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1. Introduction

LET f{n) be a nonnegative, integer valued arithmetical function. For a
fixed integer k 5= 0 the local density dk of f(n) is defined as

d* = lim- 2J 1 (L 1)

whenever this limit exists. Many common multiplicative and additive
functions possess local densities. As examples we mention a{n), the
number of nonisomorphic abelian groups with n elements, H2(n), the
characteristic function of squarefree numbers, and Q(n) — co{n), where
Q(n) and co(n) denote respectively the number of prime factors of n
counted with and without multiplicities.

The function a(n) is multiplicative. It satisfies a(p) = 1 for every prime
p and, in general, a{pv) equals the number of unrestricted partitions of v.
Kendall and Rankin [13] established the existence of local densities of
a{n) for any given k^l. The first author [10], [11] and Kratzel [14]
determined more closely local densities of a(n) and of related multiplica-
tive functions, and investigated the error term in the asymptotic formula
for the sum in (1.1).

In the case of H2(n), the only relevant value is k = 1 and the
well-known question of the density of squarefree numbers can be also
regarded as a special case of local density for the additive function
Q(n) — co(n), since fi2(n) = 1 is equivalent to Q(/z) — a>(n) = 0. Renyi
[17] was the first to show that all local densities for Q(n) - co(n) exist and
may be computed from the identity

-zip
0.2)

where the product is extended to all primes p. In particular, (1.2) yields
the familiar value d0 = 6JV~2.

Every integer n s= 1 can be written uniquely as n = qs with (q, s) = 1,
where q = q(n) is squarefree and s=s(n) is squarefull (meaning p2 \ n
whenever p \n). It is remarkable that a(n), fi2(n), and Q(n) — a>(n) all
depend only on s(n) and not on q(n). Thus these functions may be
appropriately called arithmetical functions with squarefull kernel, or
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simply s-functions. Henceforth by an s -function we shall mean a
nonnegative, integer valued arithmetical function f(n) such that f(n) =
f(s(n)) for all n 3= 1. In the present context the interest of this definition
lies in the following simple argument showing that any s-function
possesses local densities of any given rank (cf. [5]).

Indeed, if / i s an s -function we have

2 i= 2 2 1 (i-3)

where, here and in the sequel, the letters s and q denote respectively
generic squarefull and squarefree integers. The existence of local
densities follows from the fact that the inner sum in (1.3) can be
satisfactorily estimated by a classical argument based on the Mobius
inversion formula. Namely, uniformly for x, r ^ l w e have

(1.4)
q*Zx,{q,r) = l

with

Yl I l i (1-5)
P\

r

Inserting (1.4) in (1.3) we obtain uniformly for x 3= 1, k 5= 0,

2 \ = dkx + O{xHo£x), (1.6)

where dk is given explicitly as

dk = 6n-2 2 A(s)s~\ (1.7)

In [5], Fainleib obtains a slightly better estimate for the remainder
term in (1.6). Here, it simply stems from the elementary bound

v=2

In this context, it may be worthwhile to keep in mind that an explicit
dependence in k can still be obtained by re-inserting the dropped
condition f(s) = k in the summation.

We now prove (1.4). Let k(n;r) be the multiplicative function of n
defined in the following way: A(l; r) = 1 and

- 1 , if v = l,p\r or v = 2, p\r,

otherwise.

Then we have the identity
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which can be easily established by noting that both sides are multiplica-
tive functions of n, and we also have

l-p-2) = (>x-2A(r). (1.9)
d=l p\r p\r

Thus by (1.8) and (1.9) the left-hand side of (1.4) equals

n**x d\n

r)x + o((2 \X(d; r)\+x^ W\ r)\
Vsj d>x

Put a = I/log x. Then the O-term above is clearly

p\r p\r

2a) «x$ logxB(r).

This completes the proof of (1.4).

2. Definitions and statement of results

As seen above, the question of local densities is essentially solved in
the case of an s-function. A further insight into the structure of the
sequence of those integers n such that f(n) = k may be derived from the
study of the joint distribution of/(«) and some other arithmetic function
F(n), say, closely linked to the multiplicative nature of n. We choose
F(n) = P(n), the largest prime factor of n (n s* 2), P(l) = 1.

