

Rational Software

PearlCircle Online Auction Reference Application

Software Architecture Document

Issue 0.2

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

RDN Distribution Rational Software, 2001 Page 2 of 37

Revision History
Date Issue Description Author

July 13, 2001 0.1 Initial version of the document Wojtek Kozaczynski

September 13, 2001 0.2 Incorporated PCOA model changes Wojtek Kozaczynski

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

RDN Distribution Rational Software, 2001 Page 3 of 37

Table of Contents

1. Brief Description 4

2. References 4

3. Architectural Representation 4

4. Architectural Goals and Constraints 4

5. Use-Case View 6

5.1 Architecturally -Significant Use Cases 7
5.1.1 Bid on Item 7
5.1.2 Browse Auction Catalog 8
5.1.3 Close Auction 8
5.1.4 Create Account 8
5.1.5 Create Auction 8
5.1.6 Sign In 9

6. Logical View 9

6.1 Architecture Overview 9
6.2 Architecturally -Significant Model Elements 10

6.2.1 Business Components 10
6.2.2 Mechanisms 11
6.2.3 Common Elements & Services 15

6.3 User-Experience Model 18
6.3.1 Architecturally Significant Navigation Map(s) 18
6.3.2 Architecturally Significant Use-Case Storyboards 19
6.3.3 User Experience Model Elements 21
6.3.4 Mappings to Designs Elements 21

7. Architecturally-Significant Use-Case Realizations 22

7.1 Bid on Item 23
7.2 Browse Auction Catalog 24
7.3 Close Auction 26
7.4 Create Account 27
7.5 Create Auction 29
7.6 Sign In 31

8. Process View 32

9. Deployment View 33

10. Implementation View 33

10.1 Source-code Components Organization 33
10.2 Deployment Components 36

11. Systems Size 36

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

RDN Distribution Rational Software, 2001 Page 4 of 37

Software Architecture Document

1. Brief Description

This document provides a comprehensive overview of the architecture of the PearlCircle Online Auction reference

application (hereafter called Online Auction). The document is intended to capture and convey the significant design

decisions underlying the architecture of the system. It serves as a communication medium between the software

architect and other project team roles regarding those decisions.

Note: some of the diagrams in this document are best viewed by increasing the Zoom to 200%-300% or more.

2. References

In the references below “.\” stands for the directory where the reference application files were placed. The internal

reference documentation includes:

• Supplementary Specification [.\reference application\model and requirements\Requirements\Supplementary

Specification.doc]

• Glossary [.\reference application\model and requirements\Requirements\Glossary.doc]

• Rose models [.\reference application\model and requirements \ PearlCircleJ2EE_v1.0.mdl, and its controlled

units]

• Use case specifications [see .\reference application\model and requirements\Requirements\ directory]

As explained below, the architecture of the application borrows extensively from the Sun Java patterns described in

the book: Core J2EE™ Patterns, Best Practices and Design Strategies; Deepak Alur, John Crupi, and Dan Malks

The top-level decomposition of the system uses the concept of business component introduced and described in the

book: Business Component Factory: A Comprehensive Overview of Component-Based Development for the

Enterprise; Peter Herzum and Oliver Sims.

3. Architectural Representation

The architecture of the application is represented following the recommendations of the Rational Unified Process and

the Rational Architecture Practice guidelines. The UML specification of the systems has been divided into six

models:

• Use Case Model [Use Case View::Use-Case Model]

• Analysis Model [Logical View::Analysis Model]

• User Experience Model [Logical View::User Experience (UX) Model]

• Design Model [Logical View::Design Model]

• Implementation Model [Component View::com], and

• Deployment Model [Deployment View]

The Logical View and the Component View also include packages that represent Java language and J2EE framework

elements. Collectively the above models and packages form a complete UML specification of the system.

4. Architectural Goals and Constraints

The Online Auction is a reference application and as such, it has been created with the following objectives in mind:

1. To serve as an example of how to design, document and develop a J2EE-based application using the

RationalRose and an IDE

2. To show a result of applying the Rational Unified Process guidelines to developing a J2EE application

3. To be a base for deriving a set of reusable design templates (referred to in the design as mechanisms) for

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

RDN Distribution Rational Software, 2001 Page 5 of 37

on-line applications.

The major design and implementation constraint has been that the application should run on an open-source,

reference implementation-compliant deployment platform. In our case the platform consists of the following three

components:

1. TomCat 3.2.1 JSP and JavaServlet container

2. JBoss 2.0 EJB container, and

3. MySQL 3.2.3. DBMS.

TomCat 3.2.1 implements the Servlet 2.2 and JSP 1.1 specifications. JBoss 2.0 implements the EJB 1.1 specification.

The reference application is self-contained. Any connections with external systems such as a credit verification

system have been stubbed. Hence, the architecture has not been subject to integration constraints.

While designing the application we did not explicitly address scalability issues such as load balancing and/or

deploying the system on a farm of application servers. We have assumed that issues like that are best addressed in

the context of a particular deployment configuration and that commercial deployment environments, for example

WebLogic or WebSphere, provide proprietary support for such optimizations.

We did not try to optimize DB access by using bean-managed persistency. All entity beans persist themselves via

the container-provided mechanism. This implies, that in some cases the application may be performing joins at bean

level when such join could have been performed more efficiently in the DB engine. We leave DB access optimization

as an “exercise for the student”

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

RDN Distribution Rational Software, 2001 Page 6 of 37

5. Use-Case View

The functionality of a simple on-line auction system is captured in the use-case diagram below (Use Case View:Use-

Case Model:Global View of Actors and Use Cases).

The highlighted use cases have been implemented in

the On-Line Auction reference application

Review Sign In Logs

Shutdown Auction

Manage User Accounts

Archive Deactivated Items

Auction Administrator

(from Actors)

Set Up Auction Categories

Bid on Item

Create Auction

Cancel Auction

Modify Auction

Buyer

(from Actors)

EndOfAuctionTimer

(from Actors)

Seller

(from Actors)

Close Auction

Credit Service Bureau

(from Actors)

Browse Auction Catalog

<<extend>>
Create Account

Sign In

<<include>>

Manage Account

Cancel Bid

Provide User Feedback

User

(from Actors)

Browse User Feedback

The PearlCircle Online Auction implements the architecturally-significant subset of the use cases highlighted above.

These are described in the following section. These architecture-significant use cases illustrate the key functions of

most auction systems and exercise all major system components. The remaining use-cases can be rapidly developed

without changes to the architecture by following the application structure and by reusing the two mechanisms

described in section 6.2.2.

All implemented use cases have an associated Use Case Specification document. References to these documents

can be found in the Rose browser window under the respective use case model elements (Use Case View:Use-Case

Model:Use Cases:<use-case name>:<use-case name>:<use-case name.DOC>). Each of the documents describes the

basic flow and the alternative flows.

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

RDN Distribution Rational Software, 2001 Page 7 of 37

5.1 Architecturally-Significant Use Cases

The architecturally-significant use cases are those, that “exercise” the most critical parts of the system architecture

and demonstrate the core system functionality. As stated above, the reference application imp lements selected use

cases of a “typical” auction system. The implemented use cases are very much those that expose significant parts of

the application (this is why they were selected.) The most interesting between them are:

• Create Account (with Sign In); shows how user accounts are created and managed

• Create Auction; shows how auctions are created and managed

• Close Auction; shows how auctions are timed-out and closed by an internal timer process, and

• Bid On Item (with Browse Auction Catalog); shows how the system imposes minimal bid increment rules

and maintains multiple bids on an item.

These are shown and briefly described below.

Browse Auction Catalog

Create Account
User

Sign In

<<include>>

Bid on Item

<<extend>>

Create Auction
Buyer

EndOfAuctionTimer

Seller

Close Auction

Credit Service Bureau

The use cases shown on this diagram are considered

"architecturally-significant". Thus, this diagram constitutes the Use-Case

View of the architecture for the online auction application.

Architecturally-significant use cases are those use cases or scenarios that

represent some significant, central functionality of the final system, that have

a large architectural coverage (i.e., they exercise many architectural

elements), or that stress or illustrate a specific, delicate point of the

architecture.

Diagram Documentation:

5.1.1 Bid on Item

Brief Description: When browsing an item currently available via auction (see the Browse Auction Catalog

use case), a Buyer may opt to place a bid on the item. The entered bid must be greater than the current bid

by an amount greater than the minimum bid increment specified by the Seller. Once accepted the entered bid

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

RDN Distribution Rational Software, 2001 Page 8 of 37

becomes the current bid.

