13.3 Evaluate Trigonometric Functions of Any Angle

Name \qquad Date \qquad
Today we extend the definitions of the 6 trigonometric functions so that they extend to angles defined as rotations.

1. The circle at right is a unit circle with center at the origin and radius 1. Label the coordinates of the four points where the x-axis and y-axis intersect the circle. Do you remember how to write the equation of the circle?

2. The diagram below shows the first quadrant of the unit circle.
(a) Convert $\frac{\pi}{6}$ radians to degrees, then draw an angle in standard position whose terminal side determines an angle of $\frac{\pi}{6}$ radians.

(b) Draw a vertical line to the x-axis to form a right triangle whose hypotenuse is a radius of the circle. Use special triangles to find:
$\sin \frac{\pi}{6}=$
$\cos \frac{\pi}{6}=$
$\tan \frac{\pi}{6}=$
(c) Find the x - and y-coordinates of the point where the hypotenuse of the triangle meets the unit circle. What do you notice?
3. Repeat Question 2 for angles of $\frac{\pi}{4}$ radians and $\frac{\pi}{3}$ radians.
$\theta=\frac{\pi}{4}$

$$
\theta=\frac{\pi}{3}
$$

Questions 1-3 suggest the following definitions for the trig functions in terms of x - and y coordinates, for angles whose terminal sides are in Quadrant 1:

If (x, y) is on the unit circle:

$$
\begin{array}{ll}
\sin \theta=y & \csc \theta=\frac{1}{y}, y \neq 0 \\
\cos \theta=x & \sec \theta=\frac{1}{x}, x \neq 0 \\
\tan \theta=\frac{y}{x}, x \neq 0 & \cot \theta=\frac{x}{y}, y \neq 0
\end{array}
$$

If (x, y) is not on the unit circle, then $r=\sqrt{x^{2}+y^{2}}$ is the radius of the circle and the hypotenuse of the triangle. This leads to:

$$
\begin{array}{ll}
\sin \theta=\frac{y}{r} & \csc \theta=\frac{r}{y}, y \neq 0 \\
\cos \theta=\frac{x}{r} & \sec \theta=\frac{r}{x}, x \neq 0 \\
\tan \theta=\frac{y}{x}, x \neq 0 & \cot \theta=\frac{x}{y}, y \neq 0
\end{array}
$$

And now we take a big conceptual step - these definitions are applied to all angles, even those whose terminal sides are not in Quadrant 1 , even those where there is no triangle formed.
4. Draw an angle θ in standard position whose terminal side contains the given point. Then use the appropriate definitions to evaluate the six trigonometric functions of θ.
(a) $(-0.6,0.8)$
(b) $(1,-3)$
(c) $(0,-1)$

The circular function definitions for trig lead to patterns about where to expect positive or negative values for the different trig functions. Fill in the following charts with positive and negative signs, where appropriate. Use the unit circles to the right for assistance.

Trig Functions	Quadrant I	Quadrant II	Quadrant III	Quadrant IV
$\sin \theta, \csc \theta$				
$\cos \theta, \sec \theta$				
$\tan \theta, \cot \theta$				

5. Find the following values without a calculator. You will need to use:

- The x - and y-coordinates you found in Questions 1-3
- The circular function definitions of the 6 trig functions, and
- The symmetries of the circle.

A diagram of the unit circle is given for reference.
(a) $\sin \frac{7 \pi}{4}$
(b) $\cos \frac{2 \pi}{3}$
(c) $\tan \frac{7 \pi}{6}$
(d) $\sin \pi$
(e) $\cos 150^{\circ}$
(f) $\csc \left(-30^{\circ}\right)$
(g) $\cot 450^{\circ}$
(h) $\sec \frac{17 \pi}{4}$
(i) $\csc 3 \pi$
(j) $\tan 510^{\circ}$

The ideas concerning symmetries of the circle that you used in the previous question can also be expressed using the concept of reference angles.

A reference angle is defined as the acute angle between the terminal ray and the \boldsymbol{x}-axis. The measure of the reference angle is always positive. You locate the reference angle by drawing a segment perpendicular to the \boldsymbol{x}-axis.
6. Sketch the angle. Then find the measure of its reference angle.
(a) 320°
(b) $\frac{7 \pi}{9}$
(c) $-\frac{4 \pi}{5}$

Can you figure out reference angle formulas for each quadrant? Give two versions for each, in degrees, and radians.
(a) Quadrant II
(b) Quadrant III
(c) Quadrant IV

