NAME _____ DATE _____ PERIOD _____ 6-4 Study Guide and Intervention nth Roots

Simplify Radicals

Square Root	For any real numbers <i>a</i> and <i>b</i> , if $a^2 = b$, then <i>a</i> is a square root of <i>b</i> .		
<i>n</i> th Root	For any real numbers a and b , and any positive integer n , if $an = b$, then a is an n th root of b .		
Real <i>n</i> th Roots of <i>b</i> ,	1. If n is even and $b > 0$, then b has one positive real root and one real negative root.		
$\sqrt[n]{b}, -\sqrt[n]{b}$	2. If <i>n</i> is odd and $b > 0$, then <i>b</i> has one positive real root.		
	3. If <i>n</i> is even and $b < 0$, then <i>b</i> has no real roots.		
	4. If <i>n</i> is odd and $b < 0$, then <i>b</i> has one negative real root.		

Example 1: Simplify $\sqrt{49z^8}$.	Example 2: Simplify $-\sqrt[3]{(2a-1)^6}$		
$\sqrt{49Z^8} = \sqrt{(7z^4)^2} = 7z^4$	$-\sqrt[3]{(2a-1)^6} = \sqrt[3]{[(2a-1)^2]^3} = -(2a-1)^2$		
z^4 must be positive, so there is no need to take absolute value.	the		
Exercises			
Simplify.			
$1.\sqrt{81}$	$2.\sqrt[3]{-343}$		3. $\sqrt{144p^6}$
$4.\pm\sqrt{4a^{10}}$	$5.\sqrt[5]{243p^{10}}$		$6. - \sqrt[3]{m^6 n^9}$
$7.\sqrt[3]{-b^{12}}$	$8.\sqrt{16a^{10}b^8}$		9. $\sqrt{121x^6}$
$10.\sqrt{(4k)^4}$	11. $\pm \sqrt{169r^4}$		12. $-\sqrt[3]{-27p^6}$
13. $-\sqrt{625y^2z^4}$	14. $\sqrt{36q^{34}}$		15. $\sqrt{100x^2y^4z^2}$
16. $\sqrt[3]{-0.027}$	17. $-\sqrt{-0.36}$		18. $\sqrt{0.64p^{10}}$
19. $\sqrt[4]{(2x)^8}$	20. $\sqrt{(11y^2)^4}$		21. $\sqrt[3]{(5a^2)^6}$

22. $\sqrt{(3x-1)^2}$

6-4 Study Guide and Intervention (continued) nth Roots

Approximate Radicals with a Calculator

Irrational Number a number that cannot be expressed as a terminating or a repeating decimal

Radicals such as $\sqrt{2}$ and $\sqrt{3}$ are examples of irrational numbers. Decimal approximations for irrational numbers are often used in applications. These approximations can be easily found with a calculator.

Example: Use a calculator to approximate $\sqrt[5]{18.2}$ to three decimal places.

 $\sqrt[3]{18.2} \approx 1.787$

Exercises

Use a calculator to approximate each value to three decimal places.

1. $\sqrt{62}$	2. $\sqrt{1050}$	3. $\sqrt[3]{0.054}$	
4. – ⁴ √5.45	5. √5280	6. √18,600	

7. LAW ENFORCEMENT The formula $r = 2\sqrt{5L}$ is used by police to estimate the speed r in miles per hour of a car if the length L of the car's skid mark is measures in feet. Estimate to the nearest tenth of a mile per hour the speed of a car that leaves a skid mark 300 feet long.