
Experience with Secure Multi-Processing in Java

Dirk Balfanz
Princeton University

balfanz@cs.princeton.edu

Li Gong
JavaSoft, Sun Microsystems, Inc.

li.gong@sun.com

September 29, 1997

Abstract

As Java is the preferred platform for the deployment
of network computers, it is appealing to run multiple ap-
plications on a single Java desktop. We experimented
with using the Java platform as a multi-processing, multi-
user environment. Although the Java Virtual Machine
(JVM) is not inherently a single-application design, we
have found that the implementation of the Java Develop-
ment Kit (JDK) often implicitly assumes that the Java Vir-
tual Machine runs exactly one application at any one time.

In this paper, we report the limitations we encountered
and propose improvements to several aspects of the Java
architecture, including its security features. We have im-
plemented all the proposed changes in a prototype based
on the in-house beta version of JDK 1.2. Our prototype
uses a Bourne shell-like command line tool to launch mul-
tiple applications (such as Appletviewer) within one JVM.

1 Introduction

A Java Virtual Machine (JVM) [5, 7] is typically used
to run exactly one Java application at any one time, where
an application can be a Web browser and Java applets are
fetched as part of Web pages and are executed within the
browser. Other applications such as downloadable stubs
for remote messaging [13] or frameworks for push tech-
nology increasingly use this ability to execute mobile Java
code.

Current Java implementations usually express their se-
curity policy in terms of code identity that is characterized
by both digital signatures on the mobile code and the net-
work origin (i.e., network location and address) of the mo-
bile code [4]. When multiple applications run in the same

This work was performed in part when Dirk Balfanz visited Java-
Soft during the summer of 1997. This paper does not necessarily reflect
the official opinions of Princeton University or Sun Microsystems. The
discussion does not bind Sun Microsystems to any particular products or
features.

JVM, we need to provide a security framework that accom-
modates the need to both protect the Java system from (po-
tentially malicious) mobile code and protect (potentially
mutually hostile) applications from each other.

In this paper, we report our experiences in attempting to
implement multi-processing capabilities for the Java plat-
form. We describe changes and additions to the Java sys-
tem APIs (part of JDK) that we found necessary and useful.
We also suggest how user-based access control (to specify
policies about who is allowed to do what) can be introduced
to work with the existing code source-based access control
(which code is allowed to do what).

To demonstrate feasibility, we have implemented all the
changes we proposed in a prototype, which uses a Bourne
shell-like command line tool to launch multiple applica-
tions from within one JVM. Our prototype is based on an
in-house beta version of the Java Development Kit 1.2
(JDK).

The rest of this paper is organized as follows. We first
argue for the case for running multiple applications inside
one JVM. Then, in Section 3, we examine how a JVM cur-
rently executes an application, paying special attention to
issues that intrinsically resembles a single-application en-
vironment. In Sections 4 and 5, we discuss features that
are missing from the current JVMs and show what can
be added and changed to make Java a more friendly en-
vironment for multi-processing. Finally we discuss related
work and conclude the paper with some directions for fu-
ture work.

Our work necessarily includes a variety of issues, such
as the refinement of the Java security architecture. These
issues, however, are outside the scope of this paper, so we
only touch upon them briefly.

2 The Case for a Single JVM Solution

It is plainly obvious that it is desirable to run multiple
Java applications on a single desktop at the same time. In
fact, this can be done already by just launching multiple

1



JVMs from within the underlying operating system. There-
fore, the question we must tackle first is what makes it par-
ticularly attractive to run multiple applications in one JVM.

For starters, a small device or an old computer sys-
tem may be under-powered and equipped with inadequate
memory such that it is crippling to try to start multiple
JVMs.

Moreover, JVM sometimes does not run as a process of
an O/S, but run directly on the bare hardware (e.g., JavaOS
[10]). Thus, there may not always be an underlying operat-
ing system to host multiple JVMs. In current incarnations
of these systems, the multiple applications available on the
system are in fact parts of one big application, where it is
difficult (if not impossible) to segregate the different parts
to prevent undesirable interactions. This limitation effec-
tively confines the system to running in single-user mode.
To switch to a different user, the previous user must be
logged off and sometimes the machine has to be rebooted
to make sure that the system state is correctly initialized.

To construct a true multi-user system, it is clear that the
applications must be protected from each other, just like
in any other modern operating system. This can only be
achieved if they are truly different applications and not dif-
ferent parts of the same application.

Even if the JVM runs as a process within another
O/S, we should be interested in running multiple appli-
cations in one JVM. Single address-space operating sys-
tem is a focal point of current research in operating sys-
tems [1, 11, 8]. Using software-based protection in-
stead of hardware-assisted protection through multiple ad-
dress spaces, these systems promise superior performance
[8, 12]. Many factors contribute to this performance gain.
Context switching, for example, is much less expensive if
performed within one address space, because caches need
not be cleared, page-table pointers don’t have to be ad-
justed, and so on. Inter-process communication is also
much cheaper in a single address space. In fact, a multi-
processing JVM could be a full-featured testbed for re-
search on single address-space O/S’s and at the same time
the first mainstream modern single address-space operat-
ing system.

