Rational Software

PearlCircle Online Auction Reference Application
Software Architecture Document

Issue 0.2

PearlCircle Online Auction

Issue: 0.2
Software Architecture Document Issue Date: 9/13/01
PCOA SAD 02.doc
Revision History
Date Issue Description Author
July 13,2001 0.1 Initial version of the document Wojtek Kozaczynski
September 13, 2001 0.2 Incorporated PCOA model changes Wojtek Kozaczynski
RDN Distribution URational Software, 2001 Page 2 0f 37

PearlCircle Online Auction

Issue: 0.2

Software Architecture Document

Issue Date: 9/13/01

PCOA SAD 02.doc

1. Brief Description

2. References

3. Architectural Representation

Table of Contents

4. Architectural Goals and Constraints

5. Use-Case View

5.1 Architecturally -Significant Use Cases

5.1.1 Bid on Item

512 Browse Auction Catalog

513 Close Auction
514 Create Account
515 Create Auction

5.1.6 Sign In

6. Logical View

6.1 Architecture Overview

6.2 Architecturally -Significant Model Elements
6.2.1 Business Components

622 Mechanisms

623 Common Elements & Services

6.3 User-Experience Model

6.3.1 Architecturally Significant Navigation Map(s)
632 Architecturally Significant Use-Case Storyboards
633 User Experience Model Elements

634 Mappings to Designs Elements

7. Architecturally-Significant Use-Case Realizations

7.1 Bid on Item

7.2 Browse Auction Catalog

73 Close Auction
7.4 Create Account
7.5 Create Auction
7.6 Sign In

8. Process View

9. Deployment View

10. Implementation View

10.1 Source-code Components Organization
102 Deployment Components

11. Systems Size

RDN Distribution

[JRational Software, 2001

O 0 000 03 3 O

e

10
10
11
15
18
18
19
21
21

33

33

33
36

36

Page 30f 37

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

Software Architecture Document

1. Brief Description

This document provides a comprehensive overview of the architecture of the PearlCircle Online Auction reference
application (hereafter called Online Auction). The document is intended to capture and convey the significant design
decisions underlying the architecture of the system. It serves as a communication medium between the software
architect and other project team roles regarding those decisions.

Note: some of the diagrams in this document are best viewed by increasing the Zoom to 200%-300% or more.

2. References

In the references below “.\” stands for the directory where the reference application files were placed. The internal
reference documentation includes:

¢ Supplementary Specification [.\reference application\model and requirements\Requirements\Supplementary
Specification.doc]

¢ Glossary [.\reference application\model and requirements\Requirements\Glossary.doc]

¢ Rose models [.\reference application\model and requirements \ PearlCircleJ2EE_v1.0.mdl, and its controlled
units]

e Use case specifications [see .\reference application\model and requirements\Requirements\ directory]

As explained below, the architecture of the application borrows extensively from the Sun Java patterns described in
the book: Core J2EE™ Patterns, Best Practices and Design Strategies; Deepak Alur, John Crupi, and Dan Malks

The top-level decomposition of the system uses the concept of business component introduced and described in the
book: Business Component Factory: A Comprehensive Overview of Component-Based Development for the
Enterprise; Peter Herzum and Oliver Sims.

3. Architectural Representation

The architecture of the application is represented following the recommendations of the Rational Unified Process and
the Rational Architecture Practice guidelines. The UML specification of the systems has been divided into six
models:

e Use Case Model [Use Case View::Use-Case Model]

* Analysis Model [Logical View::Analysis Model]

* User Experience Model [Logical View::User Experience (UX) Model]

* Design Model [Logical View::Design Model]

¢ Implementation Model [Component View::com], and

¢ Deployment Model [Deployment View]

The Logical View and the Component View also include packages that represent Java language and J2EE framework
elements. Collectively the above models and packages form a complete UML specification of the system.

4. Architectural Goals and Constraints

The Online Auction is a reference application and as such, it has been created with the following objectives in mind:
1. To serve as an example of how to design, document and develop a J2EE-based application using the
RationalRose and an IDE
2. To show a result of applying the Rational Unified Process guidelines to developing a J2EE application
3. To be abase for deriving a set of reusable design templates (referred to in the design as mechanisms) for

RDN Distribution ORational Software, 2001 Page 4 of 37

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

on-line applications.

The major design and implementation constraint has been that the application should run on an open-source,
reference implementation-compliant deployment platform. In our case the platform consists of the following three
components:

1. TomCat 3.2.1 JSP and JavaServlet container

2. JBoss 2.0 EJB container, and

3. MySQL 3.2.3. DBMS.

TomCat 3.2.1 implements the Servlet 2.2 and JSP 1.1 specifications. JBoss 2.0 implements the EJB 1.1 specification.

The reference application is self-contained. Any connections with external systems such as a credit verification
system have been stubbed. Hence, the architecture has not been subject to integration constraints.

While designing the application we did not explicitly address scalability issues such as load balancing and/or
deploying the system on a farm of application servers. We have assumed that issues like that are best addressed in
the context of a particular deployment configuration and that commercial deployment environments, for example
WebLogic or WebSphere, provide proprietary support for such optimizations.

We did not try to optimize DB access by using bean-managed persistency. All entity beans persist themselves via
the containerprovided mechanism. This implies, that in some cases the application may be performing joins at bean
level when such join could have been performed more efficiently in the DB engine. We leave DB access optimization
as an “exercise for the student”

RDN Distribution ORational Software, 2001 Page 5o0f 37

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

5. Use-Case View

The functionality of a simple on-line auction system is captured in the use<case diagram below (Use Case View:Use-
Case Model:Global View of Actors and Use Cases).

The highlighted use cases have been implemented in
the On-Line Auction reference application O

Cancel Auction

Provide User Feedback

/reate Auction Modify Auction O

Seller

\ (romAcers) Browse User Feedback
EndOfAuctionTimer C)Q
Close Auction\

Sign In
(rom Actors) \ \ f<<include>>
Buyer
(from Actors) \ <<extend>> Create Account

Bid on Item Browse Auction Catalog

(from Actors)

User

Credit Service Bureau

-

Manage User Accounts

Review Sign In Logs Cb

i Manage Account

Set Up Auction Categories
Shutdown Auction

-

Archive Deactivated ltems

Cancel Bid
(from Actors)

Auction Administrator

(from Actors)

The PearlCircle Online Auction implements the architecturally-significant subset of the use cases highlighted above.
These are described in the following section. These architecture-significant use cases illustrate the key functions of
most auction systems and exercise all major system components. The remaining use-cases can be rapidly developed
without changes to the architecture by following the application structure and by reusing the two mechanisms
described in section 6.2.2.

All implemented use cases have an associated Use Case Specification document. References to these documents
can be found in the Rose browser window under the respective use case model elements (Use Case View:Use-Case
Model:Use Cases:<use-case name>:<use-case name>:<use-case name.DOC>). Each of the documents describes the
basic flow and the alternative flows.

RDN Distribution ORational Software, 2001 Page 6 0f 37

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

5.1 Architecturally-Significant Use Cases

The architecturally-significant use cases are those, that “exercise” the most critical parts of the system architecture
and demonstrate the core system functionality. As stated above, the reference application imp lements selected use
cases of a “typical” auction system. The implemented use cases are very much those that expose significant parts of
the application (this is why they were selected.) The most interesting between them are:

¢ Create Account (with Sign In); shows how user accounts are created and managed

* Create Auction; shows how auctions are created and managed

* Close Auction; shows how auctions are timed-out and closed by an internal timer process, and

* Bid On Item (with Browse Auction Catalog); shows how the system imposes minimal bid increment rules

and maintains multiple bids on an item.

