EXAM Review: Calculations

Date: Friday, June 24 Room: 212 Time: 8:30-10:30 am Marks: 120 (75 multiple choice) \% of grade: 30\% You will be given a periodic table (as used for tests), a list of polyatomic ions, the activity series, solubility rules, EN values, and a list of constants: $6.02 \times 10^{23}, 22.4 \mathrm{~L}, 24.8 \mathrm{~L}, 273 \mathrm{~K}, 101.3 \mathrm{kPa}, 8.31(\mathrm{kPa} \cdot \mathrm{L}) /(\mathrm{mol} \cdot \mathrm{K}), 4.18 \mathrm{~J} /\left(\mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right)$. Basically, any information that you did not have to memorize for a test, you do not have to memorize for the exam.
This sheet is not a complete review of SCH 3U1 chemistry. You will still need to review all of your notes (especially focus on unit review sheets). This review is meant to help you sort through the different types of calculations that we have done. Try to solve these questions first without your notes (after all, you won't have your notes during the exam).

1. How many electrons, protons, and neutrons are in ${ }^{19} \mathrm{~F}$? Ar- 40 ?
2. What chemical formula results when the following elements are combined: a$) \mathrm{Al}+\mathrm{S}, \mathrm{b}) \mathrm{Mg}+\mathrm{O}$?
3. Calculate $\Delta \mathrm{EN}$ for: $\mathrm{NaF}, \mathrm{H}_{2} \mathrm{O}, \mathrm{O}_{2}$. What kinds of intermolecular forces will result in each case?
4. Calculate the percentage composition (by mass) of $\mathrm{H}_{3} \mathrm{PO}_{4}$.
5. $4.89 \div 6.77+1.2782 \times 2.78=\ldots$ (give your answer with the correct number of significant digits).
6. Boron has two isotopes: ${ }^{10} \mathrm{~B}(19.9 \%)$ and ${ }^{11} \mathrm{~B}(80.1 \%)$. Calculate Boron's average atomic mass.
7. How many atoms are in 7.3 moles of $\mathrm{C}_{2} \mathrm{H}_{4}$?
8. How much does $3.8 \mathrm{~mol} \mathrm{CuSO}_{4}$ weigh in grams?
9. A compound contains $\mathrm{C}(63.2 \%$ by mass $), \mathrm{H}(8.8 \%)$, and $\mathrm{O}(28.0 \%)$. Calculate its simplest formula.
10. A compound has the simplest formula $\mathrm{CH}_{2} \mathrm{O}$ and a molar mass of $180 \mathrm{~g} / \mathrm{mol}$. Give its molecular formula.
11. Write nuclear equations showing the a) alpha decay of ${ }^{210} \mathrm{Bi}$, b) beta decay of ${ }^{75} \mathrm{Se}$.
12. Butane burns according to the equation: $2 \mathrm{C}_{4} \mathrm{H}_{10}+13 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}$. If a 10 mL test tube is filled $1 / 10$ with butane and $9 / 10$ with O_{2}, how much O_{2} will remain at the end of the reaction?
13. $2 \mathrm{KNO}_{3} \rightarrow 2 \mathrm{KNO}_{2}+\mathrm{O}_{2}$. What mass of O_{2} can be produced from 592 grams of KNO_{3} ?
14. $3 \mathrm{Fe}+2 \mathrm{O}_{2} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}$. What mass of $\mathrm{Fe}_{3} \mathrm{O}_{4}$ can be produced if 100 grams of O_{2} reacts with 4.91 mol Fe ?
15. $\mathrm{CuSO}_{4}(\mathrm{aq})+\mathrm{BaCl}_{2}(\mathrm{aq}) \rightarrow \mathrm{CuCl}_{2}(\mathrm{aq})+\mathrm{BaSO}_{4}(\mathrm{~s})$. What is the percentage yield of BaSO_{4}, if adding 18.0 g of BaCl_{2} to excess CuSO_{4} produces 13.2 grams of BaSO_{4} ?
16. An alloy is prepared by adding 15 g of Cu to 27 g of gold. Calculate the \% W/W of copper in the alloy.
17. A $50,000 \mathrm{~L}$ pool has a chlorine concentration of 4.0 ppm . How many grams of chlorine are in the pool?
18. What is the molar concentration of a solution that holds 16 g of NaOH in 2.00 L of solution?
19. What volume of 12.0 M HCl is needed to make 3.00 L of a 0.175 M solution?
20. 3.5 L of 1.3 M KCl is added to 2.0 L of 0.75 M KCl . What is the concentration of the resulting solution?
21. How much precipitate forms when 70 mL of $\mathrm{H}_{2} \mathrm{O}$ saturated with KNO_{3} is cooled from $52^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$? (pg. 316)
22. What mass of precipitate forms when 0.35 L of $0.175 \mathrm{M} \mathrm{CaCl}_{2}$ is added to excess $\mathrm{Na}_{3} \mathrm{PO}_{4}(\mathrm{aq})$?
23. a) $\mathrm{pH}=7.5,\left[\mathrm{H}^{+}\right]=$ \qquad , b) $\left[\mathrm{H}^{+}\right]=1.85 \times 10^{-12}, \mathrm{pH}=$ \qquad
24. In a titration, 4.42 mL of $0.600 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ neutralized 5.00 mL of NaOH . What was the concentration of NaOH ?
25. a) $22 \mathrm{~K}=$ \qquad ${ }^{\circ} \mathrm{C} \quad$ b) $756^{\circ} \mathrm{C}=$ \qquad K
26. A aerosol can at $25^{\circ} \mathrm{C}$ has an internal gas pressure of 150 kPa . What will the pressure be at $200^{\circ} \mathrm{C}$?
27. A weather balloon holding 22 L of gas is released at a pressure of $103 \mathrm{kPa} \&$ a temperature of $15^{\circ} \mathrm{C}$. What is the temperature at 10 km , where the pressure is 15 kPa and the balloon occupies a volume of 108 L ?
28. A gas is collected in a long glass tube over water. After equalizing the water level inside and outside the tube, the volume was measured at 35.7 mL . If the atmospheric pressure is 97 kPa and the water temperature is $20.0^{\circ} \mathrm{C}$ (vapour pressure $=2.34 \mathrm{kPa}$), calculate the volume of dry gas at STP.
29. A 2.62 g sample of a gas occupies 1.46 L at $22^{\circ} \mathrm{C}$ and 110 kPa . What is the molar mass of the gas?
30. $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$. What mass of water is produced when 2.4 L of O_{2}, at SATP, is reacted with excess H_{2} ?
31. Write a balanced equation for the complete combustion of a 27 -carbon alkane.
32. A 1.37 g sample of sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ is burned in a calorimeter. The 2.3 L of water increases from $23.21^{\circ} \mathrm{C}$ to $25.58^{\circ} \mathrm{C}$. Calculate the heat released. Calculate the molar heat of combustion for sucrose.
33. Using a table of bond energies, write the thermochemical equation for the reaction $\mathrm{H}_{2}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{HBr}$.