We hence introduce the quantity

Vk{x,y;f)= 2 1 (2-1)

generalizing the sum in (1.1). The desired new information will be mainly
reflected in the comparison of (2.1) with

V(*, y)= 2 l-
«sjr,P(n)s>>

the number of positive integers not exceeding x and free of prime factors
larger than y. This function is of constant occurrence in number theory
and has been extensively studied by many authors, including Dickman
[4], de Bruijn [2,3], Alladi [1], Hildebrand [6-8], and Hildebrand-
Tenenbaum [9]. Estimates for W(jt, y) play a crucial role in the proofs of
our results. We discuss in Sections 3 and 5 respectively the known and
new results we need.
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Thus, our aim is to describe as precisely as possible the effect of
varying y on the asymptotic behaviour of the ratio "/*(*, y;f)IW{x, y). It
plainly tends to dk, as given by (1.7), if }>=*—»°° and we want to
determine, to within a relatively small factor, the optimal function yo(x)
such that this still holds uniformly for yo(x)=£y=sx. We obtain in
Theorems 1, 3 below a satisfactory answer to this problem by establishing
the existence of a general "critical point" materializing a change of
behaviour of Wk(x, y;f)W(x, y).

Before we proceed to the formulation of our results, it is convenient to
introduce some notation. For a 3= 0 we define the multiplicative function

T1> (22)
p\n

and, given any s-function/, the generalized local density

dk(a;f) = r\2o) X A(s;o)s-°, (a>|). (2.3)

Noting that the Dirichlet series associated with the characteristic function
of squarefull numbers is £(2s)l;(3s)/£(6s), one obtains by a classical
convolution argument

2l = aiK~1(3)xi + O(xi). (2.4)
SSI

Hence by partial summation and (2.4) it is easily seen that the series in
(2.3) converges for a> \, and moreover we have dk = dk(l;f). Similarly,
for

B(n) = Y\V+p-L>) (2-5)
p\n

we set

Dk(o;f)= £ B(s)s-° (a>|). (2.6)
s = l,f(s)=k

For 2 ̂  y =s x we shall systematically use the notation

log*
u = logy'

and further we define £ = £(u) as the unique positive root of the equation
e § = l + u^ if M > 1 , and set §(1) = 0. Thus £ = log (1 + u£) = logu +
log (£ + 1/u), whence

£(u) = log u + log log u + 0(1). (2.7)

Finally we define

P = P(x,y) = l--^-, (2.8)
logy
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hence from (2.7) it follows that in the range

log2+ex<y^x, x^xo(e) (2.9)

we have

P ^ l + l (2.10)

for any fixed e, 0 < £ < 1.
We now formulate our main result.

THEOREM 1. Let f be an s-function. For any fixed e, 0 < E < 1, and x, y
satisfying (2.9) we have, uniformly in k^O,

Vk{x,y\f) = V(x, y){dk(fi;f) + Oe((dk(fi-^;f)

When / = n2, only s = l appears in d^/3; ju2) = ^~1(2j8). Therefore we
obtain, as a corollary to Theorem 1, that

y; n2) = rx(2j8m*. y)(l + Ot(^^)) (2.12)

holds uniformly in the range (2.9) for 0 < e < l . The problem of the
estimation of W^JC, y;n2) was considered by the first author in [12], but
the result proved there is superseded by (2.12). During the preparation of
the manuscript, the authors have been informed by Daboussi that his
student M. Naimi obtained independently the asymptotic formula con-
tained in (2.12), for the same range, by a different method.

It was pointed out in [12] that the asymptotic formula

*¥x{x,y;n2)= £ ii(n)2~d^>(x, y) = 6^-2W(*, y) (2-13)
nSjr,P(n)ay

cannot hold for y0 < y =£ log x (by the prime number theorem it is easily
seen that the left hand side does not depend on x if y < (1 — e) log*). As
a complement to this and (2.12) we prove

THEOREM 2. For any fixed e, 0 < e < l , and yx(e)<y <\o£~ex, we
have

Wx(x, y;ix2) «W(x, y) exp {-(logy)"3}. (2.14)

As will be clear from the proof, we made here no attempt to find the
best possible factor on the right hand side of (2.14)—especially with
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respect to the dependence in the variable x. Combining (2.12) and (2.14)
we see that we have an asymptotic evaluation of

1 y 2

for all y except when y = log2+o(1)x. This case can be also treated by our
methods at the cost of some technical complications, but we shall not
consider it here.