These are shown and briefly described below.

The use cases shown on this diagram are considered
"architecturally-significant". Thus, this diagram constitutes the Use-Case
View of the architecture for the online auction application.

Architecturally-significant use cases are those use cases or scenarios that

represent some significant, central functionality of the final system, that have
a large architectural coverage (i.e., they exercise many architectural

elements), or that stress or illustrate a specific, delicate point of the
architecture.

Credit Service Bureau

Close Auction,

/ \ EndOfAuctionTimer
Buyer Seller Create Auction O

Sign In
<<include>>

User Create Account
O extend O
Bid on Item Browse Auction Catalog

Diagram Documentation:

5.1.1 Bid on Item

Brief Description: When browsing an item currently available via auction (see the Browse Auction Catalog
use case), a Buyer may opt to place a bid on the item. The entered bid must be greater than the current bid
by an amount greater than the minimum bid increment specified by the Seller. Once accepted the entered bid

RDN Distribution ORational Software, 2001 Page 7o0f 37

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

5.1.2

5.1.3

5.1.4

5.1.5

becomes the current bid.
The User must be signed in order to bid on an item. See the Sign In use case.
If the auction has been closed, the bid is not accepted. See the Close Auction use case.

If the Buyer has any pending payment notices, a message is displayed to the Buyer, reminding the Buyer
that payment for the notices must be made (i.e., new credit card information must be entered) before the User
can participate in any auction (as either the Buyer or the Seller. New credit card information can be entered
via the Manage Account use case.

Browse Auction Catalog

Brief Description: This use case allows a User to browse the items currently available for auction. The User
may search for a specific item, or may look at all of the items currently available for auction, sorted by
category.

The system displays information on the requested item, including, but not limited to the item description,
current best bid, minimum bid increment, and bidding history.

Once an auction item is displayed, the User has the option of bidding on the item. See the Bid on Item use
case.

The User does not have to be signed on to browse the auction catalog.

Close Auction

Brief Description: At the expiration of the End of Auction Timer, this use case closes out an auction. The
End of Auction Timer is set when the Seller specifies a bidding time limit when the auction is created. See
the Create Auction use case.

When an auction is closed, the current best bid for the item is accepted (the best bid becomes the purchase
price for the item). The system notifies the Buyer and Seller that the auction has completed and provides
each with the final purchase price for the item, as well as contact information for the other.

The Seller's credit card (credit card information is maintained with the auction) is charged the transaction fee.

Create Account

Brief Description: The Create Account use case allows the User to create and activate an account that
contains information for the User.

Once the account has been created and activated, the user is considered to be signed in. For more
information on sign in, see the Sign In use case.

Create Auction

Brief Description: The Create Auction use case allows a Seller to create an online auction. The Seller
specifies auction information (including the start and end of the auction), his credit card information (if not
provided during account creation, see the Create Account use case, or different for this auction) and can
provide an image of the item, and an online auction is created for the item. Buyers can then bid on the item
in the auction (see the Bid on Item use case).

An end of auction timer is set for the entered end of the auction day and time. When that auction time
expires, the auction is closed (see the Close Auction use case).

If a Seller has previously listed an item for auction, he/she may re-list the same item instead of re-entering
the same information from scratch.

The seller can use the credit card information that is stored with her/his account or input credit card
information that will be used with this auction only.

The User must be signed in in order to create an auction. See the Sign In use case.

RDN Distribution ORational Software, 2001 Page 8of 37

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

If the User has any pending payment notices due, a message is displayed to the User informing him/her that
an outstanding balance is due, and the User is not permitted to create an auction. The user must go into
his/her account and modify the credit card information (see the Manage Account use case).

5.1.6 SignIn

Brief Description: The Sign In use case is where the User identifies him/herself to the system.

If the User already has an account in the system, the User supplies a username and password to
authenticate him/herself. If the User cannot be authenticated, the User is not signed in.

For auditing purposes, both successful and unsuccessful sign in attempts are logged. For more information
on how these logs are used, see the Review Sign In Logs use case.

If the User does not have an account in the system, the User is given the opportunity to create a new user
account. See the Create Account use case. Once the account is created, the User is signed on.

If the user has any pending payment notices, a message is displayed to the User, reminding the User that
payment for the notices must be made (i.e., new credit card information must be entered) before the User can
participate in any auction (as either the Buyer or the Seller. Credit card information can be entered via the
Manage Account use case.

6. Logical View

This section describes the logical structure of the system. It starts from the overview of the architecture and then
presents its key structural and behavioral elements.

6.1 Architecture Overview

There are two dominant structures in the application:
1. Logical decomposition of the system into business components and then into layers inside the components,
and
2. The structure of the use case realizations derived from model templates of two architectural mechanisms.

These are briefly introduced below and discussed in more detail in the Architecturally-Significant Model Elements
section below.

A business component “is a software implementation of an autonomous business concept or business process. It
consists of all the software artifacts necessary to represent, implement, and deploy a given business concept as an
autonomous, reusable element of a large application”. From the logical design point of view it is a large-grained
system element that crosses all layers. It provides a complete set of functionality and hence can be developed and
deployed as an autonomous unit.

A model template, which is a modeling concept, is a collection of model elements designed to be imported into a
solution with substitutions. A model template contains model template element(s) and is not intended to be used
directly in the solution, but is intended to be “unfolded” or “instantiated” into a part of the solution. In UML model

templates are represented as packages stereotyped as «framework.

A mechanism is a pre -designed solution to a common problem that has to be addressed repeatedly in an application
(mechanisms are often derived from patterns). Mechanisms are captured as model templates, hence they are
represented in «framework» packages. The reference application makes extensive use of two mechanisms:

1. Presentation Request Processing, and
2. Session EJB Access.

RDN Distribution ORational Software, 2001 Page 9of 37

PearlCircle Online Auction

0.2

Software Architecture Document

Issue Date: 9/13/01

PCOA SAD 02.doc

These mechanisms are discussed in some detail in the next section.

6.2 Architecturally-Significant Model Elements

6.2.1 Business Components

The PearlCircle Online Auction has been decomposed into three business components and one common elements
and services component. Each of the business components is further divided into three layers: (1) Presentation Logic
(2) Business Logic and (3) Integration Logic. In other words, the architecture decomposes the systems along two

dimensions

1. The first dimension is along the system functionality lines
2. The second dimension is along the commonly recognized layers separating three kinds of concerns

Presentation concerns, or how to handle communication with the user and control his access to the
system services and resources
Business concerns, or how to organize the system elements that perform business and system

a.

b.

services functions, and

Integration concerns, or how to connect the system elements with the persistency mechanism,
other systems, physical devices, etc.

The result is a matrixlike structure of the system where each design element belongs to a business component (or the

common elements and service component) and a layer within that component/service.

The reference application business components are shown in the diagram below.

BusinessComponents

1

1

]

<<business component>>
Auction Catalog

1

<<layer>>
Presentation Logic
(from Auction Catalog)

<<layer>>
BusinessLogic
(from Auction Catalog)

<<business component>>
Auction Management

1

<<layer>>
Presentation Logic
(from Auction Management)

L

]

<<layer>>
Business Logic
(from Auction Management)

<<business component>>
User Account Management

1

<<layer>>
Presentation Logic
(from User Account Management)

1

<<layer>>
Business Logic
(from User Account Management)

Common Elements and Services

RDN Distribution

The businesses components and their responsibilities are as follows:

[JRational Software, 2001

Page 100f 37

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

1. User Account Management. This component is responsible for creation, management and deletion of user
accounts. In particular, the elements of this businesses component collaborate to realize the user-account-
related use cases: Create Account and Manage Account. The component elements also realize the Sign In
use cases.

