Practice A

LESSON The Unit Circle

Convert each measure from degrees to radians or from radians to degrees.

2.
$$-\frac{2\pi}{5}$$

$$60^{\circ} \left(\frac{\pi \text{ radians}}{180^{\circ}} \right) =$$

$$\left(-\frac{2\pi}{5}\right)\left(\frac{180^{\circ}}{\pi \text{ radians}}\right) =$$

3.
$$\frac{5\pi}{6}$$

5.
$$-\frac{3\pi}{4}$$

7.
$$\frac{4\pi}{3}$$

8.
$$-\frac{\pi}{6}$$

10.
$$-10^{\circ}$$

11.
$$\frac{16\pi}{9}$$

Find the exact value of each trigonometric function. Use the unit circle.

12. sin 60°

a. At what point on the unit circle does the angle terminate?

b. Use
$$\sin \theta = y$$
.

13.
$$\cos \frac{5\pi}{3}$$

15.
$$\tan \pi$$

Solve.

19. John is adding a curved edge to the landscaping in front of the high school.

The curve is an arc of a circle with a radius of 1600 feet.

The central angle that intercepts the curve measures $\frac{\pi}{8}$ radians.

Find the length of the curve to the nearest foot.

Practice A

18-8 The Unit Circle

Convert each measure from degrees to radians or from radians to degrees.

$$60^{\circ} \left(\frac{\pi \text{ radians}}{180^{\circ}} \right) = \frac{\pi}{3} \text{ radians}$$

$$-\frac{2\pi}{5}$$

$$\left(-\frac{2\pi}{5} \right) \left(\frac{180^{\circ}}{\pi \text{ radians}} \right) = -72^{\circ}$$

$$\frac{\pi \text{ radians}}{180^\circ}$$
 = $\frac{3}{3}$ radians

$$\left(\frac{180^{\circ}}{\text{adians}}\right) = \frac{-72^{\circ}}{3\pi}$$

150°

5.
$$-\frac{3\pi}{4}$$

6. -105° $\frac{7\pi}{2}$ radians

7.
$$\frac{\frac{7\pi}{4}}{3}$$
 radians

8.
$$\frac{-135^{\circ}}{-\frac{\pi}{6}}$$

9. 300° $\frac{5\pi}{}$ radians

radians

$$\frac{-30^{\circ}}{11. \frac{16\pi}{9}}$$

Find the exact value of each trigonometric function. Use the unit

- **12.** sin 60°
 - a. At what point on the unit circle does the angle terminate?

$\left(\frac{1}{2},\right.$	$\frac{\sqrt{3}}{2}$.)
1	√ <u>3</u>	

320°

b. Use $\sin \theta = v$

14. tan225°

 $\sqrt{3}$

$\sqrt{3}$

Solve.

16. sin330°

19. John is adding a curved edge to the landscaping in front of the high school. The curve is an arc of a circle with a radius of 1600 feet. The central angle that intercepts the curve measures $\frac{\pi}{\alpha}$ radians. Find the length of the curve to the nearest foot. 628 ft

Copyright © by Holt, Rinehart and Winston All rights reserved.

19

Holt Algebra 2

Practice B

18-8 The Unit Circle

Convert each measure from degrees to radians or from radians to

2. 215° $\frac{43\pi}{}$ radians 36

-290°

4. -180°

5. $\frac{5\pi}{3}$

 $-\pi$ radians 7. 400° $\frac{20\pi}{2}$ radians

300° **54°**

210° 9. 35° $\frac{7\pi}{26}$ radians

__√3

Use the unit circle to find the exact value of each trigonometric function.

13. sin 315°

14. cos 225°

15. tan 60° $\sqrt{3}$

Use a reference angle to find the exact value of the sine, cosine, and tangent of each angle.

16. 150°

17. -225°

 $\sqrt{3}$: $\frac{1}{3}$; $\sqrt{3}$

21. $\frac{5\pi}{4}$

22. San Antonio. Texas, is located about 30° north of the equator. If Earth's radius is about 3959 miles, approximately how many miles is San Antonio from the equator?

2073 mi

Copyright © by Holt, Rinehart and Winston All rights reserved.

20

Holt Algebra 2

FSSON Practice C

The Unit Circle

Convert each measure from degrees to radians or from radians to degrees.

1.
$$-\frac{3\pi}{2}$$

$$-270^{\circ}$$
4. -200°

2. 450° $\frac{5\pi}{}$ radians

50°

 $-\frac{10\pi}{2}$ radians **7.** 350° $\frac{35\pi}{2}$ radians

315° 8. $\frac{7\pi}{20}$ 63°

-330° $\frac{\pi}{15}$ radians

10. $\frac{13\pi}{10}$ 234°

11. 222° $\frac{37\pi}{22}$ radians **12.** -105° $\frac{7\pi}{12}$ radians

Find the exact value of the sine, cosine, and tangent of each angle.

13.
$$330^{\circ}$$
 $-\frac{1}{2}; \frac{\sqrt{3}}{2}; -\frac{\sqrt{3}}{3}$

15. 240° $\frac{1}{0}$; $\sqrt{3}$

16. $\frac{5\pi}{6}$ $\sqrt{3}$ 17. 225°

18. 120°

; $-\sqrt{3}$

Solve.

25. A pendulum is 18 feet long. Its central angle is 44°. The pendulum makes one back and forth swing every 12 seconds. To the nearest foot, how far does the pendulum swing each minute? 138 ft

Copyright © by Holt, Rinehart and Winstor All rights reserved.

21

Holt Algebra 2

Reteach

13-3 The Unit Circle

Radians are a real number measure of rotation. To convert between radians and degrees, use the following identity. π radians = 180°

To convert from degrees to radians, solve the identity for 1 degree. 1 degree = $\frac{\pi \text{ radians}}{180^{\circ}}$

To convert from radians to degrees, solve the identity for 1 radian. 1 radian = $\frac{180^{\circ}}{\pi \text{ radians}}$

Convert 60° to radians.

 $60^{\circ} = 60^{\circ} \left(\frac{\pi \text{ radians}}{180^{\circ 3}} \right) = \frac{\pi}{3} \text{ radians}$

Use dimensional analysis to help. Notice that the degrees cancel so the remaining unit is radians.

Convert $\frac{5\pi}{4}$ radians to degrees

The radians cancel so the remaining unit is degrees.

Convert each measure from degrees to radians.

1. -45°

7. $\frac{\pi}{6}$ radians

 $-45^{\circ} = -45^{\circ} \left(\frac{\pi \text{ radians}}{180^{\circ}} \right)$ $\frac{\pi}{4}$ radians $150^{\circ} = 150^{\circ} \left(\frac{\pi \text{ radians}}{180^{\circ}} \right)$ $\frac{5\pi}{2}$ radians

 $\frac{7\pi}{2}$ radians

 $-\frac{2\pi}{2}$ radians

Convert each measure from radians to degrees.

5. $\frac{4\pi}{3}$ radians $\frac{4\pi}{3}$ radians = $\left(\frac{4\pi}{3} \text{ radians}\right) \left(\frac{180^{\circ}}{\pi \text{ radians}}\right)$ 6. $-\frac{3\pi}{2}$ radians $-\frac{3\pi}{2}$ radians = $\left(-\frac{3\pi}{2} \text{ radians}\right) \left(\frac{180^{\circ}}{\pi \text{ radians}}\right)$

8. $\frac{5\pi}{3}$ radians

22

Copyright © by Holt, Rinehart and Winston. All rights reserved.

30°

300°