AP WORKSHEET 7s: Electronic Configuration Summary 1. Complete the table. (5) | Element | Charge on most common ion | |---------|---------------------------| | Rb | | | Cs | | | Ga | | | Ag | | | Se | | | 2. | Define Ionization Energy. (2) | |----|---| | | | | 3. | Using the metal magnesium as an example, write two separate equations to show the first and second ionization energy of magnesium. (Remember state symbols are important as they form part of the definition (4) | | | First Ionization | | | Second Ionization | | 4. | Which of the following elements (one from each pair) would you expect to have the highest first ionization energy? Explain your answers. (4) | | | Ca or Be | | | Na or Ar | | ~ | | 5. Consider the table of the first four ionization energies for element A shown below. | Ionization | 1 st | 2 nd | 3 rd | 4 th | |------------------|-----------------|-----------------|-----------------|-----------------| | Energy in kJ/mol | 578 | 1817 | 2745 | 11580 | | (i) | In which grou | ip does A appear | on the periodi | c table? (1) | | |-----|---------------|-------------------|----------------|--------------|--| | (-) | m winen gree | ip does it appear | on the periodi | C 1401C. (1) | | - (ii) Predict the formula of the compound that A forms with fluorine. (1) - (iii) What is the minimum number of electrons that A must have? (1) | 6. | Arrange the following species in order of increasing size. Rb ⁺ , Y ³⁺ , Br ⁻ , Kr, Sr ²⁺ and Se ²⁻ (1 SMALLEST | LARGEST | |-----|--|---------| | 7. | Are there any atoms for which the second ionization energy is greater than the first? Explain your answer. (2) | | | | | | | 8. | Is it possible for two different atoms to be isoelectronic? If so give examples. (2) | | | 9. | Is it possible for two different anions to be isoelectronic? If so give examples. (2) | | | 10. | Define electron affinity. (2) | | | 11. | Write an equation to summarize the process of second electron affinity of oxygen. (Remember state symbols are important as they from part of the definition). (2) | | 12. Consider the table of ionization energies for element X shown below. | Ionization | 1 st | 2 nd | $3^{\rm rd}$ | 4 th | 5 th | 6 th | |---------------------|-----------------|-----------------|--------------|-----------------|-----------------|-----------------| | Energy in
kJ/mol | 737 | 1450 | 7732 | 10540 | 13360 | 17995 | | | (i) In which group will X be found? (1) | |----|---| | | (ii) Explain your answer to (i). (2) | | | | | | | | | | | | (iii) Predict the formula of X's bromide. (1) | | 3. | Explain carefully why rubidium tends only to form a +1 ion? (2) | | | | | | | | | | | | | | 4. | Explain carefully why elements in the same group react in similar ways? (1) | | | | | | | | | | | 15. | How would expect the sizes of the hydrogen ion and the hydride ion to compare with that of the hydrogen atom? (3) | | | | | | |-----|---|--|--|--|--|--| | | | | | | | | | | | | | | | | | 16. | How would expect the sizes of the hydrogen ion and the hydride ion to compare with that of the helium atom (3) | 17. | Identify any isoelectronic species in the following list. Fe ²⁺ , Sc ³⁺ , Ca ²⁺ , F ⁻ , Co ²⁺ , Co ³⁺ , Sr ²⁺ , Cu ⁺ , Zn ²⁺ & Al ³⁺ . (4) | | | | | | | 18. | Arrange the following atoms into order of increasing first ionization energy. Sr, Cs, S, F and As. (1) LOWEST HIGHEST | | | | | | | 19. | Give the electron configurations for the following transition metal ions. (3) | | | | | | | | (a) Sc ³⁺ | | | | | | | | (b) Cr ²⁺ | | | | | | | | (c) Ni ³⁺ | | | | | |