
XAPP774 (v1.1) November 4, 2004 www.xilinx.com 1

© 2004 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this
feature, application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you
may require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any
warranties or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Summary This application note describes how to connect a high-speed Texas Instruments (TI) ADS5273

analog-to-digital converter (ADC) with serialized LVDS output to a Virtex™-II or Virtex-II Pro™

FPGA. Lower speed ADC devices from this family can be connected to Spartan™-3 FPGAs.

Introduction Texas Instruments has an 8-channel, 12-bit ADC family with synchronous LVDS outputs. The

performance rates of these ADCs range from 40 MSPS to 70 MSPS. This family fits nicely with

the LVDS I/Os of the Virtex-II, Virtex-II Pro, and Spartan-3 devices.

To highlight the performance of both the ADC and the FPGA, the reference design described in

this application note uses the ADS5273, which is the highest speed sampling ADC. The

ADS5273 interfaces to an XC2V250-6FG256 device (to fit the Texas Instruments demo board)

and to an XC2VP20-6FF896 device (to fit Xilinx demo boards).

ADS527x ADCs The ADS527x components are 8-channel, 12-bit analog-to-digital converters with serialized

LVDS interfaces and sample rates from 40 MSPS to 70 MSPS. This section summarizes their

features and applications. For complete information, refer to the TI website at:

http://focus.ti.com/analog/docs/analoghomepage.jsp?templateId=1&familyId=2&navigationId=9628

Features

The key features of the ADS527x family are:

• Maximum sample rate of 40 MSPS (ADS5279), 50 MSPS (ADS5271), 65 MSPS

(ADS5272), and 70 MSPS (ADS5273)

• 12-bit resolution

• No missing codes

• Power dissipation of 1.1W

• CMOS technology

• Simultaneous sample and hold

• 70.5 dB signal-to-noise ratio (SNR) on a 10 MHz interface

• Serialized LVDS outputs meet or exceed the requirements of the ANSI TIA/EIA-644-A

standard

• Internal and external references

• 3.3V digital/analog supply

• TQFP-80 PowerPAD package

Application Note: Virtex-II, Virtex-II Pro, and Spartan-3 Families

XAPP774 (v1.1) November 4, 2004

Connecting Xilinx FPGAs to Texas
Instruments ADS527x Series ADCs
Author: Marc Defossez

R

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://focus.ti.com/analog/docs/analoghomepage.jsp?templateId=1&familyId=2&navigationId=9628

2 www.xilinx.com XAPP774 (v1.1) November 4, 2004

Implementation Description
R

Applications

The ADS527x ADC family is intended to be used in the following applications:

• Medical equipment

• Ultrasound systems

• Tape drives

• Test equipment

• Communications

• Optical networking

Implementation
Description

Eight differential inputs are sampled at a 70 MHz clock rate. The eight ADC channels can use

either an internal or an external reference. Use the internal reference for simplified design and

best results.

The ADC has eight LVDS outputs, each one providing a serial 12-bit data bitstream with either

MSB or LSB first. An LVDS high-speed clock output (LCLK) and an LVDS delayed repowered

sampling clock (ADCLK) are also provided.

The high-speed bit clock, LCLK, is six times the ADCLK sampling clock.

Figure 1 shows the relationship between the different clocks and the output data.

A set of ADC registers can be read or written through an SPI/Microwire (I2C look-alike)

protocol. Figure 2 shows the timing of the SPI/Microwire interface. Table 1 defines the

parameters listed in the figure.

Figure 1: LVDS Timing Diagram (One Channel)

Tprop

Tsample/2

Tlclk = Tadclk/6 = 2.38 ns

Tadclk = maximum 70 MHz (14.3 ns)

The LVDS clock is shifted by 90 degrees to the LVDS data.
Thus only a DCM is required--no phase shifting is necessary.

The rising edge of ADCLKN and/or falling edge of ADCLKP can function as the start of a 12-bit frame.
This is a true incoming FRAME signal.

D0 D0D10 D11D1D11 D2 D3 D4 D5 D6 D7 D8 D9

ADCLK

LCLKP

LCLKN

ADCLKP

ADCLKN

OUTP

OUTN

X774_01_062804

http://www.xilinx.com

Implementation Description

XAPP774 (v1.1) November 4, 2004 www.xilinx.com 3

R

The SPI/Microwire protocol and it FPGA implementation are not discussed in this application

note. Free, adaptable designs can be located on the Internet. For example, search for "SPI

core" at http://www.opencores.org to find sample designs.

Single-Channel Interface

For a single-channel design, the ADC specifications are:

• 70 MSPS (equal to 70 MHz)

♦ ADCLK = 70 MHz (14.29 ns)

♦ LCLK = 420 MHz (2.38 ns)

• 12-bit serial LVDS interface

• LVDS used in dual data rate (DDR) mode

DDR mode means that the bits are clocked at the FPGA at 840 Mbps.

The FPGA can receive LVDS data streams at that specified speed without problems when the

interface design is carefully constructed. This reference design uses an interface design similar

to that in telecom data communication LVDS applications.

The ADS527x transmits edge-aligned data and sync signals with a 90-degree shifted clock.

Taking into account the PCB layout, data, sync, and clock arrive at the FPGA pins shifted by 90

degrees.

To register the received data into the FPGA with the receive clock, a digital clock manager

(DCM) can be used in fixed phase shift mode.

Figure 2: SPI/Microwire Interface Timing Waveforms

D7 D6 D5 D4 D3 D2 D1 D0

T1 Data latched on
rising edge of SCLK

Outputs change on the next
rising edge after CS# is High

T2

T4

Start sequence End sequence
T3

T5

ADCLK

CS#

SCLK

SDATA

X774_02_062804

Table 1: Microwire Interface Timing Parameters

Parameter Description Minimum Units

T1 SCLK Period 50 ns

T2 SCLK High Time 13 ns

T3 SCLK Low Time 13 ns

T4 SDATA Setup Time 5 ns

T5 SDATA Hold Time 5 ns

http://www.xilinx.com
http://www.opencores.org

4 www.xilinx.com XAPP774 (v1.1) November 4, 2004

Implementation Description
R

If doubt exists on the data-to-clock alignment, a DCM can be used in dynamic phase shift

mode. DCM phase shifting is discussed in “Auto Phase Shift DCM.”

Note: When the "Auto Phase Shift" design approach is used, a fixed shift parameter must be applied to

the shift operation state machine to keep the 90-degree phase shift between data and clock.

Figure 3 shows a one-channel receiver module. This module takes in the serial differential data

of one channel and outputs it, internal to the FPGA, as 12-bit parallel data. This module is used

eight times for an 8-channel ADC device.

For the single-channel design, the received clock is input to a DCM. This DCM aligns the

internal clock to the external applied clock or phase shift the internal clock to the received clock.

At the FPGA, the presented data is registered at the right moment, in the middle of the valid

data range.

Data is presented in DDR format, meaning that it must be clocked into the receiver registers on

the rising and falling edges of the receiver clock. Therefore the clock and 180-degree outputs

of the DCM are used. Now the rising edge of both clocks can be used at the flip-flops.

The 12 incoming serial data bits of one channel are split into two sections. The even bits are

clocked on the DCM clock, and the odd bits are clocked on the 180-degree shifted clock. At a

Figure 3: 12-bit Single-Channel Receiver

IOB

EnaRegClk0

EnaRegClk180

EnaMux

EnaRAM

Address

Clock0

R
e

g
is

te
r

o
r

B
lo

c
k

 S
e

le
c

tR
A

M

D
a

ta
 M

u
lt

ip
le

x
e

r

D
a

ta
[0

:1
1

]

Data[12:31]

E

X774_03_0100104

Enable Register Clock 0

Flip-Flop Cascade

Flip-Flop Cascade

Enable Register Clock 1

SelectRAM Enable

SelectRAM Clock

Cascade in

ADCLK

Clock0

Clock180

Timing and
Control

Cascade out

Clock180

Clock0

Data

DCMLCLK Clock180

Clock0D Q

D Q D Q Q Q Q Q Q

D

Q Q Q Q Q Q

D

E

Q5

Q4

Q3

Q2

Q1

Q0

D

E

Q5

Q4

Q3

Q2

Q1

Q0

http://www.xilinx.com

Implementation Description

XAPP774 (v1.1) November 4, 2004 www.xilinx.com 5

R

strobe pulse, ADCLK, these serial registered bits are stored in a parallel register. The result is

a 12-bit parallel word with a jumbled data bit order. For ADCLK and strobe pulse generation,

refer to “Single-Channel Interface Timing.”

After the bit ordering is resolved in the FPGA routing, this 12-bit word can be used as-is by a

back-end application or can be fed to a set of registers, a Block SelectRAM™ FIFO, or a Block

SelectRAM memory used as a register. When the 12-bit word is used as-is, the back-end

application must run at a clock in phase with the received ADCLK clock, which is not simple to

do because this clock is used as a sync (frame) input of the LVDS interface. An easier solution

is to let the back-end FPGA design run at a clock rate similar, but not referenced, to the

sampling clock and use a FIFO to cross the clock domains between the ADC receiver interface

and the application logic. Example designs of both options are included in the reference design.

The receiver module, consisting of two data receive channels and one timing block, is built as

a macro containing relationally placed macro (RPM) directives. The reference design provides

placement of attributes in the design source code, a user constraint file (UCF), and additional

information for placement in different I/O banks of the FPGA.

Figure 4: Serial Receiver Bit Ordering

Even numbers are clocked on the rising edge
and are positive-edge enabled. Odd numbers
are clocked on the falling edge and are
negative-edge enabled.

0 1 2 3 4 5 6 7 8 9 10 11 0 1

0

10

1

11

Rising

Edge Clocked

Falling

Edge Clocked

11

5

10

9

8

6

4

2

0

7

3

1

8 6 4 2 0

9 7 5 3 1

X774_09_070804

http://www.xilinx.com

6 www.xilinx.com XAPP774 (v1.1) November 4, 2004

Implementation Description
R

Note: A timing block takes the sync (frame) signal or a previous RPM timing output and generates the

necessary signals for enabling the receiver parallel register and the back-end design stage.

Figure 5 shows the first instance of a dual-channel block in the FPGA.

All clocked elements of the data receiving and timing modules are RLOC’ed in the module. The

three modules are then RLOC’ed with respect to each other. These operations are done, with

a set of attributes, in the HDL source code. Rearranging the data receiving and timing modules

is now easy. Each module can be rearranged while keeping its shape, making it easy to use the

design in single-channel applications.

Single-Channel Interface Timing

The high-speed LCLK is used as an interface clock and is therefore fed into a DCM. This DCM

generates two phase-aligned clocks, CLK0 and CLK180.

The data-aligned LVDS version of the ADCLK sample clock is used as a strobe signal to align

the captured 12-bit words. The strobe signal is sampled on the positive and negative edges of

the high-speed LCLK. Edge detection and phase detection are performed. When a rising edge

of ADCLK is detected, two signals are generated to enable the parallel storage registers for the

positive and negative clocked data.

Normally, even bits (0, 2, ..., 10) are clocked on the rising edge of CLK0, while odd bits

(1, 3, …, 11) are clocked on the rising edge of CLK180. However, it is possible for the CLK180

edge to arrive first and clock the even data in the odd data shift register. The same then

Figure 5: RPM Dual Channel and Timing Block

The black dots are the RLOC_ORIGIN points.

X774_04_100104

RLOC_ORIGIN Timer is X0Y3.
RLOC_ORIGIN Receiver Channel 1 is X0Y5.
RLOC_ORIGIN Receiver Channel 0 is X0Y0.

Timing

Channel 0

Channel 1

B
R

A
M

M
U

L
T

http://www.xilinx.com

Implementation Description

XAPP774 (v1.1) November 4, 2004 www.xilinx.com 7

R

happens for CLK0. The result is a mangled data word stored in the parallel register. Figure 6

and Figure 7 show the even bits clocked with CLK0 and CLK180, respectively.

To automatically prevent this bit swapping, a small multiplexer is placed between the parallel

latch register and the storage register or Block SelectRAM (FIFO). When the negative frame

edge of CLK0 comes before CLK180, negative frame edge data is passed as-is to the parallel

register. When the negative frame edge is first detected with CLK180, data is normally bit-

swapped when loaded in the storage register or FIFO. However, data is now arranged correctly

through the multiplexer.

Figure 6: Even Bits Clocked with CLK0

ADCLKP

OUTP

ADCLKN

D11 D0 D1 D2 D3 D4
OUTN

CLK0

CLK0

Through wiring and storage strobe
generation, from the ADCLK signal,
the bits are arranged correctly in the
parallel register

CLK180

CLK180

D10 D8 D6 D4 D2 D0

D11

11

10

9

8

7

6

5

4

3

2

1

0

11

10

9

8

7

6

5

4

3

2

1

0

D9 D7 D5 D3 D1

X774_10_100504

B
it
 s

w
a

p
 m

u
lt
ip

le
x
e

r

Figure 7: Even Bits Clocked with CLK180

ADCLKP

OUTP

ADCLKN

D11 D0 D1 D2 D3 D4
OUTN

CLK0

CLK0

Through wiring and storage strobe
generation, from the ADCLK signal,
the bits are swapped in the
parallel register. A multiplexer is placed
in front of the parallel register to correct
the bit swapping.

CLK180

CLK180 D10 D8 D6 D4 D2 D0

D11 D9 D7 D5 D3 D1

X774_11_100104

10

11

8

9

6

7

4

5

2

3

0

1

B
it
 s

w
a

p
 m

u
lt
ip

le
x
e

r

11

10

9

8

7

6

5

4

3

2

1

0

http://www.xilinx.com

8 www.xilinx.com XAPP774 (v1.1) November 4, 2004

Implementation Description
R

Auto Phase Shift DCM

The data, sync, and clock signals are shifted 90 degrees (see Figure 1) when the ADC device

transmits them to the FPGA interface. Although data and clock traces in the PCB layout are

recommended to have the same length to preserve the original phase shift up to the FPGA, it

is possible that this phase relationship is distorted.

The phase shift capability of the DCM can be used to position the received LVDS clock exactly

in the middle of the received data bit width. The principle of this design is described in

XAPP268 (see Reference Item 2, page 16).

In the Virtex-II, Virtex-II Pro, and Spartan-3 device families, all Input/Output blocks (IOBs) are

the same except those used as clock inputs. Each of these IOBs has an extra direct input to the

DCM clock input. When these IOBs are used as clock inputs, the normal IOB logic is omitted

but can be used. This functionality is used by the reference design.

In the circuit shown in Figure 8, the incoming clock is used as the clock input and the data input

for the IOB flip-flop. The input clock registers itself at the IOB flip-flop with the DCM-adjusted

clock (CLK0). The DCM is set in variable mode with an initial phase shift of –255. The

equivalent counter in the control logic is set to zero as is the internal state machine. When

taken out of reset, the DCM adjusts its output clocks and indicates this process with the

LOCKED output (see Figure 9).

Figure 8: Auto Phase Shift DCM Circuit

P
S

E
N

CLK0

CLK90

CLK180

CLK270

CLK2X

CLK2X180

CLKDV

CLKFX

CLKFX180

DCM

Control
Logic

IOB

LOCKED

PSDONE

PSDONE

P
S

C
L

K

P
S

IN
C

LOCKIN

CLKIN

ClkIn

ClkInNot

DATIN

K CONSTANT
LOCKOUT

PHASEVAL

PSINCDEC

PSEN

PSCLK

CLKIN

CLKFB

RST

DSSEN

STATUS[7:0]

D Q

X774_05_062904

http://www.xilinx.com

Implementation Description

XAPP774 (v1.1) November 4, 2004 www.xilinx.com 9

R

Next the DCM is incremented by one with the control logic. The control logic counter is

incremented by the PSDONE signal from the DCM. When this operation happens, the output of

the IOB flip-flop is checked. When the output is "0", the DCM is again incremented. Then the

current counter value is stored (ps0), and the state machine jumps to state one.

Incrementing continues until the input flip-flop changes back to "0". The counter value at this

point is also stored (ps1). Next the value ps3 (equal to ps1 – ps0) is calculated. The DCM is

now decremented until its value is ps3.

Setup is finished. The LOCKOUT output of the control logic is driven High, which performs the

same function as the LOCKED output of the DCM, indicating the startup of the DCM is finished.

When doing using auto-phase shift correction without precautions, the initial 90-degree phase

shift might be lost. The DCM moves the clock edge (after adjustment by the control logic) in the

middle of a half clock period, reducing the phase shift between clock and data to zero. The fixed

value K must be applied to the state machine to be sure a phase shift of 90 degrees is

established. The value K is a constant applied in the HDL code.

FIFO and Data Storage Extension

When the basic reference design is used as provided, once the parallelized 12-bit values are

clocked in a single register, they must be taken immediately by the back-end application

design. This design must function at a clock synchronous to ADCLK.

Another approach is to store received parallel data in a FIFO and read it out with the back-end

application design. In this case, it is possible to run the back-end design at an unrelated but

frequency-similar clock. The FIFO is used to bridge the two clock domains.

As in telecom applications, ADC converters produce a continuous stream of data, resulting in a

continuous stream of parallel 12-bit words. The FIFO that best fits this application is called a

self-addressing FIFO.

FIFOs are constructed from memory, read counters (pop), write counters (push), and flagging

logic. With a self-addressing FIFO, the counters are replaced by the memory itself and clock

skew is no longer an issue.

Figure 10 shows a standard self-addressing FIFO as described in XAPP291 (see Reference

Item 3, page 16). Part of the memory data output is fed back as memory address.

Figure 9: Phase-Shift DCM Interface Timing

PSCLK

PSEN

PSINCDEC

PSDONE

X774_06_062504

http://www.xilinx.com

10 www.xilinx.com XAPP774 (v1.1) November 4, 2004

Implementation Description
R

At the start of operation, the memory output is assumed to be all zeros. The RAM is addressed

with this value from the feedback part of the output. At the same time, the data is incremented

(in the LUT adder) by one, and the result is presented at the memory data input together with

the incoming data.

The next clock edge addresses memory space “zero” and writes the data value “zero+1 & input

data”. Due to the construction of the memory blocks, this value appears at the output after a

Clock-to-output (Tbcko) time. Now memory space “one” is addressed and a data value of two

(output one + added one) is presented at the input.

The address increment logic is built from a LUT and does not require a clock. Addition of a

clock loses the advantage of direct data out.

Block SelectRAM memories have an ideal design for this mechanism. When a 32-bit wide FIFO

is needed, the extra four bits (parity bits) can be used for the address storage-incrementer

functionality.

A 16-deep FIFO can be constructed using four bits (the parity RAM bits). If a deeper FIFO is

needed, the following solutions are possible:

• Use normal data bits as adder / counter bits

This solution limits the width of the input data. One block RAM is used per two ADC

channels (2*12 bits), using 24 bits and leaving 8 bits as counter / adder storage bits.

• Use an extra adder

This solution extends the address with the extra adder. When the address reaches the

maximum value available in memory, the result is incremented by one. The extra adder

does not need to run at full FIFO speed, but the increment to the BRAM timing must be

controlled.

Figure 10: Standard Self-Addressing FIFO

DOPA

DOA

DIPA

DIA

DOPB

DOB

DIPB

DIB

ADDRA

SSRA

WEA

ENA

CLKA

'1'

4
4

BRAM16_S36S36

Port AInput Clock

Write Enable

DataIn[31:0]

00000

00000bbbb
DataOut[31:0]

Logic to

increment by 1

X774_07_062504

http://www.xilinx.com

PCB Guidelines

XAPP774 (v1.1) November 4, 2004 www.xilinx.com 11

R

Figure 11 shows an address-extended self-addressing FIFO.

PCB Guidelines This section alerts the PCB designer to several PCB layout issues. Remember that PCB design

is not just putting traces on a piece of hard material in order to make electronic components do

something meaningful.

Component Placement

Try to place the different circuit components as close as possible to each other and line them up

with regard to the I/O pinning. Position the components so that PCB traces do not take a lot of

turns, corners, and pass through PCB vias when going from one component to another.

The FPGA is flexible to pin-locking with regard to the internal FPGA design.

A straight, short connection improves all possible parameters of a PCB layout:

• Signal integrity

• Transmission line effects

• Capacitance and inductance

• Operating frequency

When distances between components are long, transmission line effects matter. Make sure

that all transmission lines are terminated properly to control reflections.

Before starting a PCB layout, determine the number of layers to be used. Decide also the

destination of the layers (signal, ground, power, and so forth).

It is best to take an extra day with the layout software to shuffle the components on your PCB

and find a good placement, rather than risk ending up with a bad PCB design.

Component Placement Examples

The data/frame receiver in the FPGA has been RLOC’ed between the IOB and the first Block

SelectRAM column in the FPGA. One module contains two data inputs and one framing/timing

input (Figure 12).

Figure 11: Address-Extended Self-Addressing FIFO

DataIn[23:0] DataOut[23:0]

'1'

Input Clock

Write Enable

4
4

TCEnaUpper Addr + 1

DOPA

DOA

DIPA

DIA

ADDRA

SSRA

WEA

ENA

CLKA Port A

DOPB

DOB

DIPB

DIB

BRAM16_S36S36

Logic to

increment by 1

X774_08_062504

http://www.xilinx.com

12 www.xilinx.com XAPP774 (v1.1) November 4, 2004

PCB Guidelines
R

This makes it possible to lock I/O pins in a range of six possibilities (Four I/Os in front of the

receiver block, one I/O up, and one I/O down).

Figure 13 shows a possible connection between the ADS527x device and a Virtex-II or

Virtex-II Pro FPGA.

Figure 12: FPGA Placement Example

Channel 1

Channel 0

M
U

L
T

B
R

A
M

IOB arrangement on FPGA 'die'

P
re

fe
rre

d
 I/O

 p
in

 lo
c
k
in

g
 ra

n
g

e
 fo

r a
 d

u
a

l c
h

a
n

n
e

l d
e

s
ig

n
 m

o
d

u
le

Timing

X774_12_082504

http://www.xilinx.com

PCB Guidelines

XAPP774 (v1.1) November 4, 2004 www.xilinx.com 13

R

Make sure all Low Voltage Differential Signaling (LVDS) transmission lines have the same

length! It is recommended that the clock and data signals have the same length. The DCM in

the Virtex-II or Virtex-II Pro FPGA can provide help positioning the clock to the data when used

in Phase Shift mode.

Guidelines and Recommendations

The following bulleted list summarizes key guidelines for PCB designs:

• Spend sufficient time when placing components for layout. With today’s layout tools, this is

like a shuffling block game.

• Keep the trace lengths as short as possible.

• Spend time determining the number of PCB layers and how the layer stack-up is realized.

• If possible during PCB layout, keep the length of a track shorter than the travel and

reflection time of the signal on the trace. If not possible, take the transmission line theory

into account.

• Match the length of all differential traces (data and clock).

• When making turns with these differential traces, turn as many times to the left as to the

right. When making a turn with a differential trace, the inner trace becomes shorter than

the outer trace of the pair. When using more turns in one direction, one trace of the

differential pair is longer than the other (without direct correction possibilities).

• Route traces on the PCB as far from each other as possible to avoid or minimize crosstalk

effects. Spread traces after routing over the available space of the PCB.

• Do not route traces into 90-degree turns, and avoid routing traces into 180-degree turns

(except when you know what you are doing). 90-degree turns increase the effective width

of the trace, contributing to parasitic capacitance. At very fast edge rates, these

discontinuities can cause significant signal integrity problems.

Figure 13: Connection between an ADS527x and FPGA

ADS527x

LCLKP/N

ADCLKP/N

Differential connections

Differential

clock input

X774_13_082504

Data Channel

Arrangement

DCM
0

80 21

41

1 2

Frame

Frame

7

6

5

4

3

2

1

0

7

6

5

4

3

2

1

0

FPGA

http://www.xilinx.com

14 www.xilinx.com XAPP774 (v1.1) November 4, 2004

Reference Design
R

• Use round, circular turns. If this is not possible, use 45-degree corners.