In view of (2.10) the series defining dk(ji;f) is normally convergent
when (2.9) is satisfied, hence dk{fi;f) is in this region a continuous
function of /3, and . _ . _

holds simultaneously for all s-functions/if and only if £(H)/logy—»0 as
x—>oo. By (2.7) this condition is equivalent to

logy

log log x
•oo, (;t->oo). (2.15)

Substituting in Theorem 1, we thus obtain a general answer to the
question raised above concerning the change of behaviour of Vt(jt, y;f)l
W(JC, y). This is

THEOREM 3. The growth condition (2.15) is necessary and sufficient for
the asymptotic formula

^k(x,y;f)~dknx,y) (2.16)

to hold for every s-function and any fixed integer k^O.

The problem of the estimation of ^ ( J C , y;f) when k is not fixed is, in
general, very difficult. This is so even in the special case when y = x and/
is a common arithmetical function (not necessarily only an s-function).
Thus it is only very recently that satisfactory estimates of W^*, x; Q) and
W^x, x;co) were obtained by Nicolas [15] and Pomerance [16] respec-
tively, when k is not assumed to be fixed.

It is a virtue of Theorem 1 that k in (2.11) does not have to be fixed.
Naturally, the range for k in (2.11) is a priori determined by the maximal
order of/(«). For instance

j ^ l (n>2), (2.17)

and we have (see [18]) that for any fixed rj > 0

fl(B) * exp {(1 + „) ̂  • ̂ J (» ̂  nofo)). (2.18)
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When k becomes large, the function Dk{fi;f) appearing in (2.11) may
grow (as a function of k) much faster than dk{fi;f), and (2.11) reduces to
an upper bound estimate. We now investigate this in more detail in the
special cases when f(n) = Q(n) — a>(n) or f{n) = a(n).

Consider the case /(«) = Q(n) - a>(n) and suppose that (2.9) holds.
For all 6, A, such that 8 > \, 26 < A < 3a, we have

.5 = 1

P i=2

Hence we infer

Dk(P; Q-m) + dk{p - e/10; a-to)

and thus obtain from Theorem 1

THEOREM 4. Let e, 0 < £ < 1, be fixed. We have uniformly for x, y in
the range (2.9) andO^k^(logx/log2) - 1

*Pk(x, y;Q-co)«e 2-^-'no^(x, y). (2.19)

A similar estimate may be derived in the case/(/i) = a(n) by appealing
to (2.18). Indeed, let st denote the smallest possible 5 such that a(s) = k.
Then (2.18) implies

whence, for & > &0

—

say. Therefore

> exp 1(1 - r/) -—- log k • log log A; j = K,

The same estimate is obviously valid for dk(fi;a) since this is a decreasing
function of /3. Choosing 77 = rj(e) sufficiently small we hence deduce from
Theorem 1 the following

THEOREM 5. Let e, 0 < e < 1, be fixed. We have uniformly for x, y in

the range (2.9) and 1 « k * exp f ̂  •, '"f* )
1 4 loglogJtJ

¥*(*, y;a) « . exp {-(/3 - ^ - 1 ) ^ log k • log log A:}V(JC, y). (2.20)
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The authors wish to thank here the anonymous referee for pointing out
an error in the original manuscript.

3. The relevant background on 1*(x, y)

In this section, we summarize the main results on ^(x, v) that will be
needed in the proofs of Theorems 1 and 2.

The Dickman-de Bruijn function p(v) for v 5=0 is denned as the con-
tinuous solution of the delay differential equation vp'(v) + p(v - 1) = 0,
with the initial condition p(v) = 1 for 0 =£ v « 1. Strengthening a result of
de Bruijn [3], Hildebrand [6] recently showed that the asymptotic
formula

holds uniformly in the range

x^2, exp((loglog*)5 + e)«J'«* (3-2)

for any fixed e > 0. The constant § is the reciprocal of the constant which
appears in the error term of the strongest known form of the prime
number theorem. The connection between the range of validity of (3.1)
and the zero-free region of the Riemann zeta-function was investigated
by Hildebrand [7], who proved that (3.1) holds in the range (2.9) if and
only if the Riemann hypothesis is true. Since it is known (see [8], [9]) that
for _y =£log2~ex the behaviour of W(x, y) depends strongly on the
irregularities in the distribution of primes, it appears that (2.9) is
essentially the best possible range in which W(JC, y) is approximable by a
smooth function. Note that (2.9) is precisely the range in which Theorem
1 holds.

