

Prince Sultan University Orientation Mathematics Program MATH 002 Midterm Examination Semester II, Term 092 Monday, April 12, 2010 Time Allowed: 120 minutes (2 hours)

Student Name: _____

Student ID #: _____

Section #: _____

Teacher's Name:

Important Instructions:

- 1. You may use a scientific calculator that does not have programming or graphing capabilities.
- 2. You may NOT borrow a calculator from anyone.
- 3. You may NOT use notes or any textbook.
- 4. There should be NO talking during the examination.
- 5. Your exam will be taken immediately if your mobile phone is seen or heard
- 6. Looking around or making an attempt to cheat will result in your exam being cancelled
- 7. This examination has 15 problems, some with several parts. Make sure your paper has all these problems.

Problems	Max points	Student's Points
1	30	
2,3,4	16	
5,6,7,8	17	
9,10,11,12	19	
13,14,15	18	
Total	100	

Q.1 (30 points) Write only the final answer for each part

#	Questions	Answers
1	Evaluate $\log_3(\log_b b)$	
2	Evaluate $\log_{12} \sqrt{12} + \log_5 \frac{1}{125}$	
3	Change the logarithmic expression: $\log_b a = c$ to exponential form	
4	If $\log_b a = 2$ and $\log_b c = 5$, find the value of $\log_c a$	
5	Condense the logarithmic expression $\log x + \log(x^2 - 1) - 2\log 7 + \log(x + 1)$	
6	Find the domain of the function $f(x) = \ln(7 - x)$	
7	Solve $8^{x+7} = 4$	
8	Find the angle that is coterminal to -765°	
9	Convert the angle 18° to radians	
10	Find the measure, in degrees, of the angle θ	
11	Find the exact value of $\frac{1}{2}\sin\theta\csc\theta$	
12	Let $\sin\theta < 0$ and $\cos\theta < 0$. Name the quadrant in which θ lies.	
13	Determine the amplitude and period of $y = -5\cos(\frac{1}{2}\pi x + 4\pi)$	
14	Find the exact value of the expression: $\cos^{-1}\left(\cos\left(-\frac{\pi}{3}\right)\right)$	
15	Find all solutions of the equation: $\cos x = -1$	

Show all steps for each question

Q.2 (8 points) Consider the functions $f(x) = \left(\frac{1}{4}\right)^x$ and $g(x) = \log_{\frac{1}{4}} x$. By constructing tables of coordinates, graph f and g in the same rectangular coordinate system. Determine on the graph the horizontal and vertical asymptotes of f and g.

Q.3 (5 points) The formula $P(t) = 36.1e^{0.0126t}$ models the population *P* of Ohio in millions, where *t* is the number of years after 2005.

(a) What was the population of Ohio in 2005?

(b) When will the population of Ohio reach 40 million?

Q.4 (3 points) At a certain time of day, the angle of elevation of the sun is 35° . Find, to the nearest foot, the height of a building whose shadow is 30 feet long.

Q.5 (3 points) Expand the logarithmic expression $\log\left[\frac{x^3\sqrt[5]{x^2+1}}{(x+1)^4}\right]$ as much as possible.

Q.6 (4 points) Solve the logarithmic equation: $\log_5 x + \log_5(4x - 1) = 1$

Q.7 (4 points) Let P = (4,-3) be a point on the terminal side of an angle θ . Find the exact value of each of the six trigonometric functions of θ .

Q.8 (6 points) Find the exact value of each part. (Show all details) 5π

(a)
$$\cos\frac{5\pi}{3}$$

(b) $sin195^{\circ}$

Q.9 (3 points) The hour hand of a clock is 6 inches long and moves from 1 to 4 o'clock. How far does the tip of the hour hand move? Express your answer in terms of π and then round to two decimal places.

Q.10 (6 points) Graph one period of the function $y = 2\sin(2x - \pi) + 1$

Q.11 (4 points) Use a sketch to find the exact value of $\cos\left(\tan^{-1}(-\frac{1}{2})\right)$

Q.12 (6 points) Let $\sin \alpha = \frac{3}{5}$, α lies in quadrant 2, and $\sin \beta = -\frac{5}{13}$, β lies in quadrant 3. Find the exact value of $\cos(\alpha + \beta)$. Q.13 (8 points) verify each identity (a) $\tan x (\cot x + \cos x \sin x) + \cos^2 x = 2$

(b)
$$\frac{\sin(\alpha - \beta)}{\cos \alpha \cos \beta} = \tan \alpha - \tan \beta$$

Q.14 (5 points) Solve the equation $\sin 4x = \frac{\sqrt{3}}{2}$ on the interval $[0,2\pi)$.

Q.15 (5 points) Solve the equation $\sin x \tan x = \sin x$ on the interval $[0,2\pi)$.