraisal - TUBA Output 12
4.3 Journey Time Reliability Output 19

Executive Summary

Mott MacDonald has undertaken analysis of transport economic benefits for transport improvements at the A5300/A562 strategic junction as part of a Major Scheme Business Case. The economic appraisal has mainly used the Department for Transport TUBA (Transport Users Benefit Appraisal) software which carries out economic appraisal in accordance with published DfT guidance. The appraisal is based on data from the Liverpool City Region Transport Model (LCRTM) and travel cost changes implied by the proposed improvements.

The economic analysis shows that the proposed transport intervention reduces delays at the A5300/A562 junction and reduces journey times for traffic passing through this junction which consists mainly of long distance traffic movements. This delivers Present Value of Benefits of $£ 36$ m over a 60 year appraisal period. Considered together with the scheme cost of $£ 5.3 \mathrm{~m}$, the transport improvements yield a Benefit-to-Cost ratio (BCR) of 6.9.

Monetised Costs and Benefits (in 2010 prices and discounted to 2010)

Present Value of Benefits (PVB)	$£ 36 \mathrm{~m}$
Present Value of Costs (PVC)	$£ 5.3 \mathrm{~m}$
OVERALL IMPACTS	$£ 31 \mathrm{~m}$
Net Present Value (NPV)	6.9
Benefit to Cost Ratio (BCR)	

A BCR of 6.9 is considered very high value for money according to DfT criteria. This BCR includes quantitative benefits that cover main economic appraisal benefits from TUBA, wider economic benefits (agglomeration and welfare) from WITA/OWeL and reliability benefits.

1 Modelling Methodology and Assumptions

1.1 Introduction

An economic appraisal and assessment of Value for Money (VfM) have been carried out for transport improvements for the A5300/A562 junction that are part of a Major Scheme Business Case for Knowsley Borough Council. A detailed description of the scheme is given in the Strategic Case. The existing junction and three capacity improvement options were assessed using LINSIG and the preferred option only forms the basis for this economic appraisal and the VfM assessment. This scheme is shown below.

The preferred alignment is Option 2 as set out in the Options Appraisal Report and is consistent with the scheme originally proposed for major scheme funding at this junction. The scheme proposes to extend the length of the left-hand free flowing slip lane from the A5300 to the A562 Eastbound, compared with the proposal contained in the Local Pinch Point (LPP) scheme, requiring the widening of the bridge over Ditton Brook, together with the addition of a continuous flow left slip lane from the A562 Eastbound to the A5300 Northbound and the extension of the A562 Westbound off slip nearside flare.

Figure 1.1: A5300/A562 Junction Capacity Improvement Scheme

This report gives the economic appraisal and Value for Money (VfM) assessment carried out for the scheme and takes account of wider impacts of the proposed scheme because of its strategic nature and location.

1.2 Scope of the Appraisal

The economic appraisal has been carried out in line with Department for Transport Guidance with a number of relevant simplifying assumptions adopted specifically to produce robust VfM assessment for the A5300/A562 scheme and that are consistent with local evidence. Much use is made of modelling evidence and outputs from the Liverpool City Region Transport Model (LCRTM) which has been used for several DfT-funded projects within Merseyside.

The appraisal has also employed OWeL (Operating WITA Extended Locally) - a toolkit that is compatible with the LCRTM and enables wider economic benefits and impacts of multi-modal transport interventions to be quantified. It produces Merseyside wider economic benefits that are largely calculated by the Department for Transport's WITA software (which is based on WebTAG A2.1).

The economic benefits calculated for the scheme include:

- Transport economic benefits (WebTAG A1). The transport economic appraisal has been undertaken using the TUBA (Transport Users Benefit Appraisal) program which carries out economic appraisal in accordance with published DfT guidance. This is based on trip and cost matrices from the Liverpool City Region Model and travel cost changes implied by the proposed schemes.
- Wider economic benefits (using WITA/OWeL). This follows WebTAG methodology (WebTAG Unit A2.1) and only captures impacts that are not already included in the conventional user benefit calculations from TUBA. These include agglomeration; increased/decreased output in imperfectly competitive markets; and labour market impacts. However, the wider economic benefits calculated here do not include new jobs or changes in GVA which may be part of separate analysis.
- Journey reliability benefits (WebTAG A1). The estimate of journey time reliability benefits is made to satisfy the 'Reliable journeys' sub-objectives within the 'Economy' section of scheme appraisal. The calculations assume that the model area is dominated by urban regions and therefore uses the urban journey time reliability calculations that are set out in the TAG unit.

Reliability benefits and wider economic benefits are included in the calculation of a modified BCR as suggested by DfT guidance ${ }^{1}$. Other components of the benefits of the schemes are described qualitatively in the Appraisal Summary Table.

1.3 Assumptions

In order to arrive at the economic benefits summarised in Table 2.1 below a number of modelling and appraisal assumptions have been adopted. The standard WebTAG appraisal forms the basis of the approach with specific assumptions and simplifications made to allow best use of available local modelling data and perceived nature of the schemes and longevity of their impacts.

[^0]
1.3.1 Appraisal period

The A5300/A562 scheme has impact on both local and strategic traffic movements. On this basis, and the fact that the total scheme costs exceed $£ 5 m$ (if Pinch Point funds are included), the WebTAG recommended appraisal period of 60 years has been adopted.

1.3.2 Modelled years

The scheme is due for implementation during the period 2015-2017. In order to be proportionate in the modelling effort for the appraisal, the economic assessment has been based on traffic modelling of 2014 and 2024 where data is readily available for the Liverpool City Region Model. These results are then interpolated and extrapolated accordingly (in the modelling and appraisal tools) to obtain economic benefits for all other years, which are then discounted to 2010.

1.3.3 Annualisation

Annualisation factors convert benefits calculated for each day into totals for the full year. To achieve this, annualisation factors developed for the Liverpool City Region Model have been adopted. These factors have been used and accepted by the DfT on funding application projects such as LSTF, Local Pinch Point applications, and Better Bus Fund. The annualisation factors are robust and suitable for the current appraisals.

1.3.4 Scheme Costs for Appraisal

The appraisal of the improvements has excluded funding secured through pinch point bid. The cost calculations are given in Table1.1 below. In line with DfT cost guidance an Optimism Bias of 15% has been applied in the appraisal.