DeBruijn [2] established an asymptotic formula for p(v). His method
has recently been refined by Alladi [1] to improve the error term
involved. He obtains

where y = 0.577 - i s Euler's constant and §(t>) is defined in Section 2.
An alternative proof of (3.3) appears in [9].

Using (3.3) Alladi shows [1; Lemma 3] that

- £ log p(v) = log (!/£(!,)) + o ( i ) = £(u) + o Q , (3.4)
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where the second equality comes from the estimate

log («§(«)) = log (e«"> - 1) = §(t/) + o ( i ) .

We remark that the derivative of the function of v in the exponential in
(3.3) is exactly (-§(«)) and that §"(t/)/§'0>>~ -l/v. This leads immedi-
ately to (3.4) with the slightly weaker error term O(logv/v).

By Taylor's formula (3.4) implies

uniformly for 0 =£ t =£ u - 1.
The Dirichlet series associated with ^(x, y) is

Rankin's upper bound method, fully exploited by de Bruijn [3], is based
on the inequality

V(xy)^x°Z(o;y) (a>0) (3.6)
The optimal choice for a is a = a(x, y), where or = a(x, y) is the unique
solution of the equation

2 - ^ = log,. (3.7)

In [9] Hildebrand and the second author evaluate the classical Perron
integral for ^(x, y) by the saddle point method and obtain that

aV2;r(p2(a', y) \ \u y

holds uniformly in the range x^y^l, where a = a(x, y) and

It is shown [9; formula (7.8)] that the formula

*(*, y) = 0 + O£(exp (-2Vlogy) + u~x log"2}'), (3.9)

where /S = /3(x, y) is defined by (2.8), is uniformly valid in the range

*3=2, \ogl+ex^y^x (3.10)

and that [9; formula (7.6)]
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holds for x^2, y^log2x. Moreover we have in the range (3.10) [9;
Theorem 2]

exP

1 dv + Oe(R(u, y))\ (3.12)

with

R(u, y) =lOg}" + 1Ku exp (-Vlogjy).
log^

If we write the left-hand side of (3.12) as exp F(u, y), then it may be
shown [9; formula (6.4)] that

(i ^ ) (3.13)

holds uniformly for x s* y » 2, with the consequence that

v ( | , y) = W(x, y)d-(l + Oi^- + ̂ ) ) (3.14)

whenever Vx

4. Proof of Theorem 2

We may suppose without loss of generality that y ^y^e). Then (3.11)
easily implies that

<x,y)*\-\- (4.1)

Put z = \ logy, so that by the prime number theorem

Up^yi. (4.2)

We shall use the inequality

( £ (n&l), (4.3)

which follows from the fact that the right-hand side of (4.3) is equal to
fx2{m), where m is the largest divisor of n such that P(m) ^ z. This yields

2 2 /
nSi,P(n)«y d

2
\n,P(d)*sz
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By (4.2) the condition d*5x$ is redundant and we can use (3.14) to
estimate ^(xd'2, y) in the sum above. Since yt(e) ^y =s log2"** we have

~l
*, hence we obtain

(4-4)

But from the prime number theorem we have

hence the expression in curly brackets in (4.4) is easily seen to be
«exp (-log'33}') and Theorem 2 follows.

5. New lemmas on the local behaviour of V(r, j>)

In this section we shall derive several consequences of the results
presented in Section 3. We are interested in the behaviour of the ratio
W(x/d, y)/}¥(x, y) when 1 =£ d =sx and x, y lie in the range

(5.1)

where e, 0 < e < l , is fixed. The material of this section will be used in
the proof of Theorem 1. In view of other applications, we actually prove
more than is needed for this purpose.

