\qquad
\qquad DATE \qquad

Reteaching
 13.6 Inverses of Trigonometric Functions

-Skill A Evaluating inverse trigonometric relations and functions
Recall The domain and range of a function become the range and domain respectively, of the inverse.

- Example 1

Find each value. Give answers in degrees and radians.
a. $\operatorname{Sin}^{-1}\left(\frac{\sqrt{3}}{2}\right)$
b. $\operatorname{Cos}^{-1}\left(-\frac{1}{2}\right)$
c. $\operatorname{Tan}^{-1}(-1)$

Solution
a. Since $\sin 60^{\circ}=\frac{\sqrt{3}}{2}$, then $\operatorname{Sin}^{-1}\left(\frac{\sqrt{3}}{2}\right)=60^{\circ}$ or $\frac{\pi}{3}$ radians.
Notice that although other angles have a sine of $\frac{\sqrt{3}}{2}$, you must choose an angle that is between -90° and 90° in order to have a value in the appropriate range.
b. Since $\cos 120^{\circ}=-\frac{1}{2}$, then $\operatorname{Cos}^{-1}\left(-\frac{1}{2}\right)=120^{\circ}$ or $\frac{2 \pi}{3}$ radians.
c. Since $\tan \left(-45^{\circ}\right)=-1$, then $\operatorname{Tan}^{-1}(-1)=-45^{\circ}$ or $-\frac{\pi}{4}$ radians.

- Example 2

Evaluate each expression.
a. $\sin \left(\operatorname{Cos}^{-1}\left(\frac{1}{2}\right)\right)$
b. $\operatorname{Tan}^{-1}\left(\sin 90^{\circ}\right)$

- Solution

a. Begin inside the parentheses.
b. $\sin 90^{\circ}=1$

$$
\begin{aligned}
& \cos ^{-1}\left(\frac{1}{2}\right)=60^{\circ} \\
& \text { So, } \sin \left(\cos ^{-1}\left(\frac{1}{2}\right)\right)=\sin 60^{\circ}=\frac{\sqrt{3}}{2}
\end{aligned}
$$

Therefore, $\operatorname{Tan}^{-1}\left(\sin 90^{\circ}\right)=\operatorname{Tan}^{-1}(1)$
$=45^{\circ}$ or $\frac{\pi}{4}$ radians

Find each value. Give answers in degrees and in radians. (It may be helpful to review what you learned about 30°-, 45°, and 60°-angles.)

1. $\operatorname{Sin}^{-1}\left(\frac{1}{2}\right)$
2. $\operatorname{Cos}^{-1}\left(-\frac{1}{\sqrt{2}}\right)$
3. $\operatorname{Tan}^{-1}(\sqrt{3})$ \qquad
4. $\operatorname{Sin}^{-1}(-1)$ \qquad 5. $\operatorname{Cos}^{-1}\left(\frac{\sqrt{3}}{2}\right)$
5. $\operatorname{Tan}^{-1}(-1)$ \qquad

Evaluate each composite trigonometric expression.

7. $\tan \left(\operatorname{Cos}^{-1}\left(\frac{\sqrt{3}}{2}\right)\right)$
8. $\cos \left(\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)\right)$
9. $\sin \left(\operatorname{Tan}^{-1}\left(-\frac{1}{\sqrt{3}}\right)\right)$
10. $\operatorname{Sin}^{-1}\left(\cos 0^{\circ}\right)$ \qquad
11. $\operatorname{Tan}^{-1}\left(\sin 0^{\circ}\right)$ \qquad
12. $\operatorname{Sin}^{-1}\left(\sin 90^{\circ}\right)$ \qquad
\qquad CLASS \qquad DATE \qquad

- Skill B Applying inverse trigonometric functions

Recall $\sin \theta=\frac{\text { opp. }}{\text { hyp. }} \quad \cos \theta=\frac{\text { adj. }}{\text { hyp. }} \quad \tan \theta=\frac{\text { opp. }}{\text { adj. }}$

- Example

At a certain time of the day, the 5 meter flagpole shown at right casts a shadow that is 3 meters long. What is the angle of elevation of the sun at this time?

- Solution

Since 3 meters is the length of the side adjacent to θ and 5 meters is the length of the side opposite θ, use the tangent function.
$\tan \theta=\frac{5}{3}$
$\theta=\tan ^{-1}\left(\frac{5}{3}\right)$

This last equation states that θ is the angle that has a tangent of $\frac{5}{3}$.
$\theta \approx 59^{\circ} \quad$ Use calculator in degree mode.

Find the measure of each angle to the nearest whole degree.

13. Find the measure of the smallest angle in a right triangle with sides of 3,4 , and 5 centimeters.
14. What is the angle between the bottom of the ladder and the ground as shown at right?
\qquad

15. Find the angle at the peak of the roof as shown at right.

16. The hypotenuse of a right triangle is 3 times as long as the shorter leg.

Find the measure of the angle between the shorter leg and the hypotenuse.