Table 1.1: Scheme Costs for Appraisal

	All Costs in $(£ 000 \mathrm{~s})$
A5300/A562 junction improvements (2014 prices)	5,354
Level of Optimism Bias	15%
Total A5300/A562 Scheme Costs including Optimism Bias (2014 prices)	6,157
Total Scheme Costs including optimism bias and discounted to 2010 (2010 prices)	5,313

2 Economic appraisal results

The economic appraisal has been carried out in line with Department for Transport Guidance with a number of relevant simplifying assumptions adopted in order to produce a robust VfM assessment and maximise use of available modelling evidence. As indicated above, the DfT's TUBA software has been used to calculate the main economic benefits. Wider Economic benefits have been calculated using the Department's WITA software and Merseyside's OWeL dataset. Both analyses use transport modelling results from the Liverpool City Region Model that reflect delay and traffic reassignment impacts of the A5300/A562 schemes.

The table below presents the initial BCR calculated from the main economic benefits of the A5300/A562 scheme. In line with the appraisal guidance, a modified BCR has been calculated by including quantifiable wider economic benefits and journey reliability benefits that arise from the transport intervention. Table 2.1 below summarises the BCR calculations.

Table 2.1: Appraisal summary (in £000s, 2010 prices if not stated)

		Initial BCR
Scheme Costs in 2014 prices	5,354	Modified BCR
Scheme Costs (including optimism bias of 15\%) in 2014 prices	6,157	5,354
		6,157
(All entries below are present values discounted to 2010, in 2010 prices)		
Scheme Costs including optimism bias of 15\%)	5,313	5.313
Main Transport Economic Benefits	26,083	$\mathbf{2 6 , 0 8 3}$
Wider Economic Benefits (Agglomeration and Welfare Benefits)		8,371
Reliability Benefits		$\mathbf{2 , 1 3 2}$
	$\mathbf{5 , 3 1 3}$	$\mathbf{5 , 3 1 3}$
Present Value of Costs (PVC)	$\mathbf{2 6 , 0 8 3}$	$\mathbf{3 6 , 5 8 6}$
Present Value of Benefits (PVB)	$\mathbf{4 . 9}$	$\mathbf{6 . 9}$
Benefit to Cost Ratio (BCR)		

Table 2.1 shows that the A5300/A562 scheme is forecast to deliver a present value of main transport economic benefits (PVB) of $£ \mathbf{2 6 m}$ over standard appraisal period of 60 years. When the PVB is taken together with the present value of scheme costs (PVC) of $£ 5 \mathrm{~m}$ the initial BCR is calculated as 4.9. According to Department for Transport Guidance, the BCR of 4.9 represents Very High Value for Money.

However, the A5300/A562 has large impacts on strategic movements. The changes in travel cost at this junction will produce wider economic benefits, of which agglomeration and welfare benefits have been calculated. Journey time reliability benefits have also been calculated and included in the calculation of the modified BCR:

- Journey time reliability benefits - this accounts for an additional $£ 2.1 \mathrm{~m}$ which is equivalent to 8% of the main TUBA-based economic benefits.
- Wider economic benefits (which are predominantly agglomeration benefits) account for £8.4m.This uses OWeL/WITA economic dataset in the calculations.

Therefore, the modified BCR is more indicative of the quantifiable economic benefits of A5300/A562 scheme. This is calculated as 6.9 and represents Very High Value for Money.

2.1 Economic Appraisal Results

The economic results are summarised in the following tables that are given in the pages that follow:

- Transport Economic Efficiency Table impacts (TEE)

The transport modelling has shown that improvements to the A5300/A562 junction would produce significant overall delay and journey time reductions for traffic. The TEE table reflects this and shows that the transport intervention produce overall Present Value of Benefits (PVB) of $£ 26 \mathrm{~m}$ (2010 prices, discounted to 2010) almost all of which are time benefits.

The strategic location of the A5300/A562 junction provides very few rerouting opportunities for most movements. Therefore there are small changes in distance travelled resulting in low benefits associated with vehicle operation costs. The TEE table in Table 2.2 confirms this.

- Public Accounts impacts (PA)

The impact on public accounts for the A5300/A562 scheme costs as set out in Table 1.1 is a cost to public accounts of $£ 5.313 \mathrm{~m}$. As a result of reductions in travel costs for drivers as a result of the schemes, there is also a small increase of $£ 0.2 \mathrm{~m}$ in Indirect Tax revenue to central government.

This is given in Table 2.3.

- Analysis of Monetised Costs and Benefits (AMCB)

The AMCB details are given in Table 2.4 and show an overall cost of the scheme as $£ 5 \mathrm{~m}$ against an overall present value of benefits of $£ 26 \mathrm{~m}$ having allowed for impacts of indirect taxation on the economy and greenhouse gases.

This gives an initial BCR of 4.9 before wider impacts and journey time reliability are included.

- Wider Impacts benefits table

The wider impacts of the scheme (i.e. agglomeration and welfare benefits) account for $£ 8.4 \mathrm{~m}$ of additional benefits. This does not, of course, include GVA impacts of the scheme which are subject of a separate analysis and report.

Wider economic benefits are given in Table 2.5.

- Journey reliability benefits table

Journey time reliability benefits arise from more predictable journey times from decongestion impacts of the scheme. Reliability benefits have been calculated as $£ 2.1 \mathrm{~m}$.

Reliability benefits are shown in Table 2.6.

Once wider economic impacts and reliability benefits are included to produce the full economic impacts of the A5300/A562 schemes the BCR is calculated as 6.9.

- Appraisal Summary Table (AST)

Appendix H to the Outline Business Case presents the AST providing details of the impacts of the scheme. Both qualitative and quantitative benefits are recorded as required by DfT guidance.

Table 2.2: Economic Efficiency of the Transport System (TEE) Table
Economy: Economic Efficiency of the Transport System (TEE) (£000s)

Consumer - Commuting user benefits	All Modes	Road
Travel Time	7,005	7,005
Vehicle operating costs	944	944
User charges	0	0
During Construction \& Maintenance	0	0
NET CONSUMER - COMMUTING BENEFITS	7,950	7,950

Consumer - Other user benefits	All Modes		Road
Travel Time	3,574	3,574	
Vehicle operating costs	$-1,166$	$-1,166$	
User charges	0	0	
During Construction \& Maintenance	0	0	
NET CONSUMER - OTHER BENEFITS	2,407		
Business	All Modes	Road Personal	Road Freight
Travel Time	14,728	10,303	4,424
Vehicle operating costs	1,079	118	962
User charges	0	0	0
During Construction \& Maintenance	0	0	0
Subtotal	15,807	10,421	0
			5,386
Private Sector Provider Impacts			
Revenue	0	0	0
Operating costs	0	0	0
Investment costs	0	0	0
Grant/subsidy	0	0	0
Subtotal	0	0	

Other business Impacts		
Developer contributions	0	0
NET BUSINESS IMPACT	15,807	

TOTAL	
Present Value of Transport Economic	
Efficiency Benefits (TEE)	26,164

Note: Benefits appear as positive numbers, while costs appear as negative numbers. All entries are present values discounted to 2010, in 2010 prices

Table 2.3: Public Accounts (PA) Table

Public Accounts (£000s)		
Local Government Funding	ALL MODES	Road
Revenue	0	0
Operating Costs	0	0
Investment Costs	0	0
Developer Contributions	0	0
Grant/Subsidy Payments	0	0
NET IMPACT	0	0
Central Government Funding: Transport	ALL MODES	Road
Revenue	0	0
Operating costs	0,313	0
Investment costs	0	5,313
Developer Contributions	0,313	0
Grant/Subsidy Payments		0
NET IMPACT	188	5,313
Central Government Funding: Non-Transport	5,313	188
Indirect Tax Revenues	188	5,313
TOTALS		188
Broad Transport Budget		
Wider Public Finances		0

Note: Costs appear as positive numbers, while revenues and developer contributions appear as negative numbers. All entries are present values discounted to 2010, in 2010 prices

Table 2.4: Analysis of Monetised Costs and Benefits (AMCB) Table

Analysis of Monetised Costs and Benefits (£000s)	
Greenhouse Gases	107
Economic Efficiency: Consumer Users (Commuting)	7,950
Economic Efficiency: Consumer Users (Other)	2,407
Economic Efficiency: Business Users and Providers	15,807
Wider Public Finances (Indirect Taxation Revenues)	-188
Present Value of Benefits (PVB)	26,083
Broad Transport Budget	5,313
Present Value of Costs (PVC)	5,313
OVERALL IMPACTS	20,770
Net Present Value (NPV)	4.909
Benefit to Cost Ratio (BCR)	

Note: This table includes costs and benefits which are regularly or occasionally presented in monetised form in transport appraisals, together with some where monetisation is in prospect. There may also be other significant costs and benefits, some of which cannot be presented in monetised form. Where this is the case, the analysis presented above does NOT provide a good measure of value for money and should not be used as the sole basis for decisions.

Table 2.5: Wider Economic Benefits
SUMMARY OF WIDER IMPACTS
All entries are in thousands of pounds discounted to 2010 in 2010 Prices

| | Impacts for Each Modelled Year | | |
| :--- | ---: | ---: | ---: | ---: |
| Appraisal Period:2014 to 2074 | Year 2014 | Year 2024 | Full Appraisal
 Period |
| Agglomeration | | | |
| Agglomeration - manufacturing | 16 | 12 | 590 |
| Agglomeration - construction | 11 | 8 | 392 |
| Agglomeration - consumer services | 22 | 29 | 1,306 |
| Agglomeration - producer services | 20 | 90 | 3,870 |
| Agglomeration - Total | 69 | 139 | 6,158 |
| Labour supply impact | 19 | 18 | 633 |
| Increased output in imperfectly competitive market | | | 1,581 |
| The move to more/less productive jobs | 0 | 0 | 0 |
| Total | 88 | 156 | 8,371 |

Table 2.6: Reliability Benefits

Reliability Benefits	$£ 000 \mathrm{~s}$
Journey Time Variability Benefits 2014	66
Journey Time Variability Benefits 2024	40
Journey Time Variability Benefits $(60$ year period)	2,132
All entries are present values discounted to 2010, in 2010 prices	

3 Conclusions and Value for Money Statement

Economic benefits for the A5300/A562 improvement scheme have been calculated based on scheme preferred options as set out in the Strategic Case. The analysis provides an indication of likely economic benefits and BCRs using TUBA and other tools that support DfT methodologies. The A5300/A562 scheme reduces congestion at this junction and improves journey times for mostly strategic movements through the area. The journey time improvements forecast by the Liverpool City Region Model are significant and this is reflected in the economic benefits reported.

The calculation of the initial and modified BCR values is given in the table below. The monetised economic benefits (based on transport modelling outcomes) show that the scheme produces an overall BCR of 4.9 from Present Value of Benefits of $£ 26 \mathrm{~m}$ (2010 prices, discounted to 2010) and a cost to public accounts of £5.35m (2010 prices, discounted to 2010).

Table 3.1: Appraisal summary (in £000s, 2010 prices if not stated)

	Initial BCR	Modified BCR
Scheme Costs in 2014 prices	5,354	5,354
Scheme Costs (including optimism bias of 15\%) in 2014 prices	6,157	6,157
(All entries below are present values discounted to 2010, in 2010 prices)	5,313	5.313
Scheme Costs including optimism bias of 15\%)	$\mathbf{2 6 , 0 8 3}$	$\mathbf{2 6 , 0 8 3}$
Main Transport Economic Benefits		$\mathbf{8 , 3 7 1}$
Wider Economic Benefits (Agglomeration and Welfare Benefits)	$\mathbf{2 , 1 3 2}$	
Reliability Benefits	$\mathbf{5 , 3 1 3}$	$\mathbf{5 , 3 1 3}$
Present Value of Costs (PVC)	$\mathbf{2 6 , 0 8 3}$	$\mathbf{3 6 , 5 8 6}$
Present Value of Benefits (PVB)	$\mathbf{4 . 9}$	$\mathbf{6 . 9}$
Benefit to Cost Ratio (BCR)		

According to DfT guidance and criteria ${ }^{2}$, both the initial BCR of 4.9 and the modified BCR of 6.9 represent very high Value for Money. The initial BCR is based on TUBA outputs alone (i.e. considers the main transport economic benefits only).

This assessment has been based on

- Journey time benefits
- Wider economic benefits and
- Reliability Benefits

It can be concluded, therefore, that the quantifiable elements of the benefits for A5300/A562 scheme produce a strong Value for Money case. Qualitative benefits are set out in the Appraisal Summary Table.

[^1]
4 Appendix: Economic Appraisal Listings

4.1 Wider Economic Impacts - WITA/OWeL Run Output

```
Wider Impact in Transport Appraisal WITA V1.1i-4 Be
Program run on Saturday, 16 August 2014 at 11:02:00
ERRORS AND WARNINGS
    503 Warnings found
```

INPUT SUMMARY

Run name	A5300
DM scheme	Do Minimum
DS scheme	Do Something

Economic parameter file
C: \329623\Economics \WITA_A5300\OWeL_WITA_Economics_File.txt
Scheme parameter file
C: \329623\Economics $\backslash 09$ BFS007_A5300_v2_ExclExt \backslash A5300Scheme_1.7.txt
Employment file C:\329623\Economics $\backslash W I T A _A 5300 \backslash O W e L _E m p l o y m e n t . c s v ~$
Transport-WITA zone correspondence file C: $\backslash 329623 \backslash$ Economics $\backslash W I T A _A 5300 \backslash L C R T M Z O n e _t o _W I T A . C S V ~$
District-WITA zone correspondence file C:\329623\Economics C WITA_A5300\OWeL_to_WITA_Zones.csv
Commuting PA file
District Economics file
Global Data file
C: \329623\Economics \WITA_A5300\OWeL_PACommuteMatrix.csv

PA Zone Level
Industry Segmentation C: \329623\Economics \WITA-A5300\OWeL-GlobalData.txt LAD Zone

First Appraisal Year
Last Appraisal Year
2014
2074
Modelled years
20142024

TRIP MATRIX TOTALS

Submode	Year	Time period	DO MIN	DO SOM
Car	2014	AM peak	147867	147867
Car	2014	PM peak	158203	158203
Car	2014	Inter-peak	0	0
Car	2014	Off-peak	0	0
Car	2014	Weekend	0	0
Car	2014	All	306070	306070
Car	2024	AM peak	147867	147867
Car	2024	PM peak	158203	158203
Car	2024	Inter-peak	0	0
Car	2024	Off-peak	0	0
Car	2024	Weekend	0	0
Car	2024	All	306070	306070
LGV Freight	2014	AM peak	20314	20314
LGV Freight	2014	PM peak	18079	18079
LGV Freight	2014	Inter-peak	0	0
LGV Freight	2014	Off-peak	0	0
LGV Freight	2014	Weekend	0	0
LGV Freight	2014	All	38393	38393
LGV Freight	2024	AM peak	20314	20314
LGV Freight	2024	PM peak	18079	18079
LGV Freight	2024	Inter-peak	0	0
LGV Freight	2024	Off-peak	0	0
LGV Freight	2024	Weekend	0	0
LGV Freight	2024	All	38393	38393
OGV1	2014	AM peak	7849	7849

OGV1	2014	PM peak	5320	5320
OGV1	2014	Inter-peak	0	0
OGV1	2014	Off-peak	0	0
OGV1	2014	Weekend	0	13169
OGV1	2014	All	13169	7849
OGV1	2024	AM peak	7849	5320
OGV1	2024	PM peak	5320	0
OGV1	2024	Inter-peak	0	0
OGV1	2024	Off-peak	0	0
OGV1	2024	Weekend	0	13169
OGV1	2024	All	13169	176030
All	2014	AM peak	176030	181602
All	2014	PM peak	181602	0
All	2014	Inter-peak	0	0
All	2014	Off-peak	0	0
All	2014	Weekend	057632	357632
All	2014	All	176030	176030
All	2024	AM peak	181602	181602
All	2024	PM peak	0	0
All	2024	Inter-peak	0	0
All	2024	Off-peak	0	0
All	2024	Weekend	357632	357632
All	2024	All		0

SUMMARY OF WIDER IMPACTS
All entries are in thousands of pounds discounted to 2010 in 2010 prices
Appraisal Period:2014 to 2074
Impacts for Each Modelled Year
Year 2014 Year 2024 Full Appraisal

Agglomeration - manufacturing	16	590
Agglomeration - construction	12	392
Agglomeration - consumer services	11	1306
Agglomeration - producer services	22	3870
Agglomeration - Total	20	69
Labour supply impact	69	90
Increased output in imperfectly competitive market	19	139
The move to more/less productive jobs	18	633
Total	0	1581

4.2 Main Economic Appraisal - TUBA Output

PRESENT VALUE_COSTS
Scheme investment and operating costs (i.e. excluding grant/subsidy, developer contributions and delays) and differences. E000s.

	cost (E000s,	central)			high)
DM	DS	Increase	DM	DS	Increase
19981	19978	-3	29971	29966	-5
11514	11513	-2	17272	17269	-3
0	0	0	0	0	0
0	0	0	0	-	0
,	,	0	,	0	0
-	0	0	0	0	0
19981	19978	-3	29971	29966	-5
19029	19026	-3	28543	28538	-5
17949	17946	-3	26923	26919	-4
16934	16932	-3	25401	25397	-4
15974	15972	-2	23961	23957	-4
15064	15062	-2	22597	22593	-3
14200	14197	-2	21299	21296	-3
13472	13470	-2	20208	20205	-3
12797	12795	-2	19195	19192	-3
12146	12144	-2	18219	18216	-3
11514	11513	-2	17272	17269	-3
10904	10902	-2	16356	16353	-2
10428	10427	-2	15643	15640	-2
9963	9962	-1	14945	14943	-2
9511	9509	-1	14266	14264	-2
9069	9067	-1	13603	13601	-2
8635	8634	-1	12953	12951	-2
8391	8390	-1	12587	12585	-2
8784	8783	-1	13176	13174	-2
9128	9127	-1	13692	13690	-2
9429	9427	-1	14143	14141	-2
9688	9687	-1	14532	14530	-2
9993	9992	-1	14990	14987	-2
10267	10266	-2	15401	15399	-2
10512	10511	-2	15769	15766	-2
10728	10726	-2	16092	16089	-2
10917	10916	-2	16376	16374	-2
11082	11080	-2	16623	16620	-2
11222	11221	-2	16833	16831	-2
11341	11340	-2	17012	17010	-3
11495	11493	-2	17242	17239	-3
11628	11627	-2	17443	17440	-3
11746	11744	-2	17619	17616	-3
11846	11844	-2	17769	17767	-3
11930	11928	-2	17895	17893	-3
12000	11998	-2	17999	17997	-3
12056	12054	-2	18083	18081	-3
12098	12096	-2	18147	18144	-3
12161	12159	-2	18242	18239	-3
12198	12196	-2	18297	18294	-3
12224	12222	-2	18336	18333	-3
12238	12236	-2	18357	18354	-3
12230	12228	-2	18345	18342	-3
12213	12211	-2	18320	18317	-3
12175	12173	-2	18263	18260	-3
12122	12120	-2	18183	18180	-3
12056	12054	-2	18084	18081	-3
11978	11976	-2	17966	17964	-3
11838	11836	-2	17757	17754	-3
11696	11694	-2	17543	17541	-3
11531	11529	-2	17296	17294	-3
11357	11356	-2	17036	17034	-3
11164	11163	-2	16747	16744	-2
10971	10970	-2	16457	16455	-2
10760	10758	-2	16139	16137	-2
10541	10540	-2	15812	15809	-2
10313	10311	-2	15469	15467	-2
10079	10077	-1	15118	15116	-2
9849	9847	-1	14773	14771	-2
9613	9611	-1	14419	14417	-2
9375	9373	-1	14062	14060	-2
714531	714424	-107	1071796	1071635	-160
,	0	0	0	0	0
0	0	0	0	0	0
714531	714424	-107	1071796	1071635	-160

CO2_EMISSTONS_BY_TIME_PERIOD_UNTRADED

Submode	Year	DM	Ds	Tnerea
AM peak	2014	201639	201663	
AM peak	2024	140597	140578	
pm peak	2014	202106	202017	
pm peak	2024	141035	141012	
Inter-peak	2014	0	0	
Inter-peak	2024	0	0	
off-peak	2014	0	0	
off-peak	2024	0	0	
Weekend	2014	0	0	
weekend	2024	0	0	
${ }^{\text {AM }}$ peak	Total	7620592	7619821	-
${ }^{\text {PM peak }}$	Total	7643534	7642022	-15
Inter-peak	Total	,	0	
${ }_{\text {Off }}$ ¢f-peak	${ }_{\text {Total }}$	0	0	

Submode	Year	DM	DS	Increase
AM peak	2014	201639	201663	24
AM peak	2024	140597	140578	-19
PM peak	2014	202106	202017	-89
m peak	2024	141035	141012	-23
Inter-peak	2014	0	0	0
Inter-peak	2024	0	0	0
off-peak	2014	0	0	0
off-peak	2024	0	0	0
Weekend	2014	0	0	0
Weekend	2024	0	0	0
${ }^{\text {AM }}$ peak	Total	7620592	7619821	-771
${ }^{\text {PM peak }}$	Total	7643534	7642022	-1513
Inter-peak	Total	\bigcirc	0	0
Off-peak	Total	\bigcirc	0	0
Weekend	Total	0	0	

cost (£000s, low)		
DM	DS	Increase
4989	4990	1
2874	2874	0
501	4999	-2
2883	2883	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	17836	-18
178364	17866	-155
178901	0	0
0	0	0
0	0	0

	cost (E000s, central)	
DM	DS	Increase
9979	9980	1
5748	5747	-1
10002	9998	-4
5766	5785	-1
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	35692	-36
356728	357731	-71
357802	0	0
0	0	0
0	0	0

	cost (E000s,	high)
DM	DS	Increase
1	1	0
79	79	0
0	0	0
0	-	0
0	0	0
0	,	0
1	1	0
3		0
5	5	0
8	8	0
12	12	0
17	17	0
26	26	0
33	33	0
45	45	0
60	60	0
79	79	0
101	101	0
116	116	0
131	131	0
146	146	0
161	160	0
175	175	0
164	164	0
156	156	0
147	147	0
135	135	0
121	121	0
106	106	0
89	89	0
72	72	0
53	53	0
33	33	0
33	33	
32	32	0
31 30	31 30	0
$\begin{aligned} & 30 \\ & 29 \end{aligned}$	$\begin{aligned} & 30 \\ & 29 \end{aligned}$	0
28	28	0
27	27	0
25	25	0
24	24	0
23	23	0
23	23	0
23	23	0
23	23	0
23	23	0
23	23	0
23	23	0
23	23	0
23	23	0
23	23	0
23	23	0
23	23	0
22	22	0
22	22	0
22	22	0
22	22	0
21	21	0
21	21	0
20	20	0
20	20	0
20	20	0
19	19	0
19	19	0
18	18	0
18	18	0
2992	2992	0
0	\bigcirc	0
,	0	0
2992	2992	

	cost (E000s,	10w)
DM	DS	Increase
1	1	0
79	79	0
0	0	0
0	0	0
0	0	0
0	1	0
3	3	0
5	5	0
8	8	0
12	12	0
17	17	0
26	26	0
33	33	0
45	45	0
60	60	0
79	79	0
101	101	0
116	116	0
131	131	0
146	146	0
161	160	0
175	175	0
164	164	0
156	156	0
147	147	0
135	135	0
121	121	0
106	106	0
89	89	0
72	72	0
53	53	0
33	33	0
33	33	0
32	32	0
31	31	0
30	30	0
29	29	0
28	28	0
27	27	0
25	25	0
24	24	0
23	23	0
23	23	0
23	23	0
23	23	0
23	23	0
23	23	0
23	23	0
23	23	0
23	23	0
23	23	0
23	23	0
23	23	0
22	22	0
22	22	0
22	22	0
22	22	0
21	21	0
21	21	0
20	20	0
20	20	0
20	20	0
19	19	0
19	19	0
18	18	0
18	18	0
2992	2992	0
0	0	0
0	0	0
2992	2992	0

	cost (E000s,	central)
DM	DS	Increase
1	1	0
79	79	0
0	0	0
0	0	0
0	0	0
0	,	0
1	1	0
3	3	0
5	5	0
8	8	0
12	12	0
17	17	0
26	26	0
33	33	0
45	45	0
60	60	0
79	79	0
101	101	0
116	116	0
131	131	0
146	146	0
161	160	0
175	175	0
164	164	0
156	156	0
147	147	0
135	135	0
121	121	0
106	106	0
89	89	0
72	72	0
53	53	0
33	33	0
33	33	0
32	32	0
31	31	0
30	30	0
29	29	0
28	28	0
27	27	0
25	25	0
24	24	0
23	23	0
23	23	0
23	23	0
23	23	0
23	23	0
23	23	0
23	23	0
23	23	0
23	23	0
23	23	0
23	23	0
23	23	0
22	22	0
22	22	0
22	22	
22	22	0
21	21	
21	21	0
20	20	0
20	20	0
20	20	0
19	19	0
19	19	0
18	18	0
18	18	0
2992	2992	0
0	,	0
0	-	0
2992	2992	0

CO2_EMISStons_BY_TIME_PERIoD_TRADED
_- DM Emissions (tonnes)
AM peak
AM peak
AM peak
PM peak
PM peak
PM peak
PM peak
Inter-peak
Inter-peak
Off-peak off-peak Weekend
Weekend AM peak
PM peak PM peak
Inter-peak off-peak

DM	DS	Increase
14968	14970	2
8622	8621	-1
15003	14996	-7
8649	8648	-1
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	\bigcirc	0
535092	535038	-54
536703	536597	-106
0	\bigcirc	0
,	0	O
0	0	

$\begin{array}{rrr}\text { DM } & \text { cost (E000s, high) } \\ 1 & \text { DS } & \text { Increase } \\ 39 & 39 & \\ 1 & 1 & \\ 39 & 39 & \\ 0 & 0 & \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1488 & 1888 & 0 \\ 1504 & 1503 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}$

SUBMODE
User benefits and changes in revenues by submode／vehicle type，modelled years and total．£000s．
Submode

Submode	Year	User	User＿Charges	vehicle＿op	ting＿Cost	Operator＿Rev	Indirect
		Time	PT＿fares＿（pri	Fuel	Non＿fuel	PT＿fares＿＿pri	Taxes
Car	2014	388	0	51	39	0	－26
Car	2024	471	0	－2	－16	。	1
LGV Freight	2014	162	0	－24	－23	0	12
LGV Freight	2024	22	0	13	21	。	－6
ogv1	2014	63	0	3	10	0	－2
ogv1	2024	55	0	－4	7	0	2
A11	2014	613	0	31	27	－	－16
${ }^{411}$	2024	548	0	8	12	0	－4
Car	Total	20883	0	185	－289	0	－101
LgV Freight	Total	1786	0	283	516	0	－132
ogv1	Total	2638	0	－96	259	0	45
${ }^{1} 11$	Total	25307	0	372	485	0	－188

PERSON＿TYPES
User benefits
User benefits and changes in revenues by person type，modelled years and total．$£ 000$ s．

Person＿type	Year	User	User＿Charges	Vehicle＿op	－ing＿Cost	Operator＿Rev	Indirect Taxes
		Time	PT＿fares＿（pri	Fuel	Non＿fuel	PT＿fares＿（pri	
${ }^{\text {all }}$	2014	613	0	31	27	0	16
A11	2024	548	0	8	12	－	－4
11	Total	25307	0	372	485	0	－188

PURPOSE
User benefits and changes in revenues by trip purpose，modelled years and total． 2000 s．

PERTOD
User benefits and changes in revenues by time period，modelled years and total．E000s．

Period	Year	User User＿Charges Time PT＿fares＿（pri		vehicle＿operating＿Cost Operator＿Rev			$\begin{gathered} \text { Indirect } \\ \text { Taxes } \end{gathered}$
				Fuel	Non＿fuel	PT＿fares＿（pri	
${ }^{\text {AM p peak }}$	2014	405	0	－22	－14	0	11
${ }^{\text {AM p peak }}$	2024	437	0	1	5	－	－1
pm peak	2014	208	0	53	41	。	－27
PM peak	2024	111	0	7	7	0	－3
Inter－peak	2014	0	0	0	0	0	0
Inter－peak	2024	0	0	0	0	0	0
Off－peak	2014	0	0	0	0	－	0
off－peak	2024	0	0	0	0	0	0
Weekend	2014	0	0	0	0	0	0
Weekend	2024	0	0	0	\bigcirc	0	0
${ }^{\text {AM }}$ peak	Total	19793	0	－80	78	0	35
PM peak	Total	5514	0	452	407	0	24
Inter－peak	Total	0	0	0	0	0	0
Off－peak	Total	0	0	0	0	0	0
Weekend	Total	0	0	0	0	0	0