LEMMA 1. Put t = log dl\o%y. We have uniformly for x, y in the range
(5.1) and l^

where

~d °
e{E{X

'
 y
'
 d))

\

- + fexp(-Vlogy) + log——, if u>\ogy,
,

,

if u
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Proof. By (3.8), (3.9) and (3.13), we have for x, y satisfying (5.1)

w(^, v) = V(x, y) exp {-£ (logy - §(«)

+ Oe{v~l + e-Vl°^)) dv +

|(u)dt;

This gives the result stated for the range u > logy, since

+ l ^ « - + l o g ( O
u

log « + log
u-t u-tu u-t

For u «logy we have by (3.1) and (3.5)

and this is exactly the second estimate of the lemma.

LEMMA 2. We have uniformly for x, y in the range (5.1) and

/8 = /3(x, >-) ts defined by (2.8).

Proof. When d^x/y, we apply Lemma 1 and observe that for
we have t =£ 1 and

f §(u)di/ = f§(«) + (
Ju—t \lt/

It remains to prove (5.3) when 1 « M = S 2 and d^xly. In this case we
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have

O(u -

and

The required result follows trivially from these estimates.

LEMMA 3. We have uniformly for x, y in the range (5.1) and

v ( s ' y
)

K < w(x>
 y)

d
~

e+cnoey
> (5-4)

w/iere j3 = fi(x, y) u defined by (2.8) and c is an absolute constant.

Proof. Suppose first that d^x/y. Then Lemma 1 is applicable and it
may be easily checked that

E{x, y, d)«1 +1.

This yields

J> y)^ ¥(x> y) e xP {'!(«) + ° ( ! + 0}d I d

where we used the fact that §(M) is an increasing function of u.
\ixly<d^x, that is u - 1< t =£ u, then W(x/d, y) = [x/d] and we only

have to show that for a suitable c2 > 0

W(x, y) »x^-1-C2/ log> ' = x exp {-f|(u) - c2r}.

In view of (2.7) it is enough to prove

*(*, y) » x exp {-M£(U) - C 3 M } ,

but this easily follows from (3.8) and (3.12).

6. Proof of Theorem 1

The proof depends on the following auxiliary result which is an
analogue of (1.4) for integers free of large prime factors. For any integer
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r s= 1, we define

Wr(x,y) = 2 1= 2 /*»•
<7=s.c,P(9)«y,(<7,r) = l nSjr,P(n)a>',(n,r) = l

LEMMA 4. We have uniformly for x, y satisfying (2.9) and r s* 1

Vr(x, y) = rWmx, y)[A(r; 0) + Oe (fl(r) ^ ^ Z ) } - (6-

Proof. We use (1.8) to express the characteristic function of the set of
squarefree numbers prime to r and invert summations. This gives

say, corresponding to the respective ranges of summation 1 =£ d s£ Y:
log6lEy, and Y<d^x.

By Lemma 2, we have

1
 d^Y

£ )}, (6.2)
where we used the identity

2 ( P"")IT (1 -P"2^) =
d = l p|r p + r

The remainder term in (6.2) is estimated by appealing to the lower bound
(2.10) for 0, and using the inequality

which is easily verified by taking n=pv, since both sides are multiplica-
tive functions of n. We have

d>Y 6\r m>(y/6)5

««S
6\r
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and similarly

Thus so far we have proved that

, y){A(r; fi) + O.

and it is sufficient to show that E2 can be absorbed by the error term in
(6.1). Indeed, by Lemma 3 we have

2
 d>Y

0«.
logy

where the sum over d has been estimated similarly as the corresponding
sum in Ei, using the fact that /J — c/log_y > \ if x, and therefore y, is large
enough. This completes the proof of Lemma 4.

Having at our disposal Lemma 4 it is a fairly simple matter to prove
Theorem 1. Using the canonical decomposition n = qs, (q,s) = l, and
noting that f(n) =f(s) because/is an s-function, we obtain immediately

2 1 + 2 2 . (6-3)

say, where in Ei we have s =£ Y:= log^^y, and, in E2> Y<s =s*.
By successive applications of Lemmas 4 and 2, we find that uniformly

for s as 7

whence

s>Y,f(s)=k

Using Lemma 3 we further obtain

) 2 s-^™.
s>Y.f(s)=k
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We now remark that

A(s; py1« exp Vlogs =£ se/3°

for s > Y and y large enough. Hence

s-t}+c/\o

for s > Y, and we deduce that

Inserting the expressions for £, and £2 in (6.3) we obtain the assertion of
Theorem 1.
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