2. Auction Management. This component is responsible for creation, management and closing of auctions. Its
elements realize the Create Auction , Close Auction and Bid on Item use cases.

3. Auction Catalog. This business component is responsible for browsing the auction catalog; the Browse
Auction Catalog use case.

6.2.2 Mechanisms

The reference application makes extensive use of two mechanisms:
3. Presentation Request Processing, and
4. Session EJB Access

Described in the package Logical View:Design Model:Mechanisms.

Both of the mechanisms have been constructed by combiningimplementation strategies of a few Sun J2EE patterns.
The first mechanism, Presentation Request Processing, has been derived by combining implementation strategies of
three Sun J2EE patterns:

1. Front Controller

2. Service to Worker and

3. Business Delegate
with simple security services.

The participant diagram and the collaboration diagram of the mechanism are show below.

RDN Distribution ORational Software, 2001 Page 110f 37

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

Presentation Request Processing

Within the Web container, all accesses to a URL must be done via the AN
RequestD er. The i er is request: it (i.e., there is
Tod elements are The Tormal one Reques(Dvispatchevr for every HttpReqqes(). Ehe Reques(Dispa(_gher
gathers state information on the communication "chain” for a specific request
(i.e., it tracks the "chaining" of forward and include messages resulting from a
single request). Thus, it is the RequestDispatcher that detects when a
“"forward" message is send after an "include” message has already been sent
for the same request (a bad thing, as forwards flush the response buffer before
they are sent).

ghlig
parameters of the mechanism (i.e., must
be provided by the instantiator of the

mechanism).

‘(,35

HttpServiet
(from http) In our case, this means that all requests from the

Pr ionRequestController to the <PresentationRequestDispatcher> and

from the <PresentationRequestDispatcher> to the <View>s are done via the
RequestDispatcher.
1

@)
makevequest HttpServietRequest
/ rom ™)
&
<<Http_Serviet>>
PresentationRequestController <PresentationRequestDispatcher>

Torward T dispatg est re; om view

‘herRequestD\spalcheFeq

(from serviet)
authentlgate user forward()
include() +business serWce provider
One for the entire . ,4 N 0.*

application

<BusinessDelegate>

HttpSession
(from hitp)

<View> [®//perform business processing()

[An updated version of
the existing Resource
Map must be provided
as a parameter to the

mechanism.

isol rce Map i
1

ResourceMapDelegate
(from Resource Map)

E—

bind R p
]

0]

UCRequestDispatcher : RequestDispatcher

<Client>

1: service(H ervietRequest, HttpServletResponse)
Get(HttpServletRequest, HttpServletResponse)
16: //determine state

e

R{u‘esl‘ ServletResponse)
18: //perform business processing()

<BusinessDelegate>

2: doGet(HttpServletRequest, HttpServletRespopse)

: service(HttpServiel

21: return HttpServletResponse : forward ewletﬁeﬂsl‘ ServletResponse)

PresentationRequestController <PresentationRequestDispatcher>

6: mustAuthefificate(usecae 3: getParameterNames()
8: getUrl("not sigr€ 4: getParameterValues(String)
9: canAccess(usegrdme, usecase name) . setAttribute(String, Object) 15: getAttribute("usecase”)

10: ge#dfl(usecase name) 11: getR DN patcher URL) 17: g (String)
riéne(

19: include(’ Ser)

N

7: getAtt "username”) \

ResourceMapDelegate

0]

ViewRequestDispatcher :
RequestDispatcher

o

+ HttpSession : HttpServletRequest

The elements colored yellow on the diagram are concrete. The placeholders (parameters) are shown in green. The
following key architecture decisions have been captured by the Presentation Request Processing mechanisms:
* All user requests are handled by a single PresentationRequestController (the front controller of the

RDN Distribution ORational Software, 2001 Page 12 0f 37

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

application)

The front controller inspects each request for consistency and verifies if the user needs to be authenticated
and authorized (the ResourceMapDelegate is the front controller’s intelligent proxy to the security
services).

If the user is authenticated and authorized, the PresentationRequestController forwards the request to an
appropriate dispatcher

A dispatcher handles user interactions for a specific use case (there is one dispatcher for each use case
realization). Dispatchers “understand” the use case flow and coordinate use case-related interactions with
the user.

The dispatchers do not produce any user output. Instead, they call views (see <View> parameter in the
mechanism) to create HTML or XML or other typed of a stream that is returned to the user’s device.

The dispatchers also don’t do “business logic”. Instead, they use business delegates (see <Business
Delegate> parameter in the mechanism) as smart proxies to the application server services

The front controller and the dispatchers are implemented as Servlets that forward URL requests to each
other. Hence, they can be placed in a different process and/or on different machines, which can be desirable
for security reasons.

Views are implemented as JSPs for ease of development.

Business delegates are implemented as Java Beans that run in the thread of the calling delegates.

The resource access table used by the authorization component and the front controller to map requests to
dispatchers is stored in an XML file and internalized on system startup (see <Resource Map> parameter in the
mechanism).

The second mechanism, Session EJB Access, combines implementation strategies of two Sun J2EE patterns:

1.
2.

Business Delegate and
Service Locator.

The participant diagram and the collaboration diagram of the mechanism are shown below.

RDN Distribution ORational Software, 2001 Page 13 0f 37

PearlCircle Online Auction Issue: 0.2
Software Architecture Document Issue Date: 9/13/01
PCOA SAD 02.doc
Session EJB Access
Highlighted elements are Clients instantiate The ConnectionManager's .
collaboration parameters. session EJB reference to the InitialContext ConnectionManager
delegates during the myst be refeshed, as it times (from Utility Classes)
Client's instantiation. out. [getObjectHomeReference()
- <SessionEJBDelegate> <SessionEJBLocator> InitialContext
[®<SessionEJBDelegates() [E<SessionEJBLocator>() (from narming)
1 |[®<perform service>() | ®getHome() [®lookup()
provides acgess to \
lochtes PortableRemoteObject
(fromrmi)
[®Enarrow()
0.1
O Remmec Meo O
EJBObject |« <SessionEJBRemote> <SessionEJBHome> [—>| EJBHome
(from ejb) (from ejb)
[#<perform service>() [™create()
<<instantiate>>
Client
1: <SegsionEJBDelegate>()
10: eﬁgn service>()
2: getHome() 3: getObjectHomeReference("<Session EJB Name>")
: <SessionEJBDelegate> : <SessionEJBLocator> :
ConnectionManager
5: return an Object (that is really a home interface)
11: <per&'m 'service3()
7: return reference to §JBihome interface
9: return refgrence to &B emote interface 4: Iookup("<8$sion EJB Name>")
8: create()
\ 6: narrow(java\bang.Object, Class)
: <SessionEJBRemote> : <SessionEJBHome> . PortableRemoteObject _:InitialContext.

The mechanism is a “blueprint” for the organization of access to the application server components. The architecture
does not allow any presentation layer components (dispatchers in particular) to communicate directly with entity
EJBs. Hence, the only beans that can be accessed remotely are session EJBs and the mechanism is used for that. The
mechanism captures the following architecture decisions:
¢ All business service components are implemented as Session EJBs or have Session EJB fagades
¢ A client (in most cases it is a dispatcher) that requires access to a business service component creates an
instance of a session EJB delegate (see <SessionEJBDelegate parameter, which is usually bound to the same
concrete elements as the respective business delegate in the related PresentationRequestController

RDN Distribution ORational Software, 2001 Page 14 0f 37

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

mechanisnt)

* The constructor of the session EJB delegate contacts a session EJB locator (see <SessionEJBLocator>
parameter) which returns the session EJB home interface that in turn provides the delegate with the remote
interface to the service.

As a consequence of using the two mechanism of the framework, the application has a distinct separation boundary
between the presentation logic and the business logic. That boundary is the business delegates that are smart
proxies to the business services of the application. This separation is very desirable for a few of reasons:
* It provides an explicit contract between designers and developers of the presentation tier and the business
tier of the system
* Itallows the business tier to change independently from the presentation tier
» Itallows for concurrent development of the two tiers.

6.2.3 Common Elements & Services

Common Elements and Services is a grouping (a package) of support elements and services that don’t belong to any
of the business components, but belong to the framework that underlines the application. The package contains the
following elements and services:

e Base Presentation Elements

¢ Credit Bureau Service

e Email Service

e Presentation Request Processing

 SignInLog

» Utility Classes, and

e XML Parser

6.2.3.1 Base Presentation Element

The package contains elements of a very simple pattern which states, that every JSP producing a screen includes a
standard header, menu, and a footer. As the comment in the diagram below explains, the pattern is not explicitly
expended in the design model for all screen-building JSPs, but it is used at the code level.

Base Presentation Elements

" In use case realization the two mechanisms are combined. The combination is done by biniding the same JaveBean
to the <BusinessDelegate> parameter in the PresentationRequestprocessin mechanism and to
<SessionEJBDelegate> parameter in the SessionEJBAccess mechanism.

RDN Distribution ORational Software, 2001 Page 150f 37

PearlCircle Online Auction Issue: 0.2
Software Architecture Document Issue Date: 9/13/01
PCOA SAD 02.doc

Every JSP in the system includes these JSPs. AN

Dependencies from all JSPs to the common @

JSPs are not modeled for simplicity and clarity <EveryJSP>

(instead, the <every JSP> server page is used

to represent all JSPs in the system that return)
(build) screens. <<include>>

<<include>>

<<include>>

& o el

header menu footer

6.2.3.2 Credit Bureau Services

The Credit Bureau Services is represented by a stubbed-out delegate of two services (1) verification of credit cards,
and (2) credit transaction for the fee charged to the sellers who sell their items.

6.2.3.3 Email Service

The Email Service supports the capability of the system to send email messages to the user of the auction system.
The service is a small, service business component that only has a business layer. The component has no user
interface, as it is intended to be used only via its delegate. The Email Service is also an example of an instantiation of
the Session EJB Access mechanism. The first diagram below shows the bindings applied to the mechanism, while the
second diagram shows the resulting view of the participating classes.

Email Service: Mechanism Binding and Instance

RDN Distribution ORational Software, 2001 Page 16 0f 37

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

Acess to the EmailManager session r 4
EJB is provided via a delegate, as e —_
described in the Session EJB Access
Mechanism.

Session EJB Access

VAR

Collaboration
Diagram: Session
EJB Access /
Access Session EJB

Class Diagram:
Session EJB Access

/ Structure

. i H Hom
EmailManagerDelegate <<bind>> <SessionEJBDelegate> *"'m’eO <<bind>> O
(from Session EJB Access) EmailManagerHome <SessionEJBHome>
(from Session EJB Access)
Fﬂ"—m—e() <<bind>> Reﬂe()
EmailManagerlLocator <<bind>> <Session‘EJBLocator> EmailManager <SessionEJBRemote>
(from Session EJB Access) (from Session EJB Access)
<<framework>>

EmailManager
(from BusinessLogic)

Session EJB Access
(from Business)

The Email Service is also an example of how we represent EJBs in the PearlCircle OnLine Auction system. We follow
an approach somewhat similar to the JSR-26 recommended approach. The EJBs are described in a separate package

that has the same name as the EJB itself and is stereotyped «SessionEJB» or «EntityEJB». The remote interface of
the respective bean and its home are defined outside of the package.

6.2.3.4 Presentation Request Processing

The package contains the concrete elements of the front-end of the application framework. In particular, it contain:
e The Presentation Request Controller (see the <Common Elements and Services:Presentation Request
Processing:Presentation Logic: <<Http_Servlet>> PresentationRequestController> servlet) and
e The Resource Map service (see the < Common Elements and Services:Presentation Request
Processing:Business Logic:ResourceMap> package)

The Presentation Request Controller is a singleton defined in the Presentation Request Processing mechanism. In
other words, it “comes with” the mechanism as a concrete element.

The Resource Map is a service used by the Presentation Request Controller to:
e Map the first user request parameter to a use case (and hence to the use case dispatcher)
e Verify if the user needs to be authenticated, and
» Ifthe user is authenticated, verify if the user needs to be authorized to use the particular system function
(the use case).

The Resource Map service is structurally very similar to the Email Service, as it is an instantiation of the Session EJB
Access mechanism (see the biding and participants class diagrams in < Common Elements and
Services:Presentation Request Processing:Business Logic:ResourceMap> package). The service is comprised
of

e A Session EJB (<<SessionEJB>> ResourceMapEJB) with its home and remote interface

e A delegate (ResourceMapDelegate Java Bean), and

¢ A locator (ResourceMapLocator Java Bean).

RDN Distribution ORational Software, 2001 Page 17 0f 37

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

6.2.3.5 Sign In Log

Sign In Log has two elements:

e An Entity Bean (see <Common Elements and Services:Sign In Log:Business Logic:SigninLogger:
<<EntityEJB>> SigninLoggerEJB> package) that is used to store the sign-in attempts/actions of the
users, and

e A sign-in service implemented as a Session Bean (see <Common Elements and Services:Sign In
Log:Business Logic: SigninLoggerManager> package).

The SignInLoggerManager is once again an instantiation of the Session EJB Access mechanism and hence can be
accessed via a delegate. The two key attributes of a sign-in attempt are userld and actionTime.

6.2.3.6 Utility Classes and XML Parser

The Utility Classes and the XML Parser packages contain support elements. As the name implies, the XML Parser
contain a utility Java class that loads and parses XML files.

The Utility Classes package contains:
e Value classes (classes used to pass state of Entity Beans by value)
¢ Exception classes, and
e Helper classes used by, for example, the locators to encapsulate connection with the EJB Container.

6.3 User-Experience Model

The user experience model captured in the <Logical View:User-Experience Model> package is a very important
part of the specification of the PearlCircle Online Auction application. It captures the screens presented to the user
and the transitions between screens resulting from the user-generated events such as clicking on a URL or a submit
button of a form. Descriptions of the screens also contain descriptions of the dynamic content that the system must
produce and display to the user.

The user experience model consists of:
¢ Navigational maps, showing allowable transitions (navigations) between system screens
e Storyboards describing navigations inside the scope of individual use cases, and
e Static “lists” of user experience model elements.

These three elements are briefly described in the following subsections.

Complementing the user experience model are mappings between its elements and the design elements that
contribute to their “creation”. In our online auction system the screens and forms of the user experience model are
mapped to the JSPs and static pages that provide the HTML for the screens. This mapping is a contract between the
designer of the systems interface and the designer of the business logic of the system.

6.3.1 Architecturally Significant Navigation Map(s)

The diagram below shows the PearlCircle Online Auction navigation map for the architecturally significant use cases.
This means, that the diagram shows all the screens and screen-to-screen transitions for the key use cases of the
system.

The classes on the diagram represent (1) screens (stereotype «screen), (2) forms (stereotype «form») or (3) value
objects whose content is displayed on the screens or in the forms.(no stereotype).

The relationships between classes represent transitions between screens initiated by the user’s actions. Transitions

RDN Distribution ORational Software, 2001 Page 18 0f 37

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

can be paired with the methods on the forms or on the screens, where the methods represent allowable user-
generated events.

Architecturally Significant Navigation Map

i :l

invalid activatioh info submitted

browse auction catalog
4
uction dategoly has listed items ‘activation info form

show or | bid request but user hagffending payments

eacyate accodkt and pending payment valid activationfinfo submitted

item search form item st
welcome
biate pyment info
display previou} or next page .
item bid history

bid on item ffsplay bid hisigh

bid on item accepted
i
item detail

invalid bid submite bid on tem
/ fisplay image
bid information form
manage account
[o]
$signin

bid submitted
account info form
gefetivite account
valid account infgamered

| bid on item results] I new account confirmation

| signin lnl invalid account info

deactivate account find actjve auctions

| / / ‘account deactivation confirmation

valid account info submitted ofrequest cangelled

s

(fom User Account Maragement)

account

create auction valid usernamegnd password entered

accpdht deactivation cancelled

‘auction info

updatduction info auction info form

‘auction info confirmation ‘auction payment info |

[2

‘aucion payment form

create auftion and user has previously listed items

| “auction creation success.

selected to relist or few auction to be created

previously listed items

display revious or next screen

6.3.2 Architecturally Significant Use-Case Storyboards

Each use case has its own so-called storyboard. A storyboard is a collaboration of user experience model elements
that participate in the realization of a use case. In other words, a storyboard shows system behavior from the user
experience model perspective. Below, as an example, we show the participants and the basic flow of the Bid on Item

use case storyboard.
Bid on Item Use Case Storyboard Participants and Basic Flow

RDN Distribution ORational Software, 2001 Page 19 of 37

PearlCircle Online Auction

Issue:

Software Architecture Document

Issue Date: 9/13/01

PCOA SAD 02.doc

Estaning price
number of bids
i:Tiimage available
i-Tibid status message

<<screen>>
item detail

(from Auction Catalog)

category name
item title
description

Bid On Item Use-Case Storyboard Participants

If the user is not
signed-in, this flow will
be interrupted by the

Sign In sequence

seller's name

auction start day
auction start time
auction end date
highest bid

minimum bid increment

Ibid on item()

bid on item accepted

Eapbid status message

[snavigate to()
E¥sdisplay invalid bid msg()

<<screen>>
bid on item
(from Auction Management)

(]

display image()
display bid history()
$navigate to()

bid cancelled

$display bid cancelled msg()
$display auction closed msg()

bid on item auction closed

<<screen>>
account home

(from User Account Management)

BEuser name

Ssaccount balance

S&last operation status msg

bid request but user has perding payments

<<screen>>

pending payments
(from User Account Management)

ipending payments msg

[®update payment info()

$navigate to
'do not update payment info()
$

lay pend

ayments could not be paid ms:
[®$display create auction pending payments msg()

£ ®$display bid on item pending payments msg()
display deactivate account pending payments msg()

do not update pggyment info

deactivate account and active auctions

bid information form
(from Auction Management)

F:2;bid amount

<<input form>>

invalid bid|submitted

valid bid submitted

<<screen>>
manage account
(from User Account

username
s=email
. =

g creditaddress
g creditcity

I} creditstate
e=creditzip

I .creditaccount

ETicreditexpire

credittype
problem message

(¥ $navigate to()

[I®deactivate account()

$display account info invalid message()

<<screen>>
bid on item results
(from Auction Management)

bidder's name
bid amout
item name
email account

[E¥Snavigate to()

RDN Distribution

ORational Software, 2001

Page 20 of 37

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

% Bid On Item Use-Case Storyboard: Basic Flow

: bid on item . bid information : bid on item

: Buyer . item detail form results

The Buyer indicates that 1: bid on item() 2: $navigate to()

he would like to place a
bid on the displayed
item.

The system displays the
bid on item form, so that
the Buyer can enter the
bid information.

3: submit bid()

The Buyer submits his

information. [entered bid valid]
If the entered bid is 4: $navigate to()
valid, the system

displays a bid

[entered bid not valid]

confirmation screen, .
5: $navigate to()

which contains the
entered bid information.

If the entered bid is 6: $display invalid bid msg()

invalid, the bid entry De—

form is re-displayed and
an "invalid bid" message
is displayed.

The basic flow of the storyboard can be summarized as follows:
e The user is presented with the item detail screen that contains bid -on-item URL
e When the user clicks on the URL s/he will be presented with the bid on item screen for bidding or, if the
user owes money to the site, s/he will be presented with the pending payment screen
¢ The bid on item screen contains a form to make a bid. The user fills out the form to submit the bid
e Ifthe bid increment is correct, the user is presented with the bid on item results screen.

6.3.3 User Experience Model Elements

The model elements of the user experience model (see <Logical View:User-Experience Model:Ux Model
Elements> package) have been grouped along the business components boundaries, that is:

¢ Auction Catalog Ux Model Elements

¢ Auction Management Ux Model Elements, and

¢ User Account Management Ux Model Elements.

6.3.4 Mappings to Designs Elements

The mappings between Ux model elements and the design elements (in particular the JSPs) are very important. They
provide the “bridge” between the “creative” designs of the system and the technical design of the system. The
mappings are captured in <Logical View:Design Model:Design Elements:“business component
package”:Presentation Logic:Design Model to Ux Model Traceabilities> class diagrams.

For example, the diagram below shows the mapping between the design model elements and the Ux model elements in
the Auction Management business components. These mappings demonstrate what JSPs produce the screens

RDN Distribution ORational Software, 2001 Page 21 of 37

PearlCircle Online Auction

Issue:

0.2

Software Architecture Document

Issue Date: 9/13/01

PCOA SAD 02.doc

presented to the user during execution of auction management use cases. One of the use cases is Bid on Item

discussed in 6.3.2.

Design Model to Ux Model Traceabilities for Auction Management Business Component

<<Server Page>>
bid_on_item

<<trace>>

(from Bid On ltem)

<<Server Page>>
bid_on_item_results

<<trace>>

<<screen>>
bid on item
(from Auction..)

(from Bid On Item)

<<Server Page>>

<<trace>>

<<screen>>
bid on item results
(from Auction Management)

<<screen>>

cancel_bid

(from Bid On Item)

item detail
(from Auctior..)

<<screen>>

<<Server Page>>

<<trace>>

(from Create Auction)

<<Server Page>>

<<trace>>

<<screen>>
auction payment info
(from Auction Management)

_confirm
(from Create Auction)

<<Server Page>>
_results

<<trace>>

<<screen>>
auction info confirmation
(from Auction Management)

(from Create Auction)

<<screen>>
auction creation success
(from Auction Management)

<<Server Page>>) o
cancel_auction_t ma“:";"nc’:”ce & . Bid Onltem Auction Management Cancel Auction
(fom Cancel Auction) iceducionbiatacereny (from Logio) (from Ux Model (from Logic)
<<trace>>
<<Server Page>> <<screen>>
fon_ir auction info
(from Create Auction) (trom Auction ..)
Create Auction
(from Presentation Logic)
Auction Catalog
(from Ux Model Elements)
7. Architecturally-Significant Use-Case Realizations

This section shows the architecturally significant use-case realizations. Each use case realization is a collaboration of
design elements from the business components and common elements and services. For each use case we show:

* Use-case static view, that is the participants of the use case, and

* Use case dynamic view, that is the collaboration between the use case participants.