3 Running a Single Application

3.1 The Lifetime of an Application

A Java application can be invoked typically by typing
java MyClass on the command line. This will start
the JVM, which is a process in the underlying operating

The actual command may not be called java, depending on which
particular product is used.

system (O/S). The process that causes the launch of the
JVM is the shell that let us type in the command java in
the first place. Before the O/S transfers control to the JVM,
it makes sure that the process is properly initialized. This
initialization includes setting of open file descriptors for
standard input and standard output, user id’s, and process
id’s. The values for a number of these parameters are taken
from the application that created the JVM process, which
is the Unix shell in our example.

The JVM itself is a multi-threaded process. Java uses
either a kernel- or user-based thread library to start up a
number of threads immediately after the JVM gains control
from the O/S. These threads include a garbage collector, a
thread to execute finalizers, and an idle thread to fall back
on when no other work needs to be done. But most impor-
tantly, it includes one thread that interprets Java bytecode,
starting with the first instruction of the mainmethod in the
class we specified (in our example MyClass).

Whenever a new class is needed in order to execute the
bytecode (for example, when an instance of another class
is created), that class is dynamically linked into the JVM
– the external class file representation is converted into an
internal representation that the JVM can use to call meth-
ods of this class, access members, and so on. Often, some
initialization of these classes is performed. Examples of
initializations of classes which have notable effects to the
Java application include:

When the System class is loaded, three streams are
created that point to standard input, standard output
and error file descriptors of the JVM process.

Also in the System class, so called properties are
initialized. These are values that provide information
about the “system”, for example the running user, the
Java version, the underlying O/S version. Some of
these values are taken from the respective value of the
JVM process (e.g. the running user), some of them are
hard-coded into the JVM (e.g. the Java version), and
some of them are acquired by some other means (e.g.
the O/S version through a system call).

The JVM interprets one bytecode instruction after an-
other, linking classes as needed, and performing neces-
sary initializations before any new class is actually used.
Our Java program may also choose to spawn new threads,
which will be scheduled just as all the other threads that
the JVM is already running.

How does a Java application (and, hence, the JVM pro-
cess) ever finish execution? One way to do that is to call

In our explanations, we usually assume that the underlying O/S is
Unix, but apart from slight differences in the jargon, all concepts ex-
plained her apply equally to other platforms that Java has been ported
to.

2



Figure 1: The lifetime of a JVM: once all non-daemon
threads of an application have finished, the JVM exists
even though daemon threads may still be running.

the System.exit() method, which will cause the un-
derlying exit system call to be invoked. This will stop
the JVM process itself, and therefore stop all the threads
that were active within it.

Java threads may also come to a “natural end”. For
example, when the main method returns, the associated
thread is destroyed. However, that does not necessarily
mean that the JVM will stop execution, as there can be
other threads still around, including threads that were cre-
ated when the JVM started or by our application. To pre-
vent the JVM from running forever, Java distinguishes be-
tween daemon and non-daemon threads. When a thread
is created, it is marked as either daemon or non-daemon.
Whenever a thread finishes execution, the JVM checks to
see if there is at least one non-daemon thread remaining.
If so, the JVM continues to execute all the threads. If all
remaining threads turn out to be daemon threads, the JVM
exits, stopping all those daemon threads in the middle of
whatever they were doing.

The threads that are created at JVM start-up time are
all daemon threads. The thread that executes the main
method is a non-daemon thread. This has the (desirable)
effect that when the main method returns, the JVM usu-
ally exits. This whole life cycle is illustrated in Figure 1.

Note that sometimes an application implicitly creates
non-daemon threads that run forever, which will cause
the the JVM not to exit unless the Java application calls
System.exit(). This is for example the case when a
Java application uses AWT components. When the AWT
toolkit is initialized, a non-daemon thread is started that
dispatches events and calls into call-back code provided
by the application. This thread will run forever and keep
the JVM from exiting until explicitly destroyed by the
System.exit() call.

Figure 2: Event dispatching. Within the Java JVM, a single
thread is used to execute all callbacks.

3.2 Event Dispatching

In the previous section we briefly mentioned AWT event
dispatching. Now we take a more detailed look, especially
at its interaction with the underlying windowing system.
Our discussion assumes a underlying UNIX with the X
windowing system, but our comments apply to other plat-
forms also.

In X, a special process (the X server) has exclusive
control over the high-resolution display. If an application
wishes to draw something on the screen, it needs to com-
municate to that process what it wishes to draw. The X
server will then draw on behalf of that application, making
note which GUI component it drew on behalf of which ap-
plication. When some input from the keyboard or mouse
occurs, the X server will figure out which GUI component
was the target of that input and notify the appropriate pro-
cess (see Figure 2).