The User must be signed in order to bid on an item. See the Sign In use case.

If the auction has been closed, the bid is not accepted. See the Close Auction use case.

If the Buyer has any pending payment notices, a message is displayed to the Buyer, reminding the Buyer

that payment for the notices must be made (i.e., new credit card information must be entered) before the User

can participate in any auction (as either the Buyer or the Seller. New credit card information can be entered

via the Manage Account use case.

5.1.2 Browse Auction Catalog

Brief Description: This use case allows a User to browse the items currently available for auction. The User

may search for a specific item, or may look at all of the items currently available for auction, sorted by

category.

The system displays information on the requested item, including, but not limited to the item description,

current best bid, minimum bid increment, and bidding history.

Once an auction item is displayed, the User has the option of bidding on the item. See the Bid on Item use

case.

The User does not have to be signed on to browse the auction catalog.

5.1.3 Close Auction

Brief Description: At the expiration of the End of Auction Timer, this use case closes out an auction. The

End of Auction Timer is set when the Seller specifies a bidding time limit when the auction is created. See

the Create Auction use case.

When an auction is closed, the current best bid for the item is accepted (the best bid becomes the purchase

price for the item). The system notifies the Buyer and Seller that the auction has completed and provides

each with the final purchase price for the item, as well as contact information for the other.

The Seller's credit card (credit card information is maintained with the auction) is charged the transaction fee.

5.1.4 Create Account

Brief Description: The Create Account use case allows the User to create and activate an account that

contains information for the User.

Once the account has been created and activated, the user is considered to be signed in. For more

information on sign in, see the Sign In use case.

5.1.5 Create Auction

Brief Description: The Create Auction use case allows a Seller to create an online auction. The Seller

specifies auction information (including the start and end of the auction), his credit card information (if not

provided during account creation, see the Create Account use case, or different for this auction) and can

provide an image of the item, and an online auction is created for the item. Buyers can then bid on the item

in the auction (see the Bid on Item use case).

An end of auction timer is set for the entered end of the auction day and time. When that auction time

expires, the auction is closed (see the Close Auction use case).

If a Seller has previously listed an item for auction, he/she may re-list the same item instead of re-entering

the same information from scratch.

The seller can use the credit card information that is stored with her/his account or input credit card

information that will be used with this auction only.

The User must be signed in in order to create an auction. See the Sign In use case.

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

RDN Distribution Rational Software, 2001 Page 9 of 37

If the User has any pending payment notices due, a message is displayed to the User informing him/her that

an outstanding balance is due, and the User is not permitted to create an auction. The user must go into

his/her account and modify the credit card information (see the Manage Account use case).

5.1.6 Sign In

Brief Description: The Sign In use case is where the User identifies him/herself to the system.

If the User already has an account in the system, the User supplies a username and password to

authenticate him/herself. If the User cannot be authenticated, the User is not signed in.

For auditing purposes, both successful and unsuccessful sign in attempts are logged. For more information

on how these logs are used, see the Review Sign In Logs use case.

If the User does not have an account in the system, the User is given the opportunity to create a new user

account. See the Create Account use case. Once the account is created, the User is signed on.

If the user has any pending payment notices, a message is displayed to the User, reminding the User that

payment for the notices must be made (i.e., new credit card information must be entered) before the User can

participate in any auction (as either the Buyer or the Seller. Credit card information can be entered via the

Manage Account use case.

6. Logical View

This section describes the logical structure of the system. It starts from the overview of the architecture and then

presents its key structural and behavioral elements.

6.1 Architecture Overview

There are two dominant structures in the application:

1. Logical decomposition of the system into business components and then into layers inside the components,

and

2. The structure of the use case realizations derived from model templates of two architectural mechanisms.

These are briefly introduced below and discussed in more detail in the Architecturally-Significant Model Elements

section below.

A business component “is a software implementation of an autonomous business concept or business process. It

consists of all the software artifacts necessary to represent, implement, and deploy a given business concept as an

autonomous, reusable element of a large application”. From the logical design point of view it is a large-grained

system element that crosses all layers. It provides a complete set of functionality and hence can be developed and

deployed as an autonomous unit.

A model template, which is a modeling concept, is a collection of model elements designed to be imported into a

solution with substitutions. A model template contains model template element(s) and is not intended to be used

directly in the solution, but is intended to be “unfolded” or “instantiated” into a part of the solution. In UML model

templates are represented as packages stereotyped as «framework».

A mechanism is a pre -designed solution to a common problem that has to be addressed repeatedly in an application

(mechanisms are often derived from patterns). Mechanisms are captured as model templates, hence they are

represented in «framework» packages. The reference application makes extensive use of two mechanisms:

1. Presentation Request Processing, and

2. Session EJB Access.

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

RDN Distribution Rational Software, 2001 Page 10 of 37

These mechanisms are discussed in some detail in the next section.

6.2 Architecturally-Significant Model Elements

6.2.1 Business Components

The PearlCircle Online Auction has been decomposed into three business components and one common elements

and services component. Each of the business components is further divided into three layers: (1) Presentation Logic

(2) Business Logic and (3) Integration Logic. In other words, the architecture decomposes the systems along two

dimensions

1. The first dimension is along the system functionality lines

2. The second dimension is along the commonly recognized layers separating three kinds of concerns

a. Presentation concerns, or how to handle communication with the user and control his access to the

system services and resources

b. Business concerns, or how to organize the system elements that perform business and system

services functions, and

c. Integration concerns, or how to connect the system elements with the persistency mechanism,

other systems, physical devices, etc.

The result is a matrix-like structure of the system where each design element belongs to a business component (or the

common elements and service component) and a layer within that component/service.

The reference application business components are shown in the diagram below.

BusinessComponents

Auction Catalog

<<business component>>
Auction Management

<<business component>>

User Account Management

<<business component>>

Common Elements and Services

Business Logic

<<layer>>

(from User Account Management)

Presentation Logic

<<layer>>

(from User Account Management)
Presentation Logic

<<layer>>

(from Auction Catalog)

BusinessLogic

<<layer>>

(from Auction Catalog)

Presentation Logic

<<layer>>

(from Auction Management)

Business Logic

<<layer>>

(from Auction Management)

The businesses components and their responsibilities are as follows:

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

RDN Distribution Rational Software, 2001 Page 11 of 37

1. User Account Management. This component is responsible for creation, management and deletion of user

accounts. In particular, the elements of this businesses component collaborate to realize the user-account-

related use cases: Create Account and Manage Account. The component elements also realize the Sign In

use cases.

2. Auction Management. This component is responsible for creation, management and closing of auctions. Its

elements realize the Create Auction , Close Auction and Bid on Item use cases.

3. Auction Catalog. This business component is responsible for browsing the auction catalog; the Browse

Auction Catalog use case.

6.2.2 Mechanisms

The reference application makes extensive use of two mechanisms:

3. Presentation Request Processing, and

4. Session EJB Access

Described in the package Logical View:Design Model:Mechanisms.

Both of the mechanisms have been constructed by combining implementation strategies of a few Sun J2EE patterns.

The first mechanism, Presentation Request Processing, has been derived by combining implementation strategies of

three Sun J2EE patterns:

1. Front Controller

2. Service to Worker and

3. Business Delegate

with simple security services.

The participant diagram and the collaboration diagram of the mechanism are show below.

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

RDN Distribution Rational Software, 2001 Page 12 of 37

Presentation Request Processing

<Client>

<View>

One for the entire

application

HttpServletRequest

(from http)

HttpServlet

(from http)

G S

RequestDispatcher
(from servlet)

forward()

include()

HttpSession

(from http)

The highlighted elements are the formal

parameters of the mechanism (i.e., must

be provided by the instantiator of the

mechanism).

<BusinessDelegate>

//perform business processing()

<PresentationRequestDispatcher>
<<Http_Servlet>>

0..*

+business service provider

0..*

An updated version of

the existing Resource

Map must be provided

as a parameter to the

mechanism.

<ResourceMap>

request response from view

request response

Within the Web container, all accesses to a URL must be done via the

RequestDispatcher. The RequestDispatcher is request-dependent (i.e., there is

one RequestDispatcher for every HttpRequest). The RequestDispatcher
gathers state information on the communication "chain" for a specific request

(i.e., it tracks the "chaining" of forward and include messages resulting from a

single request). Thus, it is the RequestDispatcher that detects when a

"forward" message is send after an "include" message has already been sent

for the same request (a bad thing, as forwards flush the response buffer before

they are sent).