It is important to notice, that all use case realizations have a very similar structure. This is because all use cases have
been derived from the two architecture mechanisms described in Paragraph 6.2.2. Complete descriptions of the use
cases and scenarios of these realizations can be found in the package <Logical View : Design Model : Design
Use-Case Realizations>.

RDN Distribution ORational Software, 2001 Page 22 of 37

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

71 Bid on Item
Participants

the views are done via the

[RequestDispatcher.

GS R Toqiess o e ProsamaiomRassesiCantalr
; ot BidontemDispather and rom re

HipSorvt
BiaManagerDelegate
(rom Banager)
o idManagerDeisgate()
idonitem()
HipServietRequest etHighestBidder)
tNumberOfBids() “AccountbanagerDalegate
from
(rom) etBitistor() (rom Aceauntitanager)
o L | enceisiag
Sellr g
elBicIdWnHighestEid() =
HipSession S countManagerDelegate()
(rom) . etBidPendingStatus() soand)
[‘asPendingPayment()
pda

BidOnllemDispatcher
(from Bid On tom)

RoquestDispatcher jelAccountManagerRemote()

(from servit)

forward()
inciude)

clvateUserAccount()

PresentationRequestController
idOnitemDispatcher()

etUserAccountByUniqueld()

cordPendingPaymentNolicel)

fletePendingPayments()
UserUIDToGroupidl)

requesi\gsponse

get resolos info) EmailManagerDelegate
rom Emaiitansger)

bid_on_item bid_on_item_results

<<buid>> (CopEIeaE) (trom 814 On tom)

EmailDelegate()
eck() 1 ondMail()

1

Resofroettan
(rom BugnessLogic)
1

ResourcoMlapDelegats.
(fom Resourcshtap)

Basic Flow

9: check()
10: checkBidAmount()
11: alert("<problem message>")

8: submit bid information

T

: User

! g L

7: I/build

: bid_on_item_client

1: service(Http: HttpSer pon...

w\iqueld“)

4:hasPendingPayment(uniqueld)
14: getUserAccountByUniqueld(uniqueld")

[PresentationRequestController| —> : BidOnltemDispatcher — : AccountManagerDelegate

. getCurrentHighestBid(String, String)
15 bidOnltem(String, String, double)

N

6: //service]

: service(HttpSer) e'AAest, HttpServletResponseg: //forward request
13://forward

1#/service

16: sendMail(S String, String, String)

: BidManagerDelegate

EmailMana%erDele%ale

RDN Distribution ORational Software, 2001 Page 23 of 37

PearlCircle Online Auction

Issue:

0.2

Software Architecture Document

Issue Date:

9/13/01

PCOA SAD 02.doc

7.2 Browse Auction Catalog

Participants

e
BrowseCatalogService

(romBrousecaaiog)

.SS

HttoServiet

(e}

HitpServietRequest

(fom)

HitpSession

0

RequestDispatcher
i savie

[All requests from the PresentationRequestControlier
to the BrowseCatalogDispatcher and from the:
BrowseCatalogDispatcher to the views are done via
the RequestDispatcher.

tom BeowseCatson)

BrowseCatalogDispatcher

[

| IMBrowseCatalogService()
ervice()

'"'ﬁ;esouroeMan
Nl BusinessLogic

‘ShowCategory

Ifurward()
include()

browse_auction_catalog
i cao)

<<build>>

<<client page>>

AuctionCatalogDelegate
(romsctonCatsop
Euc«mn(:amlogne\egaxe(;
etAuctionCataloginstance()
[B8igetAiMatchingOpenAuctions()
IgelA\\I(emsForMa(ch\ngOpenAucnons()
jetAllAuctionsCategoriesNames()

etAlIACtiveO
jetAuctionByld()

lgeml\ODenAucﬂonsU

jetAuctionlteminformation()
jetAlOpenAuctioninformationsForSpecifiedUserld()
etPreviouslyListedlems()
etOpenltemsByCategory()
etitemsForSearchText()
jetAuctionByld()

[EigetCategoryNames\WithOpenAuctions()

| BrowseCatalogDispatcher()
.

requesisesfonse

requesiiesponse

item_list

item_bid_history

item_detail

1
ios)

Basic Flow

RDN Distribution

ORational Software, 2001

Page 24 of 37

PearlCircle Online Auction

Issue: 0.2

Software Architecture Document

Issue Date: 9/13/01

PCOA SAD 02.doc

uence Diagram:
Processing / Process Presentation

[For detas on he N
E

ethe

=

[=

Processing mechanism

ser 7 7
J EM@M‘ browse_audlon_catelog| browse aucton_ Calog clent Q sm..@

1

The User reques's (o browse the.
auction catalog.
The system displays the browse
aucion page 50 the user can
enter the crteria to use for browsing
(the user can browse by category or do
asearch). The page wil contain all
categories that contain open auctions
(the category listis provided by an
applet that s inialized when the client
page s created).

Browse By Category
The user selects a category.

2: Ifoward request

3 ldoGet

8: cick on category nar

4: create

6:senvice()

] ey e

[Rppets can only make cals ©
its orginating server. Thus, the
ShowCategory applet must
access delegalea via servies.

7: getCategoryNames\WithOpenAuctions()

uence Diagram;

L]
AuctionCatalog /
RS o

Fiow

for the selected category.

Browse By Searching

9: service(HtpServietRequast, s¢)

10: /forward request

The user enters search crera 10 use to
locate an open aucon.

Ifthere are open auctions that it the
speciied crteria, the system displays
the fist o the user for the user to choose:
from.

fthere are no apen auctions that it the
iteria, the system dispiays a "o open
auctions found” message (o the user.

View Auction Information

‘The user selects an auction from the

14: forward request

15: getltemsForSarchText(string, string)

[auctions not found
16: liservice

match crteria]

fauctions found the} match criteria]

1

7. lisenvice

displayed list
‘The system displays the auction information.
‘The user s also given the opiion 10 view the
bid history for the auction tem andior an
image of the fem. To view the flem image,
the user clicks on a link that displays the
image direclly from the server on which the
image s hosted.

E:
‘The user indicates that

jest

19: fforward re

doGet(HtpServk

Diagram:

| AuctonCatalogDelegate
o

st HpServietResponse)

o view the bid history of the ftem.
The system displays the bid history of
thetem.

Optionaly, the User may choose to
submit a bd for the auction. This is

23: fforward request

U

[Sequence Diagram:

descrbed in a separate use-case ===}
realization. See the Bid on ltem

use-case realization.

on ltem / Basic Flow (-

| Access to the bid history is
ot currenty implemented.

RDN Distribution

ORational Software, 2001

Page 250f 37

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

7.3 Close Auction
Participants

<< >> . .
Cl Aprotc.:essp AuctionTimer
OSCRAUCHONELIOCESS (from AuctionManager)

(from Process View)

For details on the D

relationships that Class Diagram:
AuctionTimer has AuctionManager / Main

with other design
elements, see the
AuctionManager
main class diagram.

Basic Flow

See the AuctionTimer
interaction diagram.