Time benefits	(thousands of person hrs) by size of time saving											
vehicle type	Purpose	Year	<-5 mins	-5 to	-2 mins	-2 to	0 mins	0 to	2 mins	2 to	5 mins	> 5 mins
Car	Business	2014	0		0		-13		19		1	
car	Business	2024	0				-11		19		0	
Car	Business	Total	0		-3		-670		1178		28	
car	Commuting	2014	-3		-7		-78		105		6	
Car	Commuting	2024	0		-6		-61		94		6	
Car	Commuting	Total	-35		-396		-3822		5770		363	137
Car	Other	2014	-5		-15		-33		54		3	
car	Other	2024	0		0		-35		51		5	
Car	Other	Total	-49		-91		-2128		3140		293	43
LGV Freight	Business	2014	-1		-2		-13		21		6	
LGV Freight	Business	2024	0		-4		-13		19		1	
LGV Freight	Business	Total	-21		-248		-810		1175		66	38
LGV Freight	Commuting	2014	0		0		0		0		0	
LGV Freight	Commuting	2024	0		0		0		0		0	
LGV Freight	Commuting	Total	0		0		0		0		0	
LGV Freight	Other	2014	0		0		0		0		0	
LGV Freight	Other	2024	0		0		0		0		0	
LGV Freight	other	Total	0		0		0		0		0	
ogv1	Business	2014	0		0		-5		10		0	
ogv1	Business	2024	0		0		-6		10		1	
ogv1	Business	Total	-4		-5		-338		597		65	20
ogv1	Commuting	2014	0				0		0		0	
ogv1	Commuting	2024	0		0		0		0		0	
ogv1	Commuting	Total	0		0		,		0		0	
ogv1	Other	2014	0		0		0		0		0	
ogv1	Other	2024	0		0		0		0		0	
ogv1	Other	Total	0		0		0		0		0	0
monetised time benefits by time Saving												
Time benefits	(£000s) by	ze of ti										
vehicle type	Purpose	Year	<-5 mins	-5 to	-2 mins	-2 to	0 mins	0 to	2 mins	2 to	5 mins	5 mins
Car	Business	2014	0		-3		-363		556		17	
Car	Business	2024	0		-1		-269		480		11	
Car	Business	Total	0		-65		-13145		22945		556	13
car	Commuting	2014	-19		-38		-451		607		35	11
Car	Commuting	2024	-1		-31		-291		445		28	11
Car	Commuting	Total	-155		-1392		-13628		20424		1279	477
Car	Other	2014	-27		-76		-168		278		15	13
Car	Other	2024	-2		-1		-148		215		21	
Car	Other	Total	-196		-421		-6518		9680		878	151
LGV Freight	Business	2014	-6		-18		-149		245		75	15
LGV Freight	Business	2024	-3		-43		-133		191		6	
LGV Freight	Business	Total	-169		-1908		-6379		9306		628	309
LGV Freight	Commuting	2014	0		0		0		0		0	
LGV Freight	Commuting	2024	0		0		0		0		0	
LGV Freight	Commuting	Total	0		0		0		0		0	
LGV Freight	Other	2014	0		0		0		0		0	
LGV Freight	Other	2024	0		0		0		0		0	
LGV Freight	Other	Total	0		0		0		0		0	
ogv1	Business	2014	0		-2		-57		113		5	
ogv1	Business	2024	-1		-1		-56		98		11	
ogv1	Business	Total	-27		-43		-2655		4706		501	155
ogv1	Commuting	2014	0		0		0		0		0	
ogv1	Commuting	2024	0		0		0		0		0	
ogv1	Commuting	Total	0		0		0		0		0	
ogv1	other	2014	0		0		0		0		0	
ogv1	Other	2024	0		0		0		0		0	
ogv1	Other	Total	0		0		0		0		0	0
total benefits by time saving												
Total benefits ($£ 000 \mathrm{~s}$) b		by size of	saving	-5 to	-2 mins	-2 to	0 mins	0 to	2 mins	2 to	5 mins	> 5 mins
vehicle type	Purpose	Year	< -5 mins									
Car	Business	2014	0		-1		-325		548		10	
Car	Business	2024	0		-1		-255		469		7	
Car	Business	Total	0		-40		-12542		22600		395	
Car	Commuting	2014	4		14		-210		390		-6	
Car	Commuting	2024	0		16		-110		290		-8	-3
Car	Commuting	Total	-8		226		-7126		14793		2	63
Car	Other	2014	-3		-16		-138		197		4	
Car	Other	2024	0		0		-106		153		0	
Car	Other	Total	-45		-107		-5148		7444		222	41
LGV Freight	Business	2014	-1		-7		-131		220		28	
LGV Freight	Business	2024	-1		-11		-109		172		3	
LGV Freight	Business	Total	-75		-885		-5551		8609		309	178
LGV Freight	Commuting	2014	0		0		0		0		0	
LGV Freight	Commuting	2024	0		0		0		0		0	
LGV Freight	Commuting	Total	0		0		0		0		0	
LGV Freight	other	2014	0		0		0		0		0	
LGV Freight	Other	2024	0		0		0		0		0	
LGV Freight	Other	Total	0		0		0		0		0	
ogv1	Business	2014	0		-2		-77		150		3	
ogv1	Business	2024	-1		-1		-65		119		4	
ogv1	Business	Total	-29		-45		-3017		5543		261	88
ogv1	Commuting	2014	0		0		0		,		0	
ogv1	Commuting	2024	0		0		0		0		0	
ogv1	Commuting	Total	0		0		0		0		0	
ogv1	Other	2014	0		0		0		0		0	
ogv1	other	2024	0		0				0		0	
ogv1	Other	Total	0		0		0		0		0	

NON MONETISED TIME BENEFITS BY DISTANCE

vehicle type	Purpose	Year	< 1 kms	1 to	5 kms	5 to	10 kms	10 to	15 kms	15 to	20 kms	20 to	50 kms	50 to 100 kms	>100 kms
Car	Business	2014	0		0		1		0		0		4	1	0
Car	Business	2024	0		0		1		1		2		4	1	0
car	Business	Total	0		17		85		72		89		240	53	-23
Car	Commuting	2014	0		2		4		9		5		18	-4	-9
Car	Commuting	2024	0		2		7		5		6		19	-2	-3
Car	Commuting	Total	0		123		406		333		373		1134	-158	-192
Car	Other	2014	0		3		10		3		0		6	-6	-10
Car	Other	2024	0		3		8		0		0		5	0	6
Car	Other	Total	0		165		476		-8		24		309	-10	253
Lgv Freight	Business	2014	0		1		2		5		3		0	2	0
LgV Freight	Business	2024	0		0		-2		2		3		2	-2	-1
LgV Freight	Business	Total	0		-9		-78		141		171		101	-90	-37
IGV Freight	Commuting	2014	0		0		0		0		0		0	0	0
LGV Freight	Commuting	2024	0		0		0		0		0		0	0	0
LgV Freight	Commuting	Total	0		0		0		0		0		0	0	0
LGV Freight	other	2014	0		0		0		0		0		0	0	0
LgV Freight	other	2024	0		0		0		0		0		0	0	0
LGV Freight	other	Total	0		0		0		0		0		0	0	0
ogv1	Business	2014	0		0		0		1		1		2	1	1
ogv1	Business	2024	0		0		0		0		0		3	2	1
ogv1	Business	Total	0		0		0		10		5		176	100	45
ogv1	Commuting	2014	0		0		0		0		0		0	0	0
ogv1	Commuting	2024	0		0		0		0		0		0	0	0
ogv1	Commuting	Total	0		0		0		0		0		0	0	0
ogv1	other	2014	0		0		0		0		0		0	0	0
ogv1	other	2024	0		0		0		0		0		0	0	0
ogv1	Other	Total	0		0		0		0		0		0	0	

Economic Appraisal Report

Economic Appraisal Report

```
Consumer - Commuting user benefits
    Travel Time
    Vehicle opera
    During Construction & Maintenance
    During Construction & Maintenanc
Consumer - Other user benefits
    Travel Time
    Travel Time
    User charges
    During Construction & Main
Busines
    Business
    M
    Vehicle opera
    During Construction & Maintenance
    Subtotal
Private Sector Provider Impacts
    MRvenue
    Meverue
    O
    Grant/subsid
    other business Impacts
    l
    All Modes Road Personal ( 
        M1 Modes Road Personal 
Economy:Economic Efficiency of the Transport System(TEE)
    Mravel Time 
        on mai
        \square
MROad
```



```
vehicle operating costs
ro05
```

```
s
```

s
0
0

```


```

M
位

```



    total
sent Value of Transport Economic
Efficiency Benefits (TEE)
    26164
Note: Benefits appear as positive numbers, while costs appear as negative numbers
Note: All entries are present values discounted to 2010, in 2010 prices
Public Accounts
Local Government Funding
Revenue
    Revenue
    operating costs
Investment costs
    Investment Costs
Developer Contribut
    Developer Contributions
Grant/Subsidy Payments
NET IMPACT
    Grant/Subsid
NET IMPACT
Central Government Funding: Transport
    Revenue
Operating costs
    Operating costs
Investment costs
    Investment costs
Developer Contributions
    Grant/Subsi
NET IMPACT
    entral Government Funding: Non-Transport
    \(\begin{array}{lll}\text { Indirect Tax Revenues } & 188 & 188\end{array}\)
totals
    Broad Transport Budget
Wider Public Finances
    Note: Costs appear as positive numbers, while revenues and developer co
Note: All entries are present values discounted to 2010, in 2010 prices
    Analysis of Monetised Costs and Benefits
Greenhouse Gases 107
Ereenhouse Gases
Economic Efficiency: Consumer Users (Commuting)
Economic Efficiency: Consumer Users (Other)
Economic Efficiency: Consumer Users (Commuti.
Economic Efficiency: Consumer Users (Other)
\(\begin{array}{rr}\text { ALL MODES } & \text { Road } \\ 0 & 0 \\ 0 & 0 \\ 5313 & 5313 \\ 0 & 0 \\ 0 & 0 \\ 5313 & 5313 \\ \text { ALL Modes } & \text { Road } \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Consumer - Conmuting user benefits & All Modes & & Road & & \\
\hline Travel Time & 7005 & & 7005 & & \\
\hline Vehicle operating costs & 944 & & 944 & & \\
\hline User charges & 0 & & 0 & & \\
\hline During Construction \& Maintenance & 0 & & 0 & & \\
\hline net consuner - commuting benefits & 7950 & & 7950 & & \\
\hline Consumer - other user benefits & All Modes & & Road & & \\
\hline Travel Time & 3574 & & 3574 & & \\
\hline Vehicle operating costs & -1166 & & -1166 & & \\
\hline User charges & 0 & & 0 & & \\
\hline During Construction \& Maintenance & 0 & & 0 & & \\
\hline net consumer - other benefits & 2407 & & 2407 & & \\
\hline Business & All Modes & Road Personal & Road Freight & Bus Personal & Bus Freight \\
\hline Travel Time & 14728 & 10303 & \({ }_{4} 424\) & & \\
\hline Vehicle operating costs & 1079 & 118 & 962 & & \\
\hline User charges & 0 & 0 & 0 & & \\
\hline During Construction \& Maintenance & 0 & 0 & 0 & & \\
\hline Subtotal & 15807 & 10421 & 5386 & & \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{Private Sector Provider Impacts}} \\
\hline & & & & & \\
\hline Operating costs & & & 0 & & \\
\hline Investment costs & 0 & & 0 & & \\
\hline Grant/subsidy & 0 & & 0 & & \\
\hline Subtotal & 0 & & 0 & & \\
\hline \multicolumn{6}{|l|}{Other business Impacts} \\
\hline Developer contributions & , & & 0 & & \\
\hline net business impact & 15807 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Consumer - Conmuting user benefits & All Modes & & Road & & \\
\hline Travel Time & 7005 & & 7005 & & \\
\hline Vehicle operating costs & 944 & & 944 & & \\
\hline User charges & 0 & & 0 & & \\
\hline During Construction \& Maintenance & 0 & & 0 & & \\
\hline net consuner - commuting benefits & 7950 & & 7950 & & \\
\hline Consumer - other user benefits & All Modes & & Road & & \\
\hline Travel Time & 3574 & & 3574 & & \\
\hline Vehicle operating costs & -1166 & & -1166 & & \\
\hline User charges & 0 & & 0 & & \\
\hline During Construction \& Maintenance & 0 & & 0 & & \\
\hline net consumer - other benefits & 2407 & & 2407 & & \\
\hline Business & All Modes & Road Personal & Road Freight & Bus Personal & Bus Freight \\
\hline Travel Time & 14728 & 10303 & \({ }_{4} 424\) & & \\
\hline Vehicle operating costs & 1079 & 118 & 962 & & \\
\hline User charges & 0 & 0 & 0 & & \\
\hline During Construction \& Maintenance & 0 & 0 & 0 & & \\
\hline Subtotal & 15807 & 10421 & 5386 & & \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{Private Sector Provider Impacts}} \\
\hline & & & & & \\
\hline Operating costs & & & 0 & & \\
\hline Investment costs & 0 & & 0 & & \\
\hline Grant/subsidy & 0 & & 0 & & \\
\hline Subtotal & 0 & & 0 & & \\
\hline \multicolumn{6}{|l|}{Other business Impacts} \\
\hline Developer contributions & , & & 0 & & \\
\hline net business impact & 15807 & & & & \\
\hline
\end{tabular}
26164
    Local Government Funding
Revenue
    Grant/Subsidy Payments
                                tions
                                aLL modes
Total
Present
Efficiency Benefits (TEE) 26164
    Government Funa\(\stackrel{\rightharpoonup}{\Delta}\)7950
2407
Economic Efficiency: Consumer Users (Other)
Economic Efficiency: Business Users and Providers
Wider Public Finances (Indirect Taxation Revenues)
Present Value of Benefits (PVB)
Wider Public Finances (Indirect Taxation Revenues)
Present Value of Benefits (PVB)
Broad Transport Budget
Present Value of Costs (PVC)15807
-1885313
5313Present value of costs (PVC)
overall impacts
OVERALL IMPACTS
Net Present Value (NPV)
Benefit to Cost Ratio (BCR)
\(\begin{array}{ll}20770 \\ \text { it to Cost Ratio (BCR) } & 4.909\end{array}\)

Note: This table includes costs and benefits which are regularly or occasionally presented in monetised form in
transport appraisals, together with some where monetisation is in prospect. There may also be other significant
ransport appraisals, together with some where monetisation is in prospect. There may also be other significant costs and benefits, some of which cannot be presented in monetised form. Where this is the case, the analysis
presented above does NoT provide a good measure of value for money and should not be used as the sole basis for

\subsection*{4.3 Journey Time Reliability Output}
```

Running JTV Tools
Year 1 JTV Benefits (£ in 2010 prices):, 65853
Year 2 JTV Benefits (£ in 2010 prices):, 40195
Total JTV Benefits (£ in 2010 prices):, 2132437

```
```


[^0]: ${ }^{1}$ Value for Money Assessment: Advice Note for Local Transport Decision Makers, Department for Transport. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/267296/vfm-advice-local-decision-makers.pdf

[^1]: ${ }^{2}$ Value for Money Assessment: Advice Note for Local Transport Decision Makers, Department for Transport https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/267296/vfm-advice-local-decision-makers.pdf