• Take the guidelines of the signal return paths into account.

• Guard traces.

• Remember the importance of ground planes.

• Specific to the ADS52xx TQFP package: Use the thermal pad connection, called

PowerPad, to improve the operating stability of the device.

Reference
Design

The reference design uses techniques described in XAPP291, XAPP265, and XAPP268 (see

“Reference Material”). The design is set up as a modular block design.

Design Files

A complete functional design is included in the ZIP file with this application note. The reference

design files can be downloaded from:

http://www.xilinx.com/bvdocs/appnotes/xapp774.zip

The files refer to the Xilinx demo boards using XC2VP20-6FF896 devices or Texas Instruments

demo boards using XC2V250-6FG256 devices.

Note: The BIT file for download of the design is for JTAG use only! The xapp774.zip file contains

readme.txt files in order to make customization of this reference design easy.

Additional design files are provided so that the design can easily be used in other applications

and systems. These files include:

• Small and large receive FIFOs

• Auto phase shift DCM

• A UCF file with the parallel data inputs and outputs placed on the same side of the FPGA

(in the same I/O bank)

• Simulation files for the reference design and subdesigns

http://www.xilinx.com
http://www.xilinx.com/bvdocs/appnotes/xapp774.zip

Reference Design

XAPP774 (v1.1) November 4, 2004 www.xilinx.com 15

R

Design Directory Setup

This section provides the directory setup of the reference design files:

/AdcTi

Ads5273IntV2Simple_readme.txt -- This readme file.

/Documents

ads5273.pdf -- Texas Instruments ADC datasheet.

ADS5273 Simple Interface.ppt -- PowerPoint presentation about this design.

XAPP774.pdf -- Xilinx Application note. Look on the Xilinx

-- web pages for the latest version.

/Extra

Now empty but can contain PCB layout, schematics, etc.

/Ise

/FreqGenXlvdsPro

/Virtex2V2506Fg256 -- Directory for Xilinx tools, simple design.

/Virtex2VP206FF896 -- Directory for Xilinx tools, full design.

/SimScripts

SimReadMe.txt

RandomNumberGenerator.xls

/ADS527xEVM_ADSDeSer-50EVM

/XlvdsPro -- Various simulation scripts for Models use.

-- All files are .do files and can be invoked

-- from within Models.

Tools --> Execute Macro --> browse to the correct .do file.

/Simulation

/work -- Work directory for the simulator.

/Synthesis

SynthReadMe.txt

/FreqGenXlvdsPro

/Synplicity

/Virtex2V2506FG256 -- Synthesis directory of TI eval. design.

/Virtex2VP206FF896 -- Synthesis directory for XlvdsPro design.

/Precision

/Virtex2V2506FG256 -- Synthesis directory of TI eval. design.

/Virtex2VP206FF896 -- Synthesis directory for XlvdsPro design.

/Ucf

UcfReadMe.txt

Different User Constraint Files for use with ISE tools.

/Verilog

Verilog source code

/Vhdl

VhdlReadMe.txt

/ADS527xEVM_ADSDeSer-50EVM

/AdcReceiver

AdcReceiver.vhd

AdcReceiver_TestBench.vhd

Ads5273_tester.vhd

Receiver.vhd

RxTiming.vhd

/AdsV2SmplNoFifo -- design for Virtex-II FPGA, no FIFO.

Ads5273_Tester.vhd

GenStuff_Tester.vhd

Toplevel_V2_Smpl_Nff.vhd

Toplevel_V2_Smpl_Nff_TestBench.vhd

/DcmPhaseCtrl

Bcd35FullRange.vhd

PhaseControlFullRange.vhd

/XlvdsPro

/AdcReceiver

AdcReceiver.vhd

AdcReceiver_TestBench.vhd

Ads5273_tester.vhd

Receiver.vhd

RxTiming.vhd

/AdsV2SmplNoFifo -- design for Virtex-II FPGA, no FIFO.

Ads5273_Tester.vhd

GenStuff_Tester.vhd

http://www.xilinx.com

16 www.xilinx.com XAPP774 (v1.1) November 4, 2004

Reference Material
R

Toplevel_V2_Smpl_Nff.vhd

Toplevel_V2_Smpl_Nff_TestBench.vhd

/DcmPhaseCtrl

Bcd35FullRange.vhd

PhaseControlFullRange.vhd

/DcmLifeIndicator

DcmLifeIndicator.vhd

/ExtraSourceCode

/LargeSelfAddrFifo

GrayCnt4b.vhd

LargeSelfAddrFifo.vhd

LargeSelfAddrFifo_TestBench.vhd

LargeSelfAddrFifo_Tester.vhd

/SmallSelfAddrFifo

SmallSelfAddrFifo.vhd

SmallSelfAddrFifo_TestBench.vhd

SmallSelfAddrFifo_Tester.vhd

Reference
Material

The following documents provide supplementary material useful with this application note:

1. Xilinx XAPP265: "High-Speed Data Serialization and Deserialization (840 Mb/s LVDS)"

2. Xilinx XAPP268: "Active Phase Alignment"

3. Xilinx XAPP291: "Self-Addressing FIFO"

4. Xilinx XAPP623: "Power Distribution System (PDS) Design: Using Bypass/Decoupling

Capacitors"

5. Xilinx XAPP659: "Using 3.3V I/O Guidelines in a Virtex-II Pro Design"

6. RF Circuit Design: Theory and Applications: Reinhold Ludwig/Pavel Bretchko (Prentice

Hall ISBN 0-13-095323-7).

7. RFI/EMI/EMC: A Designer's Handbook: Gary A. Breed

8. Microwave Circuit Analysis and Amplifier Design: Samuel Y. Liao (Prentice Hall ISBN 0-13-

586736-3)

9. Reference Data for Engineers: Radio, Electronics, Computer, & Communications, Mac E.

Van Valkenburg (Newnes)

10. Transmission Lines for Digital and Communications Networks: Richard E. Matick (McGraw

Hill, 1969)

11. IPC publications: IPC-2141 and IPC-D-317A, along with corrections and adjustments to

these publications from IPC and others

12. Radio Handbook, 23rd edition: William I. Orr (Newnes, 1997. ISBN 0-7506-9947-7)

13. High-Speed Digital Design: A Handbook of Black Magic, Howard Johnson – Martin

Graham (Prentice Hall ISBN 0-13-395724-1)

14. High-Speed Signal Propagation: Advanced Black Magic, Howard Johnson – Martin

Graham (Prentice Hall ISBN 0-13-084408-x)

Conclusion A Xilinx Virtex-II, Virtex-II Pro, or Spartan-3 (lower speed) FPGA easily can be used as an

interface to high-speed Texas Instruments ADS527x analog-to-digital converters. The FPGA

can be used as a direct data processing unit in high-speed data conversion designs and

perform a front-end or back-end application for a DSP, such as the TMS320C64xxx devices. A

possible design setup can be: ADC — LVDS FPGA interface — FPGA processing unit —

FPGA EMIF interface — DSP.

http://www.xilinx.com
http://www.xilinx.com/bvdocs/appnotes/xapp265.pdf
http://www.xilinx.com/bvdocs/appnotes/xapp268.pdf
http://www.xilinx.com/bvdocs/appnotes/xapp291.pdf
http://www.xilinx.com/bvdocs/appnotes/xapp659.pdf
http://www.xilinx.com/bvdocs/appnotes/xapp623.pdf

Revision History

XAPP774 (v1.1) November 4, 2004 www.xilinx.com 17

R

Revision
History

The following table shows the revision history for this document.

Date Version Revision

07/26/04 1.0 Initial Xilinx release.

11/04/04 1.1 Replaced Figure 3. Added paragraph about RLOC’ing under

Figure 5. Rewrote “Single-Channel Interface Timing” and included

two new figures (Figure 6 and Figure 7). Added “PCB Guidelines”

section. Revised the directory structure in “Design Directory Setup”.

Added additional documents to “Reference Material”.

http://www.xilinx.com