In our case, this means that all requests from the

PresentationRequestController to the <PresentationRequestDispatcher> and

from the <PresentationRequestDispatcher> to the <View>s are done via the

RequestDispatcher.

Resource Map

<<bind>>
ResourceMapDelegate

(from Resource Map)

PresentationRequestController

H S

make request

11

forward request to dispatcher

forward request

authenticate user

 :

<Client>

 :

PresentationRequestController

 :

<PresentationRequestDispatcher>

 : ResourceMapDelegate

 : HttpServletRequest
 : HttpSession

UCRequestDispatcher : RequestDispatcher

ViewRequestDispatcher :
RequestDispatcher

16: //determine state
14: doGet(HttpServletRequest, HttpServletResponse)

 : <BusinessDelegate>

2: doGet(HttpServletRequest, HttpServletResponse)

 : <View>

1: service(HttpServletRequest, HttpServletResponse)

21: return HttpServletResponse (result HTML)

3: getParameterNames()
4: getParameterValues(String)
5: setAttribute(String, Object)

11: getRequestDispatcher(dispatcher URL)

6: mustAuthenticate(usecase name)
8: getUrl("not signed in")

10: getUrl(usecase name)

9: canAccess(username, usecase name)

7: getAttribute("username")

12: forward(ServletRequest, ServletResponse)

15: getAttribute("usecase")
17: getRequestDispatcher(String)

19: include(ServletRequest, ServletResponse)

18: //perform business processing()

13: service(HttpServletRequest, HttpServletResponse)

20: //service()

The elements colored yellow on the diagram are concrete. The placeholders (parameters) are shown in green. The

following key architecture decisions have been captured by the Presentation Request Processing mechanisms:

• All user requests are handled by a single PresentationRequestController (the front controller of the

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

RDN Distribution Rational Software, 2001 Page 13 of 37

application)

• The front controller inspects each request for consistency and verifies if the user needs to be authenticated

and authorized (the ResourceMapDelegate is the front controller’s intelligent proxy to the security

services).

• If the user is authenticated and authorized, the PresentationRequestController forwards the request to an

appropriate dispatcher

• A dispatcher handles user interactions for a specific use case (there is one dispatcher for each use case

realization). Dispatchers “understand” the use case flow and coordinate use case-related interactions with

the user.

• The dispatchers do not produce any user output. Instead, they call views (see <View> parameter in the

mechanism) to create HTML or XML or other typed of a stream that is returned to the user’s device.

• The dispatchers also don’t do “business logic”. Instead, they use business delegates (see <Business

Delegate> parameter in the mechanism) as smart proxies to the application server services

• The front controller and the dispatchers are implemented as Servlets that forward URL requests to each

other. Hence, they can be placed in a different process and/or on different machines, which can be desirable

for security reasons.

• Views are implemented as JSPs for ease of development.

• Business delegates are implemented as Java Beans that run in the thread of the calling delegates.

The resource access table used by the authorization component and the front controller to map requests to

dispatchers is stored in an XML file and internalized on system startup (see <Resource Map> parameter in the

mechanism).

The second mechanism, Session EJB Access, combines implementation strategies of two Sun J2EE patterns:

1. Business Delegate and

2. Service Locator.

The participant diagram and the collaboration diagram of the mechanism are shown below.

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

RDN Distribution Rational Software, 2001 Page 14 of 37

Session EJB Access

PortableRemoteObject

(from rmi)

narrow()

EJBObject
(from ejb)

<SessionEJBHome>

Home

create()

EJBHome

(from ejb)

<SessionEJBLocator>

<SessionEJBLocator>()

getHome()

locates

InitialContext

(from naming)

lookup()

ConnectionManager

(from Utility Classes)

getObjectHomeReference()

Highlighted elements are

collaboration parameters.

<SessionEJBRemote>

Remote

<perform service>()
<<instantiate>>

<SessionEJBDelegate>

<SessionEJBDelegate>()

<perform service>()

0..10..1

provides access to

<Client>

11

uses services of

Clients instantiate

session EJB

delegates during the

Client's instantiation.

The ConnectionManager's

reference to the InitialContext

myst be refeshed, as it times

out.

Client

 : <SessionEJBDelegate> : <SessionEJBLocator>

 : InitialContext : <SessionEJBHome> : <SessionEJBRemote> : PortableRemoteObject

 :

ConnectionManager

10: <perform service>()
1: <SessionEJBDelegate>()

2: getHome()

8: create()

9: return reference to EJB remote interface

11: <perform service>()

6: narrow(java.lang.Object, Class)

7: return reference to EJB home interface

3: getObjectHomeReference("<Session EJB Name>")

5: return an Object (that is really a home interface)

4: lookup("<Session EJB Name>")

The mechanism is a “blueprint” for the organization of access to the application server components. The architecture

does not allow any presentation layer components (dispatchers in particular) to communicate directly with entity

EJBs. Hence, the only beans that can be accessed remotely are session EJBs and the mechanism is used for that. The

mechanism captures the following architecture decisions:

• All business service components are implemented as Session EJBs or have Session EJB façades

• A client (in most cases it is a dispatcher) that requires access to a business service component creates an

instance of a session EJB delegate (see <SessionEJBDelegate parameter, which is usually bound to the same

concrete elements as the respective business delegate in the related PresentationRequestController

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

RDN Distribution Rational Software, 2001 Page 15 of 37

mechanism
1
)

• The constructor of the session EJB delegate contacts a session EJB locator (see <SessionEJBLocator>

parameter) which returns the session EJB home interface that in turn provides the delegate with the remote

interface to the service.

As a consequence of using the two mechanism of the framework, the application has a distinct separation boundary

between the presentation logic and the business logic. That boundary is the business delegates that are smart

proxies to the business services of the application. This separation is very desirable for a few of reasons:

• It provides an explicit contract between designers and developers of the presentation tier and the business

tier of the system

• It allows the business tier to change independently from the presentation tier

• It allows for concurrent development of the two tiers.

6.2.3 Common Elements & Services

Common Elements and Services is a grouping (a package) of support elements and services that don’t belong to any

of the business components, but belong to the framework that underlines the application. The package contains the

following elements and services:

• Base Presentation Elements

• Credit Bureau Service

• Email Service

• Presentation Request Processing

• Sign In Log

• Utility Classes, and

• XML Parser

6.2.3.1 Base Presentation Element

The package contains elements of a very simple pattern which states, that every JSP producing a screen includes a

standard header, menu, and a footer. As the comment in the diagram below explains, the pattern is not explicitly

expended in the design model for all screen-building JSPs, but it is used at the code level.

Base Presentation Elements

1
 In use case realization the two mechanisms are combined. The combination is done by biniding the same JaveBean

to the <BusinessDelegate> parameter in the PresentationRequestprocessin mechanism and to

<SessionEJBDelegate> parameter in the SessionEJBAccess mechanism.

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

RDN Distribution Rational Software, 2001 Page 16 of 37

header footermenu

Every JSP in the system includes these JSPs.

Dependencies from all JSPs to the common

JSPs are not modeled for simplicity and clarity
(instead, the <every JSP> server page is used

to represent all JSPs in the system that return
(build) screens.

<EveryJSP>

<<include>>

<<include>>

<<include>>

6.2.3.2 Credit Bureau Services

The Credit Bureau Services is represented by a stubbed-out delegate of two services (1) verification of credit cards,

and (2) credit transaction for the fee charged to the sellers who sell their items.

6.2.3.3 Email Service

The Email Service supports the capability of the system to send email messages to the user of the auction system.

The service is a small, service business component that only has a business layer. The component has no user

interface, as it is intended to be used only via its delegate. The Email Service is also an example of an instantiation of

the Session EJB Access mechanism. The first diagram below shows the bindings applied to the mechanism, while the

second diagram shows the resulting view of the participating classes.

Email Service: Mechanism Binding and Instance

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

RDN Distribution Rational Software, 2001 Page 17 of 37

Acess to the EmailManager session

EJB is provided via a delegate, as

described in the Session EJB Access

Mechanism.

Class Diagram:

Session EJB Access

/ Structure

Collaboration

Diagram: Session

EJB Access /

Access Session EJB

<SessionEJBRemote>

(from Session EJB Access)

Remote

<SessionEJBHome>

(from Session EJB Access)

Home

<SessionEJBLocator>

(from Session EJB Access)

<SessionEJBDelegate>

(from Session EJB Access)

Session EJB Access

EmailManagerLocator <<bind>>

EmailManagerHome

Home
EmailManagerDelegate <<bind>>

<<bind>>

EmailManager

Remote
<<bind>>

EmailManager

(from BusinessLogic)
Session EJB Access

<<framework>>

(from Business)

The Email Service is also an example of how we represent EJBs in the PearlCircle OnLine Auction system. We follow

an approach somewhat similar to the JSR-26 recommended approach. The EJBs are described in a separate package

that has the same name as the EJB itself and is stereotyped «SessionEJB» or «EntityEJB». The remote interface of

the respective bean and its home are defined outside of the package.

6.2.3.4 Presentation Request Processing

The package contains the concrete elements of the front-end of the application framework. In particular, it contain:

• The Presentation Request Controller (see the <Common Elements and Services:Presentation Request

Processing:Presentation Logic: <<Http_Servlet>> PresentationRequestController> servlet) and

• The Resource Map service (see the < Common Elements and Services:Presentation Request

Processing:Business Logic:ResourceMap> package)

The Presentation Request Controller is a singleton defined in the Presentation Request Processing mechanism. In

other words, it “comes with” the mechanism as a concrete element.

The Resource Map is a service used by the Presentation Request Controller to:

• Map the first user request parameter to a use case (and hence to the use case dispatcher)

• Verify if the user needs to be authenticated, and

• If the user is authenticated, verify if the user needs to be authorized to use the particular system function

(the use case).

The Resource Map service is structurally very similar to the Email Service, as it is an instantiation of the Session EJB

Access mechanism (see the biding and participants class diagrams in < Common Elements and
Services:Presentation Request Processing:Business Logic:ResourceMap> package). The service is comprised

of

• A Session EJB (<<SessionEJB>> ResourceMapEJB) with its home and remote interface

• A delegate (ResourceMapDelegate Java Bean), and

• A locator (ResourceMapLocator Java Bean).

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

RDN Distribution Rational Software, 2001 Page 18 of 37

6.2.3.5 Sign In Log

Sign In Log has two elements:

• An Entity Bean (see <Common Elements and Services:Sign In Log:Business Logic:SignInLogger:
<<EntityEJB>> SignInLoggerEJB> package) that is used to store the sign-in attempts/actions of the

users, and

• A sign-in service implemented as a Session Bean (see <Common Elements and Services:Sign In

Log:Business Logic: SignInLoggerManager> package).

The SignInLoggerManager is once again an instantiation of the Session EJB Access mechanism and hence can be

accessed via a delegate. The two key attributes of a sign-in attempt are userId and actionTime.

6.2.3.6 Utility Classes and XML Parser

The Utility Classes and the XML Parser packages contain support elements. As the name implies, the XML Parser

contain a utility Java class that loads and parses XML files.

The Utility Classes package contains:

• Value classes (classes used to pass state of Entity Beans by value)

• Exception classes, and

• Helper classes used by, for example, the locators to encapsulate connection with the EJB Container.

6.3 User-Experience Model

The user experience model captured in the <Logical View:User-Experience Model> package is a very important

part of the specification of the PearlCircle Online Auction application. It captures the screens presented to the user

and the transitions between screens resulting from the user-generated events such as clicking on a URL or a submit

button of a form. Descriptions of the screens also contain descriptions of the dynamic content that the system must

produce and display to the user.

The user experience model consists of:

• Navigational maps, showing allowable transitions (navigations) between system screens

• Storyboards describing navigations inside the scope of individual use cases, and

• Static “lists” of user experience model elements.

These three elements are briefly described in the following subsections.

Complementing the user experience model are mappings between its elements and the design elements that

contribute to their “creation”. In our online auction system the screens and forms of the user experience model are

mapped to the JSPs and static pages that provide the HTML for the screens. This mapping is a contract between the

designer of the systems interface and the designer of the business logic of the system.

6.3.1 Architecturally Significant Navigation Map(s)

The diagram below shows the PearlCircle Online Auction navigation map for the architecturally significant use cases.

This means, that the diagram shows all the screens and screen-to-screen transitions for the key use cases of the

system.

The classes on the diagram represent (1) screens (stereotype «screen»), (2) forms (stereotype «form») or (3) value

objects whose content is displayed on the screens or in the forms.(no stereotype).

The relationships between classes represent transitions between screens initiated by the user’s actions. Transitions

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

RDN Distribution Rational Software, 2001 Page 19 of 37

can be paired with the methods on the forms or on the screens, where the methods represent allowable user-

generated events.

Architecturally Significant Navigation Map

account activation

activation info form

invalid activation info submitted

welcome

valid activation info submitted

auction creation success

auction payment form

submit auction payment info

browse auction catalog

show or hide category

item search form

items not found

bid on item results

auction payment info

item bid history

item image

item list

display previous or next page

auction category has listed items

items found

bid information form

valid bid submitted

bid on item

invalid bid submitted

auction info confirmation
confirm auction info

auction info form

valid auction info submitted

$signin

item detail

display bid history

bid on item auction closed

display image

item selected

bid cancelled

bid on item accepted

auction info

update auction info

invalid auction info submitted

previously listed items

display previous or next screen

item selected to relist or new auction to be created

signin form

invalid username and/or password entered

account deactivation confirmation

new account confirmation

new account

create new account

pending payments

bid request but user has pending payments

account home

create auction

create auction and pending payments

do not update payment info

create auction and user has previously listed items

valid username and password entered
account deactivation cancelled

manage account

update payment info

manage account

deactivate account and pending payments

deactivate account and active auctions

deactivate account

invalid account info
(from User Account Management)

account info form

valid account info entered

new payment info entered but pending payments not paid

valid account info submitted or request cancelled

invalid account info entered
acknowledge msg

6.3.2 Architecturally Significant Use-Case Storyboards

Each use case has its own so-called storyboard. A storyboard is a collaboration of user experience model elements

that participate in the realization of a use case. In other words, a storyboard shows system behavior from the user

experience model perspective. Below, as an example, we show the participants and the basic flow of the Bid on Item

use case storyboard.

Bid on Item Use Case Storyboard Participants and Basic Flow

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

RDN Distribution Rational Software, 2001 Page 20 of 37

Bid On Item Use-Case Storyboard Participants

If the user is not
signed-in, this flow will

be interrupted by the
Sign In sequence

bid on item results

(from Auction Management)

<<screen>>

bidder's name
bid amout

item name
email account

$navigate to()

bid on item
(from Auction Management)

<<screen>>

bid status message

$navigate to()

$display invalid bid msg()

bid information form
(from Auction Management)

<<input form>>

bid amount

submit bid()

cancel bid()

valid bid submitted

invalid bid submitted

item detail

(from Auction Catalog)

<<screen>>

category name
item title

description

seller's name
auction start day

auction start time
auction end date

highest bid
minimum bid increment

starting price
number of bids

image available

bid status message

bid on item()
display image()

display bid history()

$navigate to()
$display bid cancelled msg()

$display auction closed msg()

bid on item accepted

bid cancelled

bid on item auction closed

pending payments
(from User Account Management)

<<screen>>

pending payments msg

update payment info()

$navigate to()
do not update payment info()

$display pending payments could not be paid msg()

$display create auction pending payments msg()
$display bid on item pending payments msg()

$display deactivate account pending payments msg()

bid request but user has pending payments

manage account

(from User Account Management)

<<screen>>

username
email

creditname
creditaddress

creditcity

creditstate
creditzip

creditaccount

creditexpire

credittype
problem message

$navigate to()

$display account info invalid message()

deactivate account()

update payment info

account home

(from User Account Management)

<<screen>>

user name

account balance
last operation status msg

do not update payment info

deactivate account and active auctions

Start Here

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

RDN Distribution Rational Software, 2001 Page 21 of 37

 : Buyer : item detail
 : bid on item : bid on item

results

 : bid information

form

1: bid on item()
2: $navigate to()

Bid On Item Use-Case Storyboard: Basic Flow

3: submit bid()

4: $navigate to()

5: $navigate to()

6: $display invalid bid msg()

The Buyer indicates that

he would like to place a
bid on the displayed

item.
The system displays the

bid on item form, so that
the Buyer can enter the
bid information.

[entered bid valid]

[entered bid not valid]

The Buyer submits his

information.

If the entered bid is
valid, the system

displays a bid
confirmation screen,
which contains the

entered bid information.

If the entered bid is
invalid, the bid entry
form is re-displayed and

an "invalid bid" message
is displayed.

The basic flow of the storyboard can be summarized as follows:

• The user is presented with the item detail screen that contains bid -on-item URL

• When the user clicks on the URL s/he will be presented with the bid on item screen for bidding or, if the

user owes money to the site, s/he will be presented with the pending payment screen

• The bid on item screen contains a form to make a bid. The user fills out the form to submit the bid

• If the bid increment is correct, the user is presented with the bid on item results screen.

6.3.3 User Experience Model Elements

The model elements of the user experience model (see <Logical View:User-Experience Model:Ux Model

Elements> package) have been grouped along the business components boundaries, that is:

• Auction Catalog Ux Model Elements

• Auction Management Ux Model Elements, and

• User Account Management Ux Model Elements.

6.3.4 Mappings to Designs Elements

The mappings between Ux model elements and the design elements (in particular the JSPs) are very important. They

provide the “bridge” between the “creative” designs of the system and the technical design of the system. The

mappings are captured in <Logical View:Design Model:Design Elements:“business component

package”:Presentation Logic:Design Model to Ux Model Traceabilities> class diagrams.

For example, the diagram below shows the mapping between the design model elements and the Ux model elements in

the Auction Management business components. These mappings demonstrate what JSPs produce the screens

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

RDN Distribution Rational Software, 2001 Page 22 of 37

presented to the user during execution of auction management use cases. One of the use cases is Bid on Item

discussed in 6.3.2.

Design Model to Ux Model Traceabilities for Auction Management Business Component

bid_on_item
(from Bid On Item)

<<Server Page>>

bid_on_item_results

(from Bid On Item)

<<Server Page>>

cancel_auction_confirmation

(from Cancel Auction)

<<Server Page>>

cancel_bid

(from Bid On Item)

<<Server Page>>

createauction_confirm

(from Create Auction)

<<Server Page>>

createauction_info

(from Create Auction)

<<Server Page>>

createauction_paymentinfo

(from Create Auction)

<<Server Page>>

createauction_results

(from Create Auction)

<<Server Page>>

auction info

(from Auction Management)...)

<<screen>>

<<trace>>

auction creation success

(from Auction Management)

<<screen>>

<<trace>>

auction payment info

(from Auction Management)

<<screen>>

auction info confirmation

(from Auction Management)

<<screen>>

<<trace>>

<<trace>>

bid on item results

(from Auction Management)

<<screen>>

<<trace>>

Bid On Item

(from Presentation Logic)

Auction Management

(from Ux Model Elements)

Create Auction

(from Presentation Logic)

Cancel Auction

(from Presentation Logic)

bid on item

(from Auction Management)...)

<<screen>>

<<trace>>

item detail

(from Auction Catalog)...)

<<screen>>

<<trace>>

Auction Catalog

(from Ux Model Elements)

auction cancelled

(from Auction Management)

<<screen>>
<<trace>>

7. Architecturally-Significant Use-Case Realizations

This section shows the architecturally significant use-case realizations. Each use case realization is a collaboration of

design elements from the business components and common elements and services. For each use case we show:

• Use-case static view, that is the participants of the use case, and

• Use case dynamic view, that is the collaboration between the use case participants.

It is important to notice, that all use case realizations have a very similar structure. This is because all use cases have

been derived from the two architecture mechanisms described in Paragraph 6.2.2. Complete descriptions of the use

cases and scenarios of these realizations can be found in the package <Logical View : Design Model : Design

Use-Case Realizations>.

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

RDN Distribution Rational Software, 2001 Page 23 of 37

7.1 Bid on Item

Participants

HttpServletRequest

(from http)

G S

HttpServlet

RequestDispatcher

(from servlet)

forward()

include()

HttpSession

(from http)

bid_on_item_results

(from Bid On Item)

bid_on_item_client

(from bid_on_item)

checkBidAmount()
check()

bid_on_item

(from Bid On Item)

0..10..1

<<build>>

BidManagerDelegate

(from BidManager)

BidManagerDelegate()

bidOnItem()
getHighestBidder()
getNumberOfBids()

getBidHistory()
cancelBid()

getSeller()
getBidIdWithHighestBid()
getCurrentHighestBid()

setBidPendingStatus()

AccountManagerDelegate

(from AccountManager)

validate()
AccountManagerDelegate()
create()

retrieve()
hasPendingPayment()
update()

getAccountManagerRemote()
getUnpaidPendingPayments()
activateUserAccount()

deactivateUserAccount()

getCreditCardInfo()
getAllPreviouslyListedItems()
hasPreviouslyListedItems()

getUserAccountByUserId()
getUserAccountByUniqueId()
recordPendingPaymentNotice()

deletePendingPayments()
setUserUIDToGroupId()

EmailManagerDelegate
(from EmailManager)

EmailDelegate()
sendMail()

BidOnItemDispatcher

(from Bid On Item)

H S

BidOnItemDispatcher()

doGet()
doPost()

request response from view

request response
request response

11

11

11

ResourceMap

(from BusinessLogic)

ResourceMapDelegate

(from ResourceMap)

PresentationRequestController
(from Presentation Logic)

H S

forward request to dispatcher

authenticate user

11

get resource info

All requests from the PresentationRequestController
to the BidOnItemDispatcher and from the

BidOnItemDispatcher to the views are done via the
RequestDispatcher.

forward request

Basic Flow

 : User

 : PresentationRequestController : BidOnItemDispatcher

 : BidManagerDelegate

 : bid_on_item

 :

bid_on_item_results

 : AccountManagerDelegate

 : EmailManagerDelegate

 : bid_on_item_client

10: checkBidAmount()
9: check()

11: alert("<problem message>")

 :
HttpSession

1: service(HttpServletRequest, HttpServletRespon...

8: submit bid information

2: //forward request

13: //forward 4: hasPendingPayment(uniqueId)

14: getUserAccountByUniqueId(uniqueId")

6: //service

15: bidOnItem(String, String, double)

5: getCurrentHighestBid(String, String)

17: //service

16: sendMail(String, String, String, String)

3: getAttribute("uniqueId")7: //build

12: service(HttpServletRequest, HttpServletResponse)

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

RDN Distribution Rational Software, 2001 Page 24 of 37

7.2 Browse Auction Catalog

Participants

HttpServletRequest

(from http)

G S

HttpServlet

RequestDispatcher
(from servlet)

forward()
include()

HttpSession

(from http)

ShowCategory
(from browse_auction_catalog)

browse_auction_catalog
(from BrowseCatalog)

browse_auction_catalog_client_page
(from browse_auction_catalog)

<<client page>>

11

<<build>>

item_list
(from BrowseCatalog)

item_detail
(from BrowseCatalog)

item_bid_history
(from BrowseCatalog)

BrowseCatalogDispatcher
(from BrowseCatalog)

H S

BrowseCatalogDispatcher()

...

request response

request response

request responserequest response

request response from view

AuctionCatalogDelegate
(from AuctionCatalog)

AuctionCatalogDelegate()
getAuctionCatalogInstance()

getAllMatchingOpenAuctions()

getAllItemsForMatchingOpenAuctions()
getAllAuctionsCategoriesNames()

getAllActiveOverdueAuctions()
getAuctionById()

getAllOpenAuctions()
getAuctionItemInformation()

getAllOpenAuctionInformationsForSpecifiedUserId()
getPreviouslyListedItems()

getOpenItemsByCategory()
getItemsForSearchText()
getAuctionById()

getCategoryNamesWithOpenAuctions()

11

BrowseCatalogService

(from BrowseCatalog)

H S

BrowseCatalogService()

service()

11

ResourceMap

(from BusinessLogic)

ResourceMapDelegate
(from ResourceMap)

PresentationRequestController
(from Presentation Logic)

H S

11

get resource info

All requests from the PresentationRequestController
to the BrowseCatalogDispatcher and from the

BrowseCatalogDispatcher to the views are done via
the RequestDispatcher.

forward request to dispatcher

authenticate user

forward request

Basic Flow

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

RDN Distribution Rational Software, 2001 Page 25 of 37

 : User :
PresentationRequestController

 :
BrowseCatalogDispatcher

 :

browse_auction_catalog

 :

browse_auction_catalog_client_page

 :

BrowseCatalogService

 : AuctionCatalogDelegate : item_list : item_detail :

item_bid_history

1: service(HttpServletRequest, HttpServletResponse)

2: //forward request

3: //doGet

For details on the "//"

messages, see the
Presentation Request

Processing mechanism.

Sequence Diagram: Presentation Request

Processing / Process Presentation Request (-)

10: //forward request

12: //service

13: doPost(HttpServletRequest, HttpServletResponse)

14: //forward request

15: getItemsForSearchText(string, string)

17: //service

16: //service

18: doGet(HttpServletRequest, HttpServletResponse)

19: //forward request

20: getAuctionItemInformation(String)

21: //service

22: doGet(HttpServletRequest, HttpServletResponse)

23: //forward request
24:

Access to the bid history is
not currently implemented.

Optionally, the User may choose to

submit a bid for the auction. This is

described in a separate use-case
realization. See the Bid on Item

use-case realization.

Sequence Diagram: Bid on Item / Basic Flow (-)

4: create

Browse By Category

The user selects a category.

The system displays the open auctions
for the selected category.

11: getOpenItemsByCategory(stri...

The user enters search criteria to use to

locate an open auction.
If there are open auctions that fit the

specified criteria, the system displays
the list to the user for the user to choose

from.

If there are no open auctions that fit the
criteria, the system displays a "no open

auctions found" message to the user.

Browse By Searching

[auctions not found that match criteria]

[auctions found that match criteria]

The user selects an auction from the
displayed list.

The system displays the auction information.
 The user is also given the option to view the

bid history for the auction item and/or an
image of the item. To view the item image,

the user clicks on a link that displays the

image directly from the server on which the
image is hosted.

View Auction Information

The User requests to browse the
auction catalog.

The system displays the browse
auction catalog page so the user can

enter the criteria to use for browsing

(the user can browse by category or do
a search). The page will contain all

categories that contain open auctions
(the category list is provided by an

applet that is initialized when the client
page is created).

25: //service

 :

ShowCategory

5: init()

6: service()

7: getCategoryNamesWithOpenAuctions()

8: click on category name

9: service(HttpServletRequest, HttpServletResponse)

The user indicates that he/she would like
to view the bid history of the item.

The system displays the bid history of
the item.

Applets can only make calls to

its originating server. Thus, the
ShowCategory applet must

access delegatea via servlets.

Sequence Diagram:

AuctionCatalog /
AuctionCatalogDelegate

Flow

Sequence Diagram:

AuctionCatalog /

AuctionCatalogDelegat
e Flow

Sequence Diagram:

AuctionCatalog /
AuctionCatalogDeleg

ate Flow

Sequence Diagram:
AuctionCatalog /

AuctionCatalogDelegate
Flow

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

RDN Distribution Rational Software, 2001 Page 26 of 37

7.3 Close Auction

Participants

Close Auction Process
(from Process View)

<<process>> AuctionTimer
(from AuctionManager)

Class Diagram:
AuctionManager / Main

For details on the
relationships that
AuctionTimer has
with other design
elements, see the
AuctionManager
main class diagram.

Basic Flow

See the AuctionTimer
interaction diagram.

Sequence Diagram:
AuctionManager /

AuctionTimerFlow

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

RDN Distribution Rational Software, 2001 Page 27 of 37

7.4 Create Account

Participants

One for the entire
application

HttpServletRequest

(from http)

HttpServlet

(from http)

RequestDispatcher

(from servlet)

HttpSession
(from http)

createaccount_verify

(from Create Account)

CreditInfo

(from Utility Classes)

cardNumber : String = ""
city : String = ""

zip : String = ""
name : String = ""

address : String = ""
state : String = ""

prevCardNumber : String = ""
expiration : String = ""

CreditInfo()

UserInfo

(from Utility Classes)

userId : String = ""

password : String = ""
firstName : String = ""

lastName : String = ""

addr1 : String = ""
addr2 : String = ""
city : String = ""

state : String = ""
zip : String = ""

country : String = ""
phone : String = ""
email : String = ""

status : String = ""
uniqueId : String = ""

accountNumber : String = ""
cardName : String = ""
cardType : String = ""

cardExpirationDate : String = ""
secretNumber : String = ""

UserInfo()

Hashtable

(from util)

Hashtable()
put()

AccountManagerDelegate

(from AccountManager)

validate()
AccountManagerDelegate()

create()
retrieve()

hasPendingPayment()
update()

getAccountManagerRemote()
getUnpaidPendingPayments()
activateUserAccount()

deactivateUserAccount()
getCreditCardInfo()

getAllPreviouslyListedItems()
hasPreviouslyListedItems()
getUserAccountByUserId()

getUserAccountByUniqueId()
recordPendingPaymentNotice()

deletePendingPayments()

setUserUIDToGroupId()

EmailManagerDelegate

(from EmailManager)

EmailDelegate()

sendMail()

SignInLoggerManagerDelegate

(from SignInLoggerManager)

SignInLogDelegate()

addSignInAttempt()

CreateAccountDispatcher

(from Create Account)

CreateAccountDispatcher()
doGet()

doPost()

11

11
11

createaccount_email

(from Create Account)

ResourceMap

(from BusinessLogic)

ResourceMapDelegate

(from ResourceMap)

PresentationRequestController

(from Presentation Logic)

forward request to dispatcher

authenticate user

11

get resource info

All requests from the PresentationRequestController
to the CreateAccountDispatcher and from the

CreateAccountDispatcher to the views are done via
the RequestDispatcher.

forward request

home

(from User Home)...)

account_home
(from User Home)

request response from view

request response

request response

request response

request response

createaccount_entry

(from Create Account)

request response

createaccount_entry_client

(from createaccount_entry)

check()
next_check_step()

1

1

1

1

<<build>>

Basic Flow

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

RDN Distribution Rational Software, 2001 Page 28 of 37

 : User
 :

PresentationRequestController
 :

CreateAccountDispatcher
 :

createaccount_entry
 : UserInfo : CreditInfo :

AccountManagerDelegate
 : HttpSession :

createaccount_verify
 :

EmailManagerDelegate
 : home : createaccount_email : SignInLoggerManagerDelegate :

account_home

 : createaccount_entry_client : Hashtable

2: //forward request

For the details on how
the "//" messages are
implemented, see the

Presentation Request
Processing mechanism.

Sequence Diagram: Presentation Request Processing /
Process Presentation Request (-)

3: //service

10: //forward request
11: UserInfo()

12: CreditInfo()

17: //service

19: //forward request

25: create(com.rational.eda.avalanche.auction.common.utility.UserInfo, com.rational.eda.avalanche.auction.common.utility.CreditInfo)

26: sendMail(String, String, String, String)

27: //service

30: //forward request

31: //service

33: //forward request

34: retrieve(com.rational.eda.avalanche.auction.common.utility.UserInfo, com.rational.eda.avalanche.auction.common.utility.CreditInfo)

36: activateUserAccount("<userid>")

38: setUserUIDToGroupId("<userInformation.uniqueId>", "Users")

39: addSignInAttempt("<userid>", true)

42: //service

16: setAttribute("CreateAccountInfo", hashtable)

13: Hashtable()

14: put("UserInfo", UserInfo)

15: put("CreditInfo", CreditInfo)

22: UserInfo()

24: CreditInfo()

35: //service

5: click submit button

9: service(HttpServletRequest, HttpServletResponse)

6: check()

7: next_check_step()

8: alert(<problem message>)

If the entered information is invalid, the
user is asked to re-enter.

1: service(HttpServletRequest, HttpServletResponse)
The User indicates that he/she would
like to create an account.

The system displays the create
account entry screen so that the user
can enter new account information.

4: build

18: service(HttpServletRequest, HttpServletResponse)

29: service(HttpServletRequest, HttpServletResponse)
The User clicks on the URL that was

sent in the email.
The System displays the account
activation page, so the User can enter
the activation code (also received in
the email).

32: service(HttpServletRequest, HttpServletResponse)

40: setAttribute("username", "<userid>")

The User enters his/her user id and the
activation code.

The system retrieves the user's
information and validates the activation
information.

If the entered activation information is valid,
the System activates the User's account,
sets the user's group, adds a successful
sign in to the sign in log, and sets the
username attribute on the session (this is

used by other system elements to
determine whether the user is signed in).
The System then displays a account
activated message to the user on the
account home page (the home page that is
displayed when the user is signed in).

[entered activation information is valid]

The User submits account information.
The client page checks to make sure that
information has been entered into the
create account form, and that information
is of the proper format (i.e., the right

length, characters, etc.).

[entered account info invalid]

41: setAttribute("uniqueId", "<userInformation.uniqueId>")

37: getUserAccountByUserId(String)

The unique id is part of the

user information returned from
the AccountManagerDelegate

20: getAttribute("CreateAccountInfo")

21: get("UserInfo")

23: get("CreditInfo")

[entered activation information is invalid]
If the entered activation information is
invalid, the System displays a bad
activation code message and the user is
asked to re-enter.

[entered account info valid]

Once valid information is entered, the
system extracts the information from the
request, generates the activation number,
stores the entered account information on
the Http session, and then displays the
create account verify page that asks the
user to verify that the account should be

created with the entered information. The
page also informs the user that he/she will
be sent an email that describes how to
activate the account.

The user confirms that the account
should be created.
The System pulls the account
information off the session and creates
the account. The System sends an

e-mail to the User with activation
instructions (including the activation
code, URL of the activation page).
The System informs the User that the
account has been created, but must be

activated and an email with instructions
will be sent. The system displays the
home page (the user is not considered
to be signed in yet).

28: service(HttpServletRequest, HttpServletResponse)

STOPPED
H E R E

Sequence Diagram:
AccountManager /
AccountManagerDelegate

Flow

Sequence Diagram:
EmailManager /
EmailManagerDelega
teFlow

Sequence Diagram:
AccountManager /
AccountManagerDelegate
Flow

Sequence Diagram:

AccountManager /
AccountManagerDelegate
Flow

Sequence Diagram:
SignInLoggerManager /
SignInLogDelegate Flow

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

RDN Distribution Rational Software, 2001 Page 29 of 37

7.5 Create Auction

Participants

One for the

entire

application

HttpServletRequest

(from http)

G S

HttpServlet

HttpSession

(from http)

createauction_confirm
(from Create Auction)

createauction_results
(from Create Auction)

createauction_paymentinfo_client_page

(from createauction_paymentinfo)

check()

next_check_step()

createauction_paymentinfo
(from Create Auction)

11
<<build>>

createauction_info_client_page
(from createauction_info)

check()

next_check_step()

createauction_info
(from Create Auction)

11

<<build>>

RequestDispatcher

(from servlet)

forward()

include()

AuctionManagerDelegate

(from AuctionManager)

AuctionManagerDelegate()

createAuction()

validateAuctionId()

getAuctionInfo()

cancelAuction()

closeAuctions()
closeAuction()

AccountManagerDelegate

(from AccountManager)

validate()

AccountManagerDelegate()

create()

retrieve()

hasPendingPayment()

update()

getAccountManagerRemote()

getUnpaidPendingPayments()

activateUserAccount()

deactivateUserAccount()
getCreditCardInfo()

getAllPreviouslyListedItems()

hasPreviouslyListedItems()

getUserAccountByUserId()

getUserAccountByUniqueId()

recordPendingPaymentNotice()

deletePendingPayments()

setUserUIDToGroupId()

CreateAuctionDispatcher
(from Create Auction)

H S

auctionSubCategoryIds[] : String

auctionSubCategoryNames[] : String

doGet()

doPost()

CreateAuctionDispatcher()

getDate()

createAuction()

setAuctionInfomation()

saveFile()

11

11

ResourceMap

(from BusinessLogic)

ResourceMapDelegate
(from ResourceMap)

PresentationRequestController

(from Presentation Logic)

H S

authenticate user

forward request to dispatcher

11

get resource info

All requests from the PresentationRequestController

to the CreateAuctionDispatcher and from the

CreateAuctionDispatcher to the views are done via
the RequestDispatcher.

forward request

request response from view

request response

request response

request response

request response

Basic Flow

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

RDN Distribution Rational Software, 2001 Page 30 of 37

 : Seller : createauction_info_client_page :

PresentationRequestController

 :

CreateAuctionDispatcher
 :

AccountManagerDelegate

 :

createauction_info

 :

createauction_confirm

 :
AuctionManagerDelegate

 :

createauction_results

 :
createauction_paymentinfo

 :

createauction_paymentinfo_client_page

1: service(HttpServletRequest, HttpServletResponse)

2: //forward request

5: //service

12: //forward request

3: hasPendingPayment(String)

4: hasPreviouslyListedItems(String)

15: //service

16: service (HttpServletRequest, HttpServletResponse)

17: //forward request

28: createAuction(String, String, String, String, String, String, String, java.util.Date, String, java.util.Date, String, long, double, double, String, String, String, double, String, String, String, java.util.Date)

29: //service

18: getCreditCardInfo(String)

For more details on the "//"

messages, see the
Presentation Request

Controller mechanism.

Sequence Diagram: Presentation Request Processing /
Process Presentation Request (-)

13: validateAuctionInfo(AuctionInformation)

If the seller is not signed in, he/she is
redirected to the sign in dispatcher.

See the Sign In use-case realization.

Sequence Diagram:
Sign In / Basic Flow

14: //service

[no pending payments and no previously listed auctions]

6: build

7: click on submit button

11: service(HttpServletRequest, HttpServletResponse)

19: //service

8: check()

9: next_check_step()

The seller enters new auction

information (may include a link to an
image of the auctioned item).

The client page checks to make sure
that information has been entered into

the create account form, and that
information is of the proper format

(i.e., the right length, characters,
etc.).

If the entered information is invalid, the
user is asked to re-enter.

10: alert(<problem message>)

Once valid information is entered,
the system validates the entered

auction information (e.g., makes
sure that the image URL is valid).

[entered auction information is invalid]

[entered auction information is invalid]

If the entered auction information is
invalid, the system informs the user

and asks the user to re-enter the
auction information.

[entered auction information is valid]

[entered auction information is valid]

If the auction information is valid, the

system displays the auction
confirmation page so the user can

confirm the entered auction
information.

The Seller confirms that the

auction should be created.
The system displays a screen to

collect auction payment
information (the Seller's on-file

credit information is displayed as
the default).

20: create

21: click on the submit button

The user enters the auction payment
information.

The client page checks to make sure
that information has been entered

into the create account form, and that

information is of the proper format
(i.e., the right length, characters,

etc.).

25: service(HttpServletRequest, HttpServletResponse)

27: //forward request

22: check()

23: next_check_step()

[entered auction payment information is valid]

If the entered payment information
was valid, The system creates the

auction (which automatically adds
the auction to the auction catalog)

and displays an "auction created"
message to the Seller.

If the entered information is invalid, the
user is asked to re-enter.

24: alert ("<problem message>")

[entered auction payment information is invalid]

The Seller request to create a new
auction.

If the Seller does not have any
pending payments and the user has

not previously listed items that did
not sell, the system displays a

screen to collect new auction
information (the Seller's on-file credit

information is displayed as the
default).

Sequence Diagram: AccountManager /

AccountManagerDelegate Flow

Sequence
Diagram:

AuctionManager /
AuctionManagerDe

legate Flow

Sequence Diagram:

AccountManager /
AccountManagerDelegate Flow

26: doPost(HttpServletRequest, HttpServletResponse)

Sequence Diagram:
AuctionManager /

AuctionManagerDelegate Flow

See a separate diagram to

see what happen if the Seller
chooses to cancel the create

auction request.

Sequence Diagram: Create

Auction / Seller Cancels Create
Auction Request

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

RDN Distribution Rational Software, 2001 Page 31 of 37

7.6 Sign In

Participants

One for the
entire
application

HttpServletRequest

(from http)

G S

HttpServlet

RequestDispatcher
(from servlet)

forward()
include()

HttpSession

(from http)

signin
(from Sign In and Out)...)

SignInLoggerManagerDelegate
(from SignInLoggerManager)

SignInLogDelegate()
addSignInAttempt()

AccountManagerDelegate
(from AccountManager)

validate()
AccountManagerDelegate()
create()
retrieve()
hasPendingPayment()
update()
getAccountManagerRemote()
getUnpaidPendingPayments()
activateUserAccount()
deactivateUserAccount()

getCreditCardInfo()
getAllPreviouslyListedItems()
hasPreviouslyListedItems()
getUserAccountByUserId()
getUserAccountByUniqueId()
recordPendingPaymentNotice()...
...

SignInDispatcher
(from Sign In and Out)

H S

SignInDispatcher()
doGet()
doPost()

11

request response from view

request response

11

has_pending_payme...
(from Pending Payments)

request response

account_home
(from User Home)

ResourceMap

(from BusinessLogic)

ResourceMapDelegate
(from ResourceMap)

PresentationRequestController
(from Presentation Logic)

H S

forward request to dispatcher

authenticate user

11

get resource info

All requests from the PresentationRequestController
to the SignInDispatcher and from the
SignInDispatcher to the views are done via the
RequestDispatcher.

forward request
request response

Basic Flow

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

RDN Distribution Rational Software, 2001 Page 32 of 37

 : User :

PresentationRequestController
 :

SignInDispatcher

 :

AccountManagerDelegate

 :

SignInLoggerManagerDelegate

 : signin :

account_home

 :

has_pending_payments

 : HttpSession

1: service(HttpServletRequest, HttpServletResponse)

2: //forward request

3: //service

4: service(HttpServletRequest, HttpServletResponse)

5: //forward request

6: validate(userid, password)

8: addSignInAttempt(userid, true)

11: hasPendingPayment(String)

For more information on

the "//" messages, see

the Presentation Request

Processing interaction

diagram.

Sequence Diagram: Presentation Request

Processing / Process Presentation Reque...

15: addSignInAttempt("<userid>", false)

16: //service

14: //service

12: //service

The Sign-In Dispatcher can also be invoked as

the result of a redirect (i.e., the user attempted

to perform a function that he must me signed in

to perform, so he is redirected to the sign in

form before continuing).

The User makes a sign in

request.

The system displays the

Sign-In screen, where the

user can enter his/her sign-in

information.

The User enters his/her

userid and password.

The system validates the

userid and password.

If sign-in was

invoked as a result

of a redirect, the

user is redirected

to the page for the

original request.

9: setAttribute("username", userid)

7: getUserAccountByUserId(userid)

[entered userid and password are valid (user authenticated)]

10: setAttribute("uniqueId", userInformation.uniqueid)

[user has pending payments]

If the entered userid and

password is invalid, an

unsuccessful sign in attempt is

added to the sign in log, the

system prompts the user to
re-enter his/her userid and

password, and the sign in form

is re-displayed.

[entered userid and password are invalid]

If the entered userid and

password are valid, a successful

sign in attempt for the user is

added to the sign in log, signed

in user information is retained on

the session (user id and unique

id, and the user is considered to

be signed in.

If the user has pending payments,

the system displays the pending

payment page. If the user does

not have any pending payments,

the system displays the user

account home page.

The unique id is part of the
user information returned from

the AccountManagerDelegate

account_hom

e is in new

dispatcher.

[user has no pending payments]

13: service(HttpServletRequest, HttpServletResponse)

Sequence Diagram:

AccountManager /

AccountManagerDelegate Flow

Sequence Diagram:

SignInLoggerManager /

SignInLogDelegate Flow

Sequence Diagram:

AccountManager /

AccountManagerDelegate Flow

Sequence Diagram:

SignInLoggerManager /

SignInLogDelegate Flow

8. Process View

The process view of a system shows the assignment of active classes (classes that must run in their independent

threads of control) to the operating systems processes and threads. In the case of J2EE deployment platform, the

operating system resources are “hidden” underneath the container services. In other words, the infrastructure

manages the operating system resources. In particular, the containers are placed in operating system processes or

JVMs and the containers in turn manage thread-pools and assign the threads to active objects.

In the J2EE architecture JSPs, Servlets, and EJBs are assumed to be active. Hence, the process view of a J2EE-based

system is rather straightforward and shows the communication mechanisms between the containers and what types

of design/implementation elements run in what container. The process view of the PearlCircle Online Auction is

shown below.

Process View of the PearlCircle Online Auction

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

RDN Distribution Rational Software, 2001 Page 33 of 37

RMI

HTML

SQL Server

<<process>>

All Servlets and server pages

(JSPs) run in the Web

Container. EJB interfaces

(home and remote) and Java

classes (delegates, locators)

can also run in the Web

Container.

Applets and

Java scripts

run in the

Browser.

EJB implementation beans

run in the EJB Container.

EJB interfaces (home and

remote) and Java classes

(delegates, locators) that are

accessed by the

implementation EJB also run

in the EJB Container.

JDBC

Persisted EJBs are

stored via SQL

statements

automatically issued

by the EJB Container

that execute within

the SQL Server

EJB interfaces (home and

remote) and Java classes

(timer, delegates,

locators) that are

accessed during the

closing of expired

auctions run in the Close

Auction Process.

ShowCategory

(from browse_auction_catalog)

browse_auction_catalog_client_page

11

bid_on_item_client

(from bid_on_item)

checkBidAmount()...

check()

Browser

<<proces...

JApplet

(from swing)

Java script is

modeled as

operations on

the client page.

Applet

This diagram shows a representative sample of what design elements map to what processes. Not all of the design

elements are shown, but the ones that are should provide enough information for the reader to understand what kind of

design elements are mapped to the different processes.

PresentationRequestController

(from Presentation Logic)

H S

browse_auction_cata...

(from BrowseCatalog)

BrowseCatalogDispat

cher

(from BrowseCatalog)

H S

BrowseCatalogService

(from BrowseCatalog)

H S

AuctionCatalogLocator

(from AuctionCatalog)

AuctionCatalogHome

(from AuctionCatalog)

Home

AuctionCatalog

(from AuctionCatalog)

Remote

AuctionCatalogDelegate

(from AuctionCatalog)

Web Container

<<process>>

AuctionCatalogEJB

(from AuctionCatalogEJB)

S

BidManagerEJB

(from BidManagerEJB)

S

AccountManagerDelegate

(from AccountManager)

AccountManagerHome

(from AccountManager)

Home

CreditBureauDelegate

(from Business Logic)

EJB Container

<<process>>

AuctionTimer

(from AuctionManager)

AuctionManagerDelegate

(from AuctionManager)

TimerTask

(from AuctionManager)

AuctionManager

(from AuctionManager)

Remote

AuctionManagerHome

(from AuctionManager)

Home

Close Auction Process

<<process>>

Collaboration Diagram: Process View /

Example: Process View Instances

The Close Auction Process is a standalone program that runs in a dedicated JVM. The process can be located on the

same or different node as the web container or the EJB container. The process contains a scheduled thread that

“wakes up” at regular intervals. The classes running on this thread communicate with the EJB container, determine

which auctions should be closed, and close them.

9. Deployment View

The deployment view of a system shows the physical nodes on which the system executes and the assignment of the

system processed to the nodes. The PearlCircle Online Auction reference application can be deployed on different

hardware configurations. For examp le, it can be deployed on a single NT workstation. The diagram below shows the

most typical deployment configuration used by the development team.

Client

Browser

Application Server

EJB Container

Web Container

Close Auction Process

Database Server

SQL Server

10. Implementation View

10.1 Source-code Components Organization

The structure of the system components representing the Java source-code units reflects the logical structure of the

system. It can be best seen in the Rose browser and its image shown below.

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

RDN Distribution Rational Software, 2001 Page 34 of 37

The structure also follows the recommended, URL-reversed nesting of Java namespaces that is identical to the

source-code directory structure. In our case, since the reference application has been developed by Rational, all

source-code is stored in a subdirectory X/com/rational/auction in some project directory X. Inside that directory the

components have been grouped along the lines of business components. This is shown in the component diagrams

below and can also be seen in the browser window image above:

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

RDN Distribution Rational Software, 2001 Page 35 of 37

common

useraccount

auction

catalog manager

The components on the diagram above trace to the business components as follows:

• Auction::catalog t races to Auction Catalog business component

• Auction::manager traces to Auction Management business component

• Useaccout traces to User Account Management business component, and

• Commontraces to Common Elements and Servicesw package (the internal structure o f the

namespace/directory follows the decomposition of the package).

The server pages (implemented as JSPs) and the images are all grouped in the UI package that maps into subdirectory

Xui in the project directory X. The structure of the package is shown in the figure below.

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

RDN Distribution Rational Software, 2001 Page 36 of 37

10.2 Deployment Components

The Online Auction application has three deployment units:

1. auction.jar which contains all classes in the ../com/rational/auction/* subdirectories

2. browsecatelog.jar which contains the applet, and

3. auction.war which contains the server pages

The deployment components are in the Component View::jars package that maps into a subdirectory X/jars in the

project directory X.

11. Systems Size

The Online Auction application’s size is described with the following items:

o Labor months: 18

o Business components: 3

o Dependencies on external components: 5

o Lines of Java code: approximately 10,000

o Java source files: 149

o JSP files: 54

o Implemented use cases: 7

PearlCircle Online Auction Issue: 0.2

Software Architecture Document Issue Date: 9/13/01

PCOA SAD 02.doc

RDN Distribution Rational Software, 2001 Page 37 of 37