Sequence Diagram: AN
AuctionManager /
AuctionTimerFlow

RDN Distribution ORational Software, 2001 Page 26 of 37

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

7.4 Create Account
Participants

All requests from the PreseniationRequesiControlio
to the CreateAccountDispatcher and from the igninl Delegat 2
CreateAccountDispatcher to the views are done via (@ it
the RequestDispatcher. ;
EmailDelegate() [HSigninLogDelegate() 20 pTP—
< [®sendMail() (from Utity Classes)
Gsend : Sting =

password : String = "
irstName : String

[WilastName : String

HitpServietRequest
(from http)

CreateAccountDispatcher
(fom Create Acoount)

Presentati nRequelecnlrollerI
(from Presentation Logic)

Ongard regtrs

HitpSession
(from htp)

CreateAccountDispatcher()
doGet()
doPost()

status : String = ™
uniqueld : String = ™

EaccountNumber :String ="

& from view

request respo

One for the entirel)
application get resourfe info
cardName : Strin
cardType : String

cardExpirationDate : String ="

RequestDispatcher
(from serviet)

secretNumber : String

Delegate
(from ResourceMap)

[

AccountManagerDelegate
{from AccountManager)

Createaccount_entry_client]

(from createaccount_entry)

request gésponse

Isvalidate()

reate()
trieve()
hasPendingPayment()
pdate()

EfigetAccountManagerRemote()
etUnpaidPendingPayments()
ctivateUserAccount()
leactivateUserAccount()
etCreditCardinfo()
etAllPreviouslyListeditems()
istedltems()
etUserAccountByUserld()

U Jniqueld()
ecordPendingPaymentNotice()
[BdeletePendingPayments()
[SsetUserUIDToGroupld()

Delegate()

request ipsponse Creditinfo

(from Uity Classes)

ck()
next_check_step()

<<build>>

[iprevCardNumber : String ="
[ilexpiration : String =

Createaccoun!
createaccount_entry

(om Create Account) (rom Create Account)

2

createaccount_verify
(from Create Account)

Basic Flow

RDN Distribution ORational Software, 2001 Page 27 of 37

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

) Do) [) =] == el N[| [e 1

RDN Distribution ORational Software, 2001 Page 28 of 37

PearlCircle Online Auction

Issue:

0.2

Software Architecture Document

Issue Date

9/13/01

PCOA SAD 02.doc

7.5 Create Auction

Participants

(e}

HitpSession
(from http)
aumenlw%le user
.
One for the m
entire
troll forw
(from Presentation Logic)
sourceMap

ResourceMapDelegate
(from ResourceMap)

t@S

HttpServiet

HitpServietRequest
(fom i)

RequestDispatcher

bher (romservit)

TTequests from the ol
to the CreateAuctionDispatcher and from the
CreateAuctionDispatcher to the views are done via
the RequestDispatcher.

(from Create Auction)
BCategorylasil

CreateAuctionDispatcher

T
[iauctionSubCategoryNames] : String

¢

I forward()

est
createauction_info_client_page
(from createaucton info)
cher
next_check_step()
<<bufjd>>

createauction_paymentinfo_client_page
(rom createauction_paymeninfo)

[doGet()
doPost()
CreateAuctionDispatcher()
getDate()
createAuction()
EMsetAuctioninfomation()

[EsaveFile()

request

request rdsponse

sponse

‘AccountManagerDelegate
(fom Accountianager)

[validate()
[@AccountManagerDelegate()
[Hcreate()
[retrieve()
ihasPendingPayment()
update()
[BgetAccountManagerRemote()
[BgetUnpaidPendingPayments()
activateUserAccount()
deactivateUserAccount()
getCreditCardinfo()
getAllPreviouslyListeditems()
hasPreviouslyListeditems()
getUserAccountByUserld()
getUserAccountByUniqueld()
recordPendingPaymentNotice()
deletePendingPayments()
setUserUIDToGroupld()

AuctionManagerDelegate
(from Auctionhianager)

e
=

createauction_info

createauction_results
(from Create Aucton)

[BAuctionManagerDelegate()
[MMcreateAuction()
|[WvalidateAuctionld()
[IMgetAuctioninfo()

createauction_confirm

)
loseAuctions()
loseAuction()

[Mcheck()
[i¥inext_check_step()

<<build>>

createauction_paymentinfo
(from Create Auction)

Basic Flow

RDN Distribution

ORational Software, 2001

Page 29 of 37

PearlCircle Online Auction

Issue:

0.2

Software Architecture Document

Issue Date: 9/13/01

PCOA SAD 02.doc

TheSckrrquestbaeranew
auton.

seniosHipSarviRequest HipSer

2 fowerdrecuest

pendgpayrersadte s es
notprevioLsly sedles tetd
natsel hesysemdspaysa
saeenbadlectnewain

==

Fhesdrsndtsgedin hethes)
redeckd bhesgnin dpeicher
‘SeeteSghusecaseresizzin

ShesPendngPaymentSing |

.

informeions dsplayed asthe:
defa)

6buid

7.dckonsubmitbuion

dek()

et dheck sep()

frkred arin e isinel]
(0 qprctm messege>)

freredacionirorreicn svekd
11

kenice (HpSeveRec.est, HSeneReporss)

12 fomnerd recpest

e acin romens inld

14: lsenvice

Sceaspadbdgand
e wretheppenhe Sckr
choosesbandlhecese
aineqest

| Sequerce Cegerm Oeee
{Aucion Seker Cances Oresle

Qe

21:dckd

hhe sbmi buton

17: o request

19 senvice

20 qede

omeion.
Tredartpage dedsbrdese

friedadinpament iomathisineid

2BctPos(HiSeneRecy e, HpSenbRespones)

27 Ronnerd recpest

IDate, Sting, prauiDg

hg, double, Sting, Sting, St

vauliDae)

RDN Distribution

ORational Software, 2001

Page 300f 37

PearlCircle Online Auction

Issue:

0.2

Software Architecture Document

Issue Date: 9/13/01

PCOA SAD 02.doc

7.6 Sign In

Participants

All requests from the PresentationRequestController
to the SigninDispatcher and from the
SigninDispatcher to the views are done via the
RequestDispatcher.

One for the D

entire

o«

t@S

HttpServiet

HttpServietRequest

(from http)

o

HttpSession

(from http)

)

RequestDispatcher
(from serviet)

AccountManagerDelegate
(from AccountManager)

[Fvalidate()

[AccountManagerDelegate()

[F®create()

[Bretrieve()

[F®hasPendingPayment()

[E®update()

[getAccountManagerRemote()

[#EgetUnpaidPendingPayments)
ictivateUserAccount()
leactivateUserAccount()

[FgetCreditCardinfo()

[getAllPreviouslyListedltems()

[hasPreviouslyListeditems()

SigninDispatcher
(from Sign In and Out)

o

PresentationRequestController

get resoyfce info

ResourceMap
(fromBusinessLgyic)

1
ResourceMapDelegate

(from ResourceMap)

I forward()
[include()

forwarthegquest

signin
(from Sign In and ()

iSigninDispatcher()
idoGet()

doPost()

requeslyesponse request fesponse

has_pending_payme...
(from Pending Payments)

[FBgetU Userld()
[getUserAccountByUniqueld()
[#recordPendingPaymentNotic..

\1

SigninLoggerManagerDelegat
(from SigninLoggerManager)

SigninLogDelegate()
ddSi

request {esponse

ninAttempt()

account
(from Us¢

t_home
er Home)

Basic Flow

RDN Distribution

ORational Software, 2001

Page 31 0f 37

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

Squence Diagram: Presentation Request
Processing/ Process Presentation Reque...

- - - signin 3 2 - HitpSession
- PresentationRéquestController = AccountManiagerDelegd _ SigninLoggerManagerDele ccount home fas pending payments
SigninDispatcher

Processing interaction
diagram

The User makes a sign in
request. 2: Ifforward request

The system displays the 3 liservice

Sign-n screen, where the “The SlgnTn Dispatcher can also be Tvoked a5

user can enter his/her sign-in the result of a redirect (.., the user attempted

information. to perform a function that he must me signed in

toperform, so he is redirected to the sign in
form before continuing).
4 . Hitp ‘Sequence Diagram:

The User enters hisiher 5 Jomard . AccountManager

userid and password. - [fforward reques ‘AccountManagerDelegate Flow

The system vaiidates the 6: validate(userid, passworch "]

userid and password,

fentered userid and Valid (user
Ifthe entered userid and 7{getUserAccountByUserld(useid) equence Diagram:
password are valid, a successful
SigninLoggerManager /

sign in attempt for the user is SoninLogDoleoate Flow
added to the sign in log, signed 8: addSigninAttefnpt(userid, a————
in user information is retained on
the session (user id and unique o: setAtribie('usemame, userid)

id, and the user is considered to

be signed in. y

10: setAttribyte("uniqueld”, userlnforfnation.uniqueid)
The unique id is part of the

Ifthe user has pending payments, 11:hasPendingPayment}Siting) I'Squence Diagram: e
the system displays the pending f-==neeeeer] AccountManager the AccountManagerDelegate
payment page. If the user does ‘AccountManagerDelegate Flow

ot have any pending payments, [user has pending payment

the system displays the user
account home page.

12:liservice

[user has no pending paymefts] “aceount_hom
eisinnew
dispatcher.

13 X
= 14: llservice
TFsign-n was
invoked as a resut
of a redirect, the
useris redirected Sequence Diagram:
to the page for the SigninLoggerManager /
original request. entered userid and passwold are invald] || SanintogDetegete Fiow
Ifthe entered userid and 5: addSigninAtiempt(*<userid}", faise)

password is invalid, an
unsuccessful sign in attempt is
added to the sign in log, the:
system prompts the user to
re-enter his/her userid and
password, and the sign in form
is re-displayed

16: /iservice

8. Process View

The process view of a system shows the assignment of active classes (classes that must run in their independent
threads of control) to the operating systems processes and threads. In the case of J2EE deployment platform, the
operating system resources are “hidden” underneath the container services. In other words, the infrastructure
manages the operating system resources. In particular, the containers are placed in operating system processes or
JVMs and the containers in turn manage thread-pools and assign the threads to active objects.

In the J2EE architecture JSPs, Servlets, and EJBs are assumed to be active. Hence, the process view of a J2EE-based
system is rather straightforward and shows the communication mechanisms between the containers and what types
of design/implementation elements run in what container. The process view of the PearlCircle Online Auction is

shown below.
Process View of the PearlCircle Online Auction

RDN Distribution ORational Software, 2001 Page 32 of 37

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

3 oA e T
eements are shown, but he onss reader to
design elemens are mapped to the diferent processes.

Thopiet

The Close Auction Process is a standalone program that runs in a dedicated JVM. The process can be located on the
same or different node as the web container or the EJB container. The process contains a scheduled thread that
“wakes up” at regular intervals. The classes running on this thread communicate with the EJB container, determine
which auctions should be closed, and close them.

9. Deployment View

The deployment view of a system shows the physical nodes on which the system executes and the assignment of the
system processed to the nodes. The PearlCircle Online Auction reference application can be deployed on different
hardware configurations. For examp le, it can be deployed on a single NT workstation. The diagram below shows the
most typical deployment configuration used by the development team.

Application Server Database Server
Client
Browser
EJB Container SQL Server
Web Container
Close Auction Process
10. Implementation View

10.1 Source-code Components Organization

The structure of the system components representing the Java source-code units reflects the logical structure of the
system. It can be best seen in the Rose browser and its image shown below.

RDN Distribution ORational Software, 2001 Page 33 of 37

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

=3 Component Wiew ;I
=3 com
Ell:l rational

ElI:I pearlcincle

ElI:I auction
EII:I auction

-7 catalog
|:| manager
. b sify
=3 comman
I:I creditbureau
I:I ernail
I:I feedback,
-3 frontcontroller
|:| rezOLICEMap
#-(C3 signinlog
&3 timer
-3 utiity
C3 =mi
. b ain
-7 uzeraccount
= Implementation Madel
----- Architecturally Significant Implerment.
----- Deployment Unitz: JAR Files
----- Deployment Units: WiAR Files
EID jars
1 = =] auction.jar
----- = | auchion.war
P e =] browsecatalog.jar
#-87 java
Ej [ahan
=7 org
ElI:I L
I:I images

----- #] <<Server Pager» account_home

----- 2] <<Server Page:> bid_on_item

----- @] <<Server Pager» bid_on_itern_resul
| i ----- =] <<Server Page:> I:Ircuwse_auctiu:un_c -
4 .3

The structure also follows the recommended, URL-reversed nesting of Java namespaces that is identical to the
source-code directory structure. In our case, since the reference application has been developed by Rational, all
source-code is stored in a subdirectory X/com/rational/auction in some project directory X. Inside that directory the
components have been grouped along the lines of business components. This is shown in the component diagrams
below and can also be seen in the browser window image above:

RDN Distribution ORational Software, 2001 Page 34 of 37

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

|]

auction common

]]
catalog manager _|

useraccount

The components on the diagram above trace to the business components as follows:

* Auction::catalogtraces to Auction Catalog business component

e Auction::manager traces to Auction Management business component

* Useaccout traces to User Account Management business component, and

¢ Commontraces to Common Elements and Servicesw package (the internal structure o f the

namespace/directory follows the decomposition of the package).

The server pages (implemented as JSPs) and the images are all grouped in the Ul package that maps into subdirectory
Xui in the project directory X. The structure of the package is shown in the figure below.

RDN Distribution ORational Software, 2001 Page 350f 37

PearlCircle Online Auction

Issue: 0.2

Software Architecture Document

Issue Date: 9/13/01

PCOA SAD 02.doc

=L ui

F-J images

----- =] <<Server Page:> account_home

----- =] <<Server Page:> bid_on_item

----- @] <<Server Pages> bid_on_itern_results

----- = | <<Server Pagerr browse_auction_catalog

----- =] <<Server Pager» cancel_bid

----- =] <<Server Pagerr createaccount_email

----- &] <<Server Pager» createaccount_gntry

----- =] <<Server Pager» createaccount_wverify

----- =] <<Server Pagerr createauction_caonfirm
----- =] <<Server Pagerr createauction_info

----- @] <<Server Pager» createauction_results
----- =] <<Server Page:> footer

----- = | <<Server Page: > haz_pending_pavments
----- =] <<Server Page: > header

----- =] <<Server Pagerr home

-----] <<Server Pager» itern_bid_histony

----- =] <<Server Pager» item_detail

----- = | <<Server Pagerr item_list

----- &] <<Server Pager» manageaccount_info
----- = | <<Server Pagerr manageaccount_results
-----] <<Server Page:> menu

----- #] <<Server Page:> signin

..... bzt

—h - .

i |

----- =] <<Server Page: > manageaccount_creditcard,
----- =] <<Server Pager > manageaccount_deactivate

----- #] <<Server Pager» cancel_auction_confirmatior

----- =] <<Server Page:» createauction_paymentinfo

s

10.2 Deployment Components

The Online Auction application has three deployment

units:

1. auction.jar which contains all classes in the ../com/rational/auction/* subdirectories
2. browsecatelog.jar which contains the applet, and

3. auction.war which contains the server pages

The deployment components are in the Component View::jars package that maps into a subdirectory X/jars in the

project directory X.

1. Systems Size

The Online Auction application’s size is described with the following items:

o Labor months: 18
Business components: 3

Lines of Java code: approximately 10
Java source files: 149

JSP files: 54

Implemented use cases: 7

O 0O O O O O

RDN Distribution ORational Software, 2001

Dependencies on external components: 5

,000

Page 36 0f 37

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

RDN Distribution ORational Software, 2001 Page 37 of 37

