

Finding Order in Diversity

Biologists have identified and named over 1.7 million species so far.

Estimates = between 2-100 million species yet be discovered ²

<u>Classification</u>... the grouping of objects or organisms based on a set of criteria.

Why Classify?

Identifies and names organisms

Groups organisms in a logical manner

etc.

Why are living things organized? Provides <u>logic</u> and <u>organization</u> <u>Universal</u> understanding – useful tool Important to <u>economy</u> - discoveries! – New sources of lumber, medicines, energy,

I. History

A. <u>Aristotle</u> (384-322 B.C.)

- Greek Philosopher
- 1st method of classification
 - 2 groups: <u>plants</u> & <u>animals</u>

Aristotle's System

Divided organisms based on

I. History

B. Carolous Linnaeus (1707-1778)

Swedish botanist

Developed a classification system that organized species into taxa that formed a hierarchy or set of ordered ranks.

Taxonomy

Taxa: series of categories, each one larger than the previous one.

• The science of *naming* organisms and assigning them to groups.

Taxa (Taxon) = - The assigned groups

Linnaeus began grouping by morphology (form and structure)

Continuing with the Taxa

Continuing with the Taxa

 Many *classes* are grouped together into *–Phyla*

• Chordata includes the classes *Mammalia, Reptilia, Aves & Osteichthyes,* etc.

Orders are grouped into... -Classes - Mammalia formed from orders <u>Carnivora</u>, <u>Primates</u>, <u>Rodentia</u>, etc.

Continuing with the Taxa

- Several similar *Families* form an –*Order*
- Carnivora is the Order containing Families:
- Felidae, Ursidae, Canidae, etc.

Continuing with the Taxa

- What is the smallest group with the most *similarities* among members?
 - **species** = unique to each kind of organism
- And a group of similar species is called?

• Genus = group of closely related species

17

. .

Assigning Scientific Names

- <u>Binomial Nomenclature</u> (2 word naming system)
- Created by Linnaeus
- System we still use <u>today</u>.
 - Every living organism has a genus name and species name!

Assigning Scientific Names

What is the common name of this animal?

Assigning Scientific Names

What is the **SCIENTIFIC** name of this animal?

Assigning Scientific Names Common names can be misleading.

Sea cucumber sounds like a plant but...

it's an animal!

Assigning Scientific Names Common names can be misleading.

A jellyFISH

isn't a fish,

but a seaHORSE is!

Assigning Scientific Names Common names can be misleading.

In the United Kingdom, BUZZARD refers to a hawk

In the United States, BUZZARD refers to a vulture.

Why a Scientific Name?

26

The Fundamentals of Binomial Nomenclature

- Each organism given a *two* part scientific name.
- The *first* word is its *Genus* group
- Second word is *descriptive* and is its species name
- Use *Latin* (or Greek) to compose the names.
- Why? Latin is a dead language.
- Scientific names are *universal* (world wide), written in *English characters*
- Scientific names are always *italicized* or underlined with Genus name capitalized

The Fundamentals of Binomial Nomenclature

1st name = <u>Genus</u> – Always capitalized

2nd name = <u>species</u> -Always lower case

Both names are <u>under/ined</u> or written in <u>italics</u>.

Binomial Nomenclature some examples:

Homo sapien =

Human

Binomial Nomenclature some examples:

Felis domesticus

Cat

Binomial Nomenclature some examples:

Canis familiaris

Binomial Nomenclature some examples:

Musca domestica

House Fly

Binomial Nomenclature some examples: • Acer rubrum

Red Maple

Binomial Nomenclature some examples:

• Taraxacum officionale

GENUS = group of closely related species **GENUS = Ursus**

(Includes many kinds of bears)

Ursus arctos

Ursus maritimus

Ursus americanis

SPECIES = unique to each kind of bear

Putting It In Perspective

The Kingdom is the largest group with the least number of common *characteristics* among its members.

The species is the smallest group with the most number of common *characteristics*.

Kingdom
\downarrow
Phylum
+
Class
*
Order
4
Family
× ·
Genus
+
Species
34

Problems with Traditional Classification

- Linnaeus grouped organisms strictly according to <u>similarities</u> and <u>differences</u>.
- Scientists today try to assign species to a larger group in ways that reflect how closely members of those groups are <u>related</u> to each other.

Problems with Traditional Classification

Problems can arise when species are classified based on easily <u>observed</u> tr

sk

Cladistics is classification based on common ancestry.

Similar traits between species are often the result of sharing a common ancestor, such as the ancestor shared by dogs and wolves.

Phylogeny

The evolutionary history for a group of species is called a *phylogeny*.

Phylogenies can be shown as branching tree diagrams $- \mbox{ kind of like family trees.}$

The glyptodon lived more than 10,000 years ago and is the common ancestor to about 20 modern armadillo species $_{\rm 1}$

Fossil Record

Information about past life, including the structure of organisms, what they ate, what ate them, in what environment they lived, and the order in which they lived.

Phylogenic Trees (Cladograms)

Ancestry is the history of an organism's development.

It can be represented by a branching tree.

Cladogram

A <u>cladogram</u> is an evolutionary tree that proposes how species may be related to each other through common ancestors.

Cladogram

A <u>clade</u> is a group of species that shares a common ancestor.

The glyptodon and all of its descendants form a clade.

Each species in a clade has some traits that <u>have not</u> changed from its ancestor.
However, each species has traits that <u>have</u> changed over time.

Cladogram

The traits that can be used to figure out evolutionary relationships among a group of species are those that are shared by some species but are not present in others. These traits are called <u>derived characters</u>.

The more closely related species are, the more derived characters they will share.

Interpreting a Cladogram

53

VI. Domains

- Organisms are classified into domains according to *cell type* and structure.
- Organisms are classified into kingdoms according to cell type, structure, and nutrition.

54

Two Cell Types:

- <u>Eukaryotic cells</u> = have a membrane bound nucleus and organelