Name

Last 5 digits of Student Number: XXX – X ____ – ___ ___

Chem 116 Sample Examination #2

This exam consists of eight (8) pages, including this cover page. Be sure your copy is complete before beginning your work. If this test packet is defective, ask for another one.

A copy of the Periodic Table is attached at the back of the exam. You may remove it and use the back side of the Periodic Table as scratch paper. No work on scratch paper will be graded or collected.

The following information may be useful:

Equations

Arrhenius equation: $k = A e^{-\frac{E_a}{RT}}$ $t_{half} = \frac{0.693}{k}$ for a first-order reaction

Constants of nature

 $\overline{R = 8.314 \ \frac{J}{mol \bullet K}} = 0.08206 \frac{L \bullet atm}{mol \bullet K}$

More Equations Differential rate laws:

- 0. rate of change of $[A] = k [A]^0$
- 1. rate of change of $[A] = k [A]^1$
- 2. rate of change of $[A] = k [A]^2$

Integrated rate laws:

 $\begin{array}{l}
\overline{0}, \quad [A] = [A]_{0} + k t \\
1, \quad \ln[A] = \ln[A]_{0} - k t \\
2, \quad \frac{1}{[A]} = \frac{1}{[A]_{0}} + k t
\end{array}$

DO NOT WRITE BELOW THIS LINE

Part I:		Part II:		
Questions 1-7	(maximum 35)	Ou	Disclaimer:	
Question 8	(maximum 7)		This is a copy of a typical Exam 2 given in	
Question 9	(maximum 8)	Qu	test will be different. This test is being posted to give you a sense of the format, style, scope	
Question 10	(maximum 10)	Total (and level of a typical test on this material. This test may have questions on topics that may not be covered on your exam. Moreover, your test may have questions on	
		Total (Posting this test in no way limits the format, style, scope and level of the test that you will take. Do not limit your preparation to the material in this practice exam.	

Part I. Multiple-Choice or Short Response

There are 10 questions. Questions 1-7 are multiple-choice and are each worth 5 points. Question 8 is worth 7 points. Question 9 is worth 8 points. Question 10 is worth 10 points.

- 1. An aqueous solution contains 2.05 g of an unknown, non-ionic solute in 50.0 g of water. The solution boils at 100.062 °C. What is the molar mass of the unknown solute? The boiling point constant for water is 0.5121 °C/*m*.
 - A) 340 g/mol
 - B) 1290 g/mol
 - C) 401 g/mol
 - D) 18 g/mol
 - E) 80. g/mol
- 2. A particular ionic compound, when dissolved in water, decreases the freezing point of the water. The ionic compound does not dissociate completely, and the following experiment was done to determine how much it dissociates. When 0.0351 moles of the ionic compound were added to 75.0 g of water, the freezing point of the solution was -1.44 °C. What is the van't Hoff factor for the ionic compound? The freezing point constant for water is -1.86 °C/*m*.
 - A) 1.29
 - B) 1.65
 - C) 0.774
 - D) 2.00
 - E) 7.05
- 3. The half-life of the radioactive gold-198 isotope is 2.7 days. If you begin with a 6.4×10^{-6} g sample of the isotope, how much of the sample remains after 3.6 days?
 - A) 6.4×10^{-6} g B) 4.8×10^{-6} g C) 3.2×10^{-6} g D) 2.5×10^{-6} g E) 1.6×10^{-6} g

4. For the following reaction,

[CO] (mol/L)	[O ₂] (mol/L)	Initial rate $\left(\frac{\text{mol}}{L \cdot \text{min}}\right)$
0.20	0.20	1.84×10^{-4}
0.20	0.40	3.68×10^{-4}
0.60	0.20	1.66×10^{-3}

 $2 \operatorname{CO} (g) + \operatorname{O}_2 (g) \to 2 \operatorname{CO}_2 (g)$

the data above were obtained in laboratory experiments. What is the form of the rate law for this reaction?

- A) rate = $k [CO][O_2]$ B) rate = $k [CO][O_2]^2$ C) rate = $k [CO]^2$ D) rate = $k [CO]^2 [O_2]$ E) rate = $k [CO]^3 [O_2]$
- 5. Which of the following changes in experimental conditions would <u>not</u> increase the rate of the following reaction:

 $H_2O_2(aq) + 2 H^+(aq) + 2 I^-(aq) \rightarrow I_2(s) + 2 H_2O(l)$

- A) Increasing the temperature
- B) Increasing the amount of H₂O₂ initially present
- C) Using a catalyst for the reaction
- D) Using less water in the initial reactant mixture
- E) Increasing the pressure
- 6. If each of the following systems begins at equilibrium, which disturbance would result in a shift that favors the products as the system returns to equilibrium following the disturbance?

A) Remove some NH₃ (g) from this system: $3 H_2(g) + N_2(g) \rightleftharpoons 2 NH_3(g)$

- B) Increase the volume for this system: NO₂ (g) + CO (g) \leftrightarrows NO (g) + CO₂ (g)
- C) Increase the temperature in an exothermic reaction
- D) Add more C (s) in this system: $C(s) + CO_2(g) \leftrightarrows 2 CO(g)$
- E) Increase the pressure in this system by adding Ar (g): $2 \text{ NO}_2(g) \leftrightarrows \text{N}_2\text{O}_4(g)$

7. At 43 °C, the reaction below takes place in a closed 2.00 L container.

$$(NH_4)(H_2NCO_2)(s) \leftrightarrows 2 NH_3(g) + CO_2(g)$$

When the system is at equilibrium, there are 0.20 moles of NH_3 and 0.10 moles of CO_2 present. What is the value of the equilibrium constant (K_c) at this temperature?

A) $K_c = 3.4 \times 10^{-3}$ B) $K_c = 4.0 \times 10^{-3}$ C) $K_c = 5.0 \times 10^{-4}$ D) $K_c = 6.0 \times 10^{-2}$ E) there is not enough information to tell

8. The reaction shown below is exothermic, giving off 240 kJ.

 $NO_2(g) + CO(g) \leftrightarrows NO(g) + CO_2(g)$

If the activation energy in the forward direction is 130 kJ, appropriately complete the reaction diagram sketch that has been started below. Also, clearly indicate ΔH for the reaction on the graph. (Please note: you only need to <u>sketch</u> the rest of the graph – do not worry about making the graph exactly correspond to the values given.)

9. For the following reaction, label the conjugate acid-base pairs (acid-1 and base-1; acid-2 and base-2).

 $\operatorname{NH}_{3}(g)$ + HCOOH $(aq) \rightarrow \operatorname{NH}_{4}^{+}(aq)$ + HCOO⁻(aq)

10. Write the expressions for the reaction coefficient (Q_c) for each of the following reactions in terms of reactant and product concentrations.

a)
$$3 H_2(g) + N_2(g) \leftrightarrows 2 NH_3(g)$$
 $Q_c =$

b)
$$2 \operatorname{Ag}^{+}(aq) + \operatorname{Zn}(s) \leftrightarrows \operatorname{Zn}^{2+}(aq) + 2 \operatorname{Ag}(s)$$
 $Q_{c} =$

Part II. Problems Each problem is worth 20 points.

1. At 75 °C, the equilibrium constant $K_c = 0.522$ for the reaction

$$H_2(g) + I_2(g) \leftrightarrows 2 HI(g)$$

Consider a mixture of 0.124 mol of H₂, 0.124 mol of I₂, and 0.370 mol of HI in a 1.00-liter vessel at 75 °C.

a) What is the value of the reaction quotient for this initial mixture?

- b) In what direction will the reaction proceed? In other words, which chemicals will there be more made of?
- c) What are the final concentrations of all three chemicals when equilibrium is reached? Show your work.

2. The decomposition of NO₂ proceeds according to the reaction

50 ***** 0 + 0

20

40

time (min)

60

80

100

$$2 \operatorname{NO}_2(g) \rightarrow 2 \operatorname{NO}(g) + \operatorname{O}_2(g)$$

In a certain experiment, the reaction took place at 303 K. Data from the experiment are given in the table below and also plotted in the graphs. Use this information to answer the questions on the next page.

Time (minutes)	[NO ₂] (mol/L)	ln [NO ₂]	$[NO_2]^{-1}$ (L/mol)
0	0.0192	-3.951	52.0
10.	0.0127	-4.363	78.5
20.	0.00952	-4.654	105.
30.	0.00761	-4.879	132
50.	0.00542	-5.218	185
70.	0.00421	-5.470	238
100.	0.00316	-5.759	317

Problem 2 (continued)

- a) Estimate the initial rate of change of the concentration of NO₂. Show your calculations. Be sure to include units in the rate.
- b) What is the order of this reaction with respect to NO₂? Justify your answer.

- d) Write the rate law for this reaction.
- e) Calculate the rate constant, k, for this reaction. For extra credit (2 pts maximum), you may specify the units of the rate constant.