Let’s now assume that one or more of the processes
in the system are Java Virtual Machines running Java ap-
plications. Within one JVM we actually have a similar
scenario. When an application wishes to draw something
on the screen, it makes a call into the appropriate library
(which will then contact the X server). When the JVM gets
notified by the X server that some user input happened,
an AWT event object is created which contains informa-
tion about the event (for example, where a specific mouse
click happened). This object is put on a queue. A cen-
tralized event dispatcher thread will pick up events from
that queue and call the appropriate methods to handle the
event. For example, if an ActionEventListener is
registered with a GUI button and the button is clicked, then
the actionPerformed() method is called on the lis-
tener. Note that all callbacks are called from a single event
dispatcher thread.

3.3 Security Policies

Since Java has specifically been designed to execute
possibly untrusted mobile code, great care has been taken
to specify and implement a security model [3].

3



The Java class libraries are written in such a way that
all sensitive operations call into a centralized object, the
security manager, to check whether the callee should be
allowed to invoke this operation. The security manager
throws a security exception (which is a runtime exception)
if the operation should not be allowed, effectively abort-
ing the execution of that operation before any harm can be
done.

Consider for example that some Java application exe-
cutes the following code:

File f = new File("/temp/foo");
f.delete();

The delete method is implemented like this:

public void delete() {
securityManager.checkDelete();
realDelete();

}

This assumes that realDelete() is a private method
(and therefore not accessible directly from the application)
that actually deletes the file. Every application is free to
set the security manager and implement whatever security
policy it likes (i.e. when the security manager should allow
certain calls and when it should not).

However, the most common use of the security manager
has turned out to be preventing applets (i.e., foreign code
that is downloaded over the network and executed as part
of a Java application) from gaining unlimited access to the
system. In web browsers the security manager has been
commonly written such that its main purpose is to find out
whether a certain call is ultimately initiated by an applet
(i.e. whether there is code anywhere in the call chain lead-
ing to the call of, say, checkDelete(), that was im-
ported over the network). If the call was initiated by an
applet, the operation is forbidden. Otherwise it is allowed.

In recent versions of the JDK and other Java platforms,
this approach has evolved considerably [4]. The security
manager no longer distinguishes between remote or local
code, but follows in its decisions a policy that can be speci-
fied by the user in terms of the code source. In other words,
depending on who signed the code and where the code
came from, the user can specify which operations should
be allowed for that code and which shouldn’t. How ex-
actly that policy is specified varies from system to system.
As before, an application (such as HotJava) may get to in-
stall its own security manager, thus customizing security
control.

4 Additional Support Needed for
Secure Multi-Processing

During the course of our experiment, we found that a
number of new features are needed to make secure multi-
processing. In this section, we discuss them individually,
while in the next section we describe our approach to these
issues.

The first thing that we notice is that the execution of the
JVM starts when we start an application, and stops when
the application is finished.

Feature 1 A way to launch applications in a running JVM,
and a way to end them without exiting the JVM.

In order to remain backward-compatible to work with
existing applications, we want to execute the main()
method of a class in order to start the application, and the
“end” of an application should be defined just as it is now
– no non-daemon threads of that application remaining –
but it should not necessarily cause the JVM to exit.

Feature 2 A definition of what an application is, which is
consistent with the current notion of a Java application,
but allows multiple applications to run in one JVM.

In UNIX, processes are allowed to do certain things de-
pending on which user runs the process. If we have multi-
ple applications running in one JVM, we also may want to
grant different applications different permissions, depend-
ing on who runs them. For example, Alice and Bob might
both run the very same piece of software. When run by Al-
ice, it should be allowed to read Alice’s files, while when
run by Bob it shouldn’t (by default).

However, currently there is no explicit notion of a user
running a Java application. Depending on the underly-
ing O/S, the JVM may or may not have a meaningful
user associated with it, which may affect the privileges
of the JVM in the system. But that view is not propa-
gated to the Java application. In fact, the view is some-
times partially hidden from the Java application. When
running on top of UNIX, for example, a Java application
cannot see files that the UNIX user who runs the JVM
is not allowed to access, and an attempt to access those
files results in a FileNotFoundException instead of
a SecurityException. Hence, we need the following.

Feature 3 A notion of a user running Java code.

How do we associate a particular application with a
user? In UNIX, a user logs on to the system, and as a re-
sult of the authentication process, a shell (either graphical

It is quite likely that a thorough thought experiment would reveal the
same issues as our trial-and-error approach did, and the issues can be seen
from different perspectives and this may lead to different solutions.

4



or command-line) is provided that runs as the authenticated
user. After that, every application that is launched from the
shell inherits the user-id. If we follow this scheme, we
need to log on to the JVM, and we need a (graphical or
command-line) shell.

Feature 4 A notion of logging on to the JVM and a shell
to launch other applications.

Once we can run multiple applications and associate
them with different users, we need to grant these applica-
tions privileges based on who run them. This should work
in conjunction with the existing approach of basing secu-
rity policies on code sources.

Feature 5 A way to combine code source-based security
policies with user-based policies.

Some of the Java system primitives today implicitly as-
sume that there is only one application running. For exam-
ple, an application can exit the virtual machine by calling
System.exit(), since the “system” is the same as the
application. Along the same token, there is only one secu-
rity manager that implements a (code source-based) secu-
rity policy for the (only) one running application.

Another example is that certain threads that the run-
time system creates on behalf of the user (e.g., the thread
that communicates with the X server) are created in what-
ever thread group happens to be current when the need for
them arises. However, as we will see in Section 5.4, this
may conflict with the co-existence of multiple applications.
Thus system code must be aware and can handle multiple
applications appropriately.

Feature 6 Multi-application-aware system code.

In Section 3.2, we explained how GUI events are dis-
patched. Assume that two users, Alice and Bob, are run-
ning the same program, say a text editor, within one JVM.
When Alice wants to save her file, she selects the appro-
priate menu item. This will cause the event dispatcher
thread to execute the code that is associate with the Save
File menu item. When Bob tries to save his file, the very
same thread will execute the very same code. Thus, there
is no way of distinguishing between the two cases. How-
ever, such a distinction is crucial as, for example, we would
like to avoid saving Bob’s file in Alice’s directory and vice
versa.

Feature 7 Multi-application-aware event dispatching.

To a Java application, the JVM acts like an operating
system. Apart from providing system services, it holds
certain system-wide state, including information about the

operating system, a list of proxy hosts, and a list of prin-
cipals known to the system. The JVM in turn makes such
information available to the application as appropriate.

On the other hand, to the operating system the JVM
is just another process, and duly holds process-wide state
such as the running user-id, standard input, standard out-
put, and error streams.

In current JVM implementations, the same process-
wide state is mapped to any application that the JVM is
running. For example, there is exactly one set of input,
output, and error streams that all Java code in the JVM
shares.

In a multi-processing JVM, while all the applications
may share the same information about the underlying op-
erating system or the list of available proxies, clearly dif-
ferent applications have different ideas about what the stan-
dard input and output streams are. In other words, appli-
cation state and system state are two different things, and
should not be mixed together, as is done in current JVM
implementations.

Feature 8 Distinction between application state and sys-
tem state.

One particular example of this desirable separation is
case of the security manager. Every application is allowed
to set its own security manager, making it essentially part
of an application-wide state. However, there should be a
system-wide security manager that governs the interactions
between applications and decides which users have what
permissions.

Feature 9 A way to combine JVM-wide security policies
with application-wide security policies.

In the next section we present an improved system ar-
chitecture that addresses all of the above mentioned short-
comings. We have implemented the architecture in a pro-
totype and have written several small applications as a
testbed (see Section 6).

5 Running Multiple Applications

5.1 Defining Applications

We define an application to be a set of Java threads. A
seemingly valid alternative approach would be to specify
an application as a bounded piece of code, say, all the code
that belongs to the classes that make up a given program.
This latter approach was chosen for code source-based ac-
cess control, and it does make sense there. However, an ap-
plication may involve code from multiple of these sources,

5



in particular, user code and system code. Intuitively, an
application is started and run by a user, and is associated
with this user during its whole life time, no matter which
code is executed at any given time. Associating the appli-
cation (and, hence, the user running that application) with
specific code or classes would have been contradictory to
this intuition.

Thus we conclude that threads provide a natural ground
for the notion of an application. By the same token, threads
give us a convenient way to distinguish two instances of the
same program. running inside a single JVM (see Figure 3).

Furthermore, an application has the following proper-
ties:

It has a lifetime, i.e. it starts execution at some point,
and finishes execution at a later point.

It is memory-protected from other applications. Java
uses software-based protection that relies on the type
system to provide basic memory protection and create
(by means of class loaders) different name spaces for
each application.

It is associated with a user that is running the applica-
tion.

It holds application-wide state that is shared among all
the threads that comprise the application. This state is
likely different from that of another application. The
state includes:

– The aforementioned user identification.

– Distinct standard input, standard output, and er-
ror streams.

– A current working directory.

– A set of properties.

When an application creates a child application, the
current application-wide state of the parent is inher-
ited by the child.

To implement this concept of an application in Java,
we created a class Application based on these criteria
and implemented methods to start and stop applications, to
query the running user and current directory, query and set
the standard streams, and so on.

This class is typically used as follows:

1 String[] args = {"arg1", "arg2"};
2 Application app =

Application.exec("MyClass",args);
3 app.waitFor();

Line 2 causes a new application to be created and
started. What happens behind the scenes is the following.
First, a thread group is created for the new application, to-
gether with an instance of class Application to hold
the application-wide state. The new application state is
initialized by copying values from the current application.
This includes standard streams and running user. Then,
using the Java Reflection API, the main method of class
MyClass is called. This happens within a new thread in
the newly-created thread group. The arguments args are
passed to the MyClass.main method. Since the main
method is executed in its own thread, the exec method re-
turns immediately. Line 3 waits for an application to finish.

The new application is allowed to create threads only
in its own thread group. This prevents applications from
stepping on each others toes and makes it easy to associate
a given thread with an application instance.

An application can be stopped using the following code.

// within MyClass.java
System.out.println("bye, bye");
Application.exit(0);
// we will never get here

The static exit method will find the application in-
stance that corresponds to the currently running thread,
schedule that application for destruction, and block the cur-
rent thread. A background thread will eventually clean up
the application, stop all threads, and close all windows that
are associated with the application.

If the application does not explicitly call exit(), then
the JVM will call the exit method as soon as there are
only daemon threads left in the application’s thread group.

It is worth noting that, in Unix, the exit system call
closes all open file descriptors that the exiting process has.
It is not always appropriate to follow this semantics in Java.
For example, every application has at least the standard in-
put and output streams open. It might very well be that
multiple applications have their standard streams point to
the same device, say a terminal. If one application now
closes one of these streams, then other applications that
used the same stream will no longer be able to use it.

Therefore, until special APIs are available for safe
stream duplication, applications may only close streams
that they opened. Streams that are passed to them like the
standard input and output streams must not be closed by
the application. For example, if a shell chooses to launch
an application with its standard streams redirected, and it
creates streams for that purpose, then it is the shell’s re-
sponsibility to close those streams after the application fin-
ishes.

This phenomenon is in part due to the fact that if one creates a new
stream out of an old one using standard stream APIs, then closing the new
one almost inevitably causes the old one to be closed as well.

6



Figure 3: Applications. An application consists of a set of threads.

5.2 Defining Users

Every application is associated with a user, and the
Application class provides calls to query and set the
user of the currently running application. Special privi-
leges are needed to set the user, and these privileges are
not normally granted to applications. A newly started ap-
plication will inherit the running user from the currently
running application.

In our prototype, login-in now works similar to UNIX’s
login program. It has the necessary privileges and resets its
own running user-id to be the one that it has successfully
authenticated. It then spawns a shell (which will have the
same running user) and waits for the shell to finish.

Note that it doesn’t matter which user is running the lo-
gin program. In fact, it might even be some sort of “null”
user for bootstrapping purposes. In particular it is not nec-
essary to have the login program be executed by an all-
powerful “superuser”. All we need to do is grant the login
program the privilege to set its own user. This can be done
through code source-based security policies, since it is the
program that is granted the privilege, not the user that runs
it.

5.3 User-Based Access Control

We chose to implement user-based access control as
part of code source-based access control. The idea is that
extend the range of the security policy so that (1) the secu-
rity policy can grant permissions to a particular user and (2)
the policy can also grant certain code sources the privilege
to exercise the permissions of the running user.

We used Sun’s JDK 1.2 security framework [4], and in-
troduced a new kind of user permission and then granting
that permission to local applications.

When making access control decisions, if the JVM
comes across code that has been granted this special per-

mission, the JVM check the permission granted to the cur-
rently running user in addition to checking the permission
granted to the code’s source. The permissions granted to
the code itself and the permissions granted to the user that
runs the code are combined to determine whether access to
certain sensitive system areas should be granted.

For example, our locally installed text editor (and, in
fact, all local applications) would get the permission to
exercise the permissions of the user who is running it,
whereas remote code (such as applets) would not. This
enables the text editor to access files that belong to the user
running it, but would not allow applets to access files be-
longing to the user running the web browser. As a result,
we can specify policies like the following.

1. All local applications can exercise their respective
running users’ permissions.

2. The backup application can read all files.

3. User Alice can access all files in /home/alice.

4. User Bob can access all files in /home/bob.

Details of how exactly the user-based access control was
implemented are beyond the scope of this paper.

5.4 Event Dispatching

Recall that, in current JVM implementations, the event
dispatcher thread executes all callbacks, i.e., code that is
executed as the result of user input is executed by a thread
that does not belong to any particular application. For
example, if Alice run a text editor and choose to save the
file, the code that tries to save the file may not run under

Whichever application happens to open a window first would implic-
itly start the event dispatcher.

7



Alice’s user-id. This is clearly inadequate for protection
purposes.

Therefore, we reworked the AWT event-dispatching to
have the following features.

When an application opens a window, the system
makes note about which application the window be-
longs to.

When an event occurs in a GUI element, the enclos-
ing window and its application are found. Then, the
AWT event is put on the particular event queue of that
application, where it will be picked up and dispatched
by a thread that belongs to that application.

This redesign also improves responsiveness, as each
application’s event dispatching is now independent from
other applications (see Figure 4).

Note that, in current JVM implementations, some sys-
tem threads, for example, the thread that communicates
with the X server, are started in the JVM “on demand” –
e.g., when a Java application first tries to open a window.

For our multi-processing needs, we cannot allow these
threads to be randomly associated with whatever applica-
tion that happens to be the first to use a graphical user in-
terface. Therefore, we changed the runtime system so that
these threads are created in a special system thread group,
which does not belong to any application. This is the same
thread group that also contains the garbage collector and
idle thread.

The per-application event dispatcher threads, on the
other hand, are created on demand. Whenever an ap-
plication first opens a window, we create an event dis-
patcher thread for this application. Since that thread is
a non-daemon thread, we now have the same semantics
for application-exit that we had before. An application
that does not use the AWT may just return from its main
method and will be automatically destroyed by the sys-
tem. An application that does use the AWT has to call
Application.exit() in order to finish.

5.5 Reloading System Classes

As we explained before, a Java application used to be
a full-fledged process of the underlying operating system
thus, quite naturally, some of the process-wide state in-
cluding standard streams is in fact system-global state in
Java. For example, the static variable System.in and its
siblings are shared throughout the JVM.

Our multi-processing system, however, must maintain
per-application state. For example, different applications
may have different ideas about what their standard input
and output streams are.

We provide a solution that also maintains backward
compatibility for existing application code. We provide
each application with the illusion that it has the JVM all for
itself. To be more specific, we borrow a technique that has
previously been employed to provide differently trusted
code with a different view of what the system classes are
[12].

In our implementation, every application gets its own
copy of the System class. We use a special class loader
to re-load and re-define the System class, albeit from the
same class material. Since we use a new class loader for
every application, to the JVM, the different incarnations of
the System class are just different classes that happen to
have the same name. This is similar to the case where two
applets in a browser may happen to use different classes
with the same name. Because the same class are loaded
by different class loaders, the underlying JVM treats them
as different classes. Now we have a new copy of the
System class for every application, we can set the re-
spectiveSystem.in, System.out, and System.err
streams to point to different things for different applica-
tions.

Based on this feature, we were able to easily implement
input/output redirection and pipes between applications.

Our experiment so far has not determined whether there
are more classes that need to be re-loaded like the System
class. To reach such a conclusion, it is necessary to go
through the entire JDK class library and find out which of
the JVM-wide state truly is JVM-wide, and which state is
actually per-application state. Once per-application state
(like the standard streams) has been identified, the classes
defining that state have to be added to the list of reloaded
classes.

Note that the System class contains state in the
form of the system properties that is truly JVM-wide.
To make sure that such system properties are avail-
able to all applications, we placed them in a new
class called SystemProperties that is shared be-
tween all applications. The API for accessing the sys-
tem properties is unchanged, as applications still use
System.getProperties() to access the system
properties. Figure 5 illustrates the relationship of shared
and reloaded system classes.

5.6 Multiple Security Managers

We installed a security manager (the system security
manager) in our multi-processing JVM that implements
the following policy, primarily for the purpose of protect-
ing applications from each other.

A thread may access another thread if ’s thread
group is an ancestor of ’s thread group. If this is not

8



Figure 4: Multi-threaded event dispatching. Every application has its own event queue and a thread in the application’s
thread group delivers the events.

the case, may only access if it has the appropriate
permission.

A thread may access a thread group if ’s thread
group is an ancestor of . If this is not the case,
may only access if it has the appropriate permis-
sion.

Public members of a class can be accessed normally
through the reflection API. Access to non-public
members needs an appropriate permission and is con-
trolled by the system security manager.

For all other security-relevant
decisions, the AccessController is consulted,
which effectively means that code needs to have the
appropriate permission.

Note that, although applications can set their own se-
curity managers, but because we have a separate System
class for every application and that is where the reference
to the application’s security manager is stored, applications
in theory can still set their own security managers. How-
ever, those security managers will never be consulted by
system code, because the system code that performs sensi-
tive operations sees its own version of the System class
that holds the system security manager.

It is non-trivial to make a system security manager work
with application security managers. For example, today’s
security architectures prevent so-called luring attacks by
making sure that even privileged system code cannot call
into unprivileged code without losing its privileges. How-
ever, in our system, an application security manager is by
default unprivileged code (if it were privileged, it could de-
cide to turn off inter-application security). Therefore, most

The AccessController is the class that implements the code
source-based access control in Sun’s Java Development Kit.

of the security checks will fail because the checker does
not have enough privileges for the checks to succeed.

Consider, for example, an application that is not allowed
to read files, but wishes to write text to the screen. In order
to do that, the Font class needs to read in font character-
istics from the file system. Since the Font class is trusted,
it has enough privileges to read from the file system de-
spite the fact that the application is not allowed to do so
directly. However, as soon as the Font class calls into ap-
plication code, like the application security manager, those
privileges are lost, and file access will be – wrongly – de-
nied.

It seems that application security managers in our archi-
tecture cannot be used to override behaviors of the system
security manager and are best left to perform application
specific security checks that are not covered by the system
security manager. Moreover, applications can augment (or
change) the effective system security manager behavior via
different means, such as delegation. The details of this as-
pect of the security architecture and API are beyond the
scope of this paper.

6 Useful Tools

As proof of usability of our multi-processing JVM, we
built a few demonstration tools that included a shell, a ter-
minal, and an application-level Appletviewer. We discuss
them in some detail in the rest of this section.

6.1 A Shell

As part of our prototype, we implemented a shell for
executing Java applications. The shell executes an infinite

9



Figure 5: Reloading the System class. Every applica-
tion, as well as the system itself, sees its own copy of
the System class. Global properties are now held in a
SystemProperties class that is shared between all ap-
plications.

loop in which it reads in a command line (provided by a ter-
minal, see Section 6.2), interprets it, and possibly launches
one or more applications as the result of its interpreting
of the command line. A simple command (e.g. ls) will
launch the application of that name, and wait for its com-
pletion before reading in the next command. A command
followed by an ampersand (e.g. hotjava &) will start
the application of that name (as a concurrent application)
and immediately be ready to read in the next command.

The shell that we implemented uses pipes between ap-
plications and input/output redirection (with the syntax
borrowed from UNIX). Normally, the input and output
streams of the applications that the shell launches are not
changed (and, hence, are the same as the shell’s). How-
ever, in the case of pipes or input/output redirection, the
shell temporarily changes its own standard input and out-
put streams (to point to the appropriate pipe or file streams)
before each application is launched. This causes the new
application to have its input/output streams set to non-
standard values. Afterwards, the shell’s streams are re-set
to their original values.

We equipped the shell with a few built-in commands
such as cd and quit, and implemented utility applica-
tions including ls and cat.

6.2 A Terminal

The shell presented in the last section needs a way to
communicate with the user. Usually, the Java system itself
is run from a UNIX (or other) terminal, so the shell could
just read from there.

However, there are a number of reasons for implement-
ing an independent Java terminal. First, we might not al-
ways be in a environment that has terminals as part of their
GUI. Even if we are, Java does not have much control over
the terminals, other than reading and writing characters to

them. For example, there is no standard way to turn off
echoing of the underlying terminal (needed for password
entry), or to provide functionality similar to the GNU read-
line library. It would be quite impossible to write text edi-
tors like vi in Java.

We implemented a simple prototypical terminal that has
a few methods to read from and write to the terminal, and
to switch echoing on and off.

Applications can make use of a terminal as follows: If
only basic input/output is needed, then applications can
just read and write to System.in and System.out
(which are connected to the Java terminal, as inherited
from the Terminal application itself).

If more control over the terminal is desired, applica-
tions can retrieve a reference to the terminal object it-
self. The shell, for example, uses the terminal’s advanced
readString() method when connected to a terminal,
thus giving the user features like a history buffer. The login
application uses the turnEchoOffmethod before asking
for a password. Other applications like cat only use the
standard streams, and therefore also work if they are not
run from a terminal (such as when they are used in a pipe).

6.3 Porting the Appletviewer

As a final example, we moved the Appletviewer, which
is a built-in program distributed with JDK and normally
run as system code, to become an application as de-
fined in our framework. More specifically, we moved
the Appletviewer’s classes off the system class path
CLASSPATH, and this has the result that the classes are
no longer automatically privileged. Also, we replaced all
System.exit() calls with Application.exit().
This change will not be necessary if we change the seman-
tics of System.exit() to only exit the current applica-
tion.

A significant difference is that we no longer need
the Appletviewer’s security manager. Instead, the
AppletClassLoader now implements the necessary
methods to delegate permissions to the applets it loads,
thus implementing the original Java sandbox security
model. For example, an applet will get the permission from
the Appletviewer to connect back to its own host.

Note that one can still assign special privileges to cer-
tain code sources (such as certain applets), in accordance
with the new security model in JDK1.2. The underlying
JVM do not distinguish between permissions granted by
the Appletviewer and permissions granted by the user.

We successfully run multiple instances of the terminal,
together with shells, the Appletviewer, and a number of
applications connected through pipes in our prototype.

10



7 Related Work

The idea of using software-based protection as the fun-
damental building block for system security is not new.
For example, the operating system Pilot [9] used a safe
language [6] in a single address space to provide security
without a kernel. Various approaches of software-based
protection has recently been reconsidered in the context of
Java [12]. Our contribution is that our multi-processing
Java environment must deal with distributed computing
with mobile code and needs to explicitly address both code
source-based and user-based security policies.

Many of today’s research operating systems either use
a single address space or load code into the kernel’s ad-
dress space to increase performance and enhance function-
ality of applications [1, 8]. As far as security is concerned,
they use either a type-safe language [1] or provide other
techniques such as proof carrying code [8] to achieve basic
security properties such as memory protection. However,
few of those systems can at this point go beyond memory
protection and provide secure services [12]. In compari-
son, we focussed on the latter while not paying particular
to performance tuning.

Recent advance in Java security has evolved from the
original restricted sandbox model to a policy-based, eas-
ily configurable, fine-grained access control model [3, 4].
However, security policy is still limited to deal with code
sources and not with users. This is because JVM as it
stands now is normally used in a single-user environment.
Our work here expands into a multi-user environment, and
solves the new problems we encountered.

In the paper we glossed over details of the underlying
security architecture. While the issues of a multi-user Java
environment and user-based access control are naturally in-
terdependent, we tried to focus in this paper on the multi-
processing aspect. We do have a user-based security archi-
tecture in place, but it was beyond the scope of this paper
to describe it in detail.

8 Conclusion and Future Directions

In an attempt to use the Java platform as a multi-
processing, multi-user environment, we have found that the
implementation of the Java Development Kit (JDK) often
implicitly assumes that the Java Virtual Machine (JVM)
runs exactly one application at any one time. The chal-
lenge in realizing a multi-processing Java environment is,
apart from identifying and correcting these implementation
weaknesses, to come up with an architecture that integrates
multi-processing, mobile code, and security. Our experi-
ence shows that, with a few relatively limited changes and

additions we described in this paper, Java can become an
effective multi-processing, multi-user environment.

There are a few directions for further study. For exam-
ple, it is conceivable that the notion of an application as a
set of threads can be extended to include threads of other
JVM’s, possibly on other hosts.

Moreover, in our multi-processing environment, it is
very appealing to use shared object as an inter-application
communication mechanism. However, such sharing of
objects between different applications in different name
spaces is still a delicate task and its impact on the correct-
ness of the Java type system needs more research [2].

Finally, it appears worthwhile to further investigate the
implications of reloading certain system classes. For exam-
ple, there might be a hidden assumption that there is only
one copy of certain classes such as Class and String.
Moreover, the impact of class reloading on the safety of the
Java type system is not very well understood. Our proto-
type so far only involved the Java class library, but it seems
likely that similar implicit assumptions have been made
during the implementation of the virtual machine itself.

References

[1] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer,
M. Fiuchynski, D. Becker, S. Eggers, and C. Cham-
bers. Extensibility, Safety, and Performance in the
SPIN Operating System. In Proceedings of the 15th
ACM Symposium on Operating Systems Principles,
pages 251–266, Colorado, December 1995. Pub-
lished as ACM Operating System Review 29(5):251–
266, 1995.

[2] D. Dean. The Security of Static Typing with Dynamic
Linking. In Proceedings of the 4th ACM Conference
on Computer and Communications Security, Zurich,
Switzerland, April 1997.

[3] L. Gong. Java Security: Present and Near Future.
IEEE Micro, 17(3):14–19, May/June 1997.

[4] L. Gong, M. Mueller, H. Prafullchandra, and
R. Schemers. Going Beyond the Sandbox: An
Overview of the New Security Architecture in the
Java Development Kit 1.2. In Proceedings of the
USENIX Symposium on Internet Technologies and
Systems, Monterey, California, December 1997.

[5] J. Gosling, Bill Joy, and Guy Steele. The Java Lan-
guage Specification. Addison-Wesley, Menlo Park,
California, August 1996.

11



[6] B. W. Lampson and D. D. Redell. Experience with
Processes and Monitors in Mesa. Communications of
the ACM, 23(2):105–117, April 1980.

[7] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification. Addison-Wesley, Menlo Park, Califor-
nia, 1997.

[8] G.C. Necula and P. Lee. Safe Kernel Extensions
Without Run-Time Checking. In Proceedings of
the 2nd USENIX Symposium on Operating Systems
Design and Implementation (OSDI), pages 229–243,
Seattle, Washington, October 1996.

[9] D. D. Redell, Y. K. Dalal, T. R. Horsley, H. C. Lauer,
W. C. Lynch, P. R. McJones, H. G. Murray, and
Stephen C. Purcell. Pilot: An Operating System for
a Personal Computer. Communications of the ACM,
23(2):81–92, April 1980.

[10] S. Ritchie. Systems Programming in Java. IEEE Mi-
cro, 17(3):30–35, May/June 1997.

[11] M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith.
Dealing with Disaster: Surviving Misbehaved Kernel
Extensions. In Proceedings of the 2nd USENIX Sym-
posium on Operating Systems Design and Implemen-
tation, pages 213–227, Seattle, Washington, October
1996.

[12] D. S. Wallach, D. Balfanz, D. Dean, and E. W. Fel-
ten. Extensible Security Architectures for Java. In
Proceedings of the 16th ACM Symposium on Operat-
ing Systems Principles, Saint-Malo, France, October
1997.

[13] A. Wollrath, J. Waldo, and R. Riggs. Java-Centric
Distributed Computing. IEEE Micro, 17(3):44–53,
May/June 1997.

12


