\qquad
\qquad DATE \qquad

Reteaching

6.1 Exponential Growth and Decay
-Skill A Finding the multiplier for growth or decay
Recall A multiplier greater than 1 models growth. A multiplier between 0 and 1 models decay.

- Example

Find the multiplier for each situation.
a. 5% growth
b. 8% decay

- Solution
a. Add the growth rate to 100%.
$100 \%+5 \%=105 \%$ or 1.05
The multiplier is 1.05 .
b. Subtract the rate of decay from 100%.
$100 \%-8 \%=92 \%$ or 0.92
The multiplier is 0.92 .

Find the multiplier for each situation.

1. 12% growth \qquad 2. 25% decay \qquad 3. 7.5% decay \qquad
2. 8.2% growth \qquad 5. 1% growth \qquad 6. 0.5% decay \qquad
-Skill B Writing and evaluating an exponential expression that models growth or decay (You will need a calculator.)
Recall Any growth or decay rate related to a natural event assumes that the rate remains constant, and a prediction based on this rate will give approximate results.

- Example

The population of a small town of 10,000 people is growing at the rate of about 5.2% per year. Predict the approximate population 10 years from now.

- Solution

The multiplier is $100 \%+5.2 \%=105.2 \%$ or 1.052 .

$$
10,000(1.052)^{10} \approx 16,602 .
$$

The predicted population is about 16,600 .

Use a growth or decay model to solve each problem.

A new school district is experiencing an annual growth rate of 9.5\%. The school population is now 5600 students. What is the approximate predicted population
7. 3 years from now?
8. 5 years from now?
9. 10 years from now?
\qquad CLASS \qquad DATE \qquad

The rate in the number of reported cases of robbery is dropping at about 7\% per year in a given region of the country. The number of cases reported this year was approximately 156,000 . If the number continues to drop at this rate, what is the approximate predicted number of cases
10. 1 year from now?
\qquad
-Skill C Using a table to find a specific value for an exponential function (You will need a calculator.)

- Example

Your doctor prescribes a medication for your allergies. After each 1 hour interval, only 90% of the medication present 1 hour ago remains in your system. If you take a 100 -milligram tablet, in approximately how many hours will only 50% of the medication remain in your system?

- Solution

The multiplier is $100 \%-10 \%=90 \%$, or 0.9 .
Make a table for $100(0.9)^{x}$, where x is a positive integer. Use a calculator.

x	1	2	3	4	5	6	7
$100(0.9)^{x}$	90	81	72.9	65.61	59.05	53.14	47.83

50% of the medication will be left in your system between 6 and 7 hours after the initial dose.

Use a calculator and table to solve each problem.

13. After 2 hours, only 75% of a new medication remains in your body. If you take an 80-milligram tablet, and this rate of decay is constant, in approximately how many hours will less than 15 milligrams remain in your system?

14. You invest $\$ 5000$ in an account that earns interest at an effective rate of 8.4% per year. In how many years will you have over $\$ 6800$ in the account?

15. If you invest $\$ 50,000$ in a high interest account that earns interest at an effective rate of 13.8% per year, how many years will it take to double your money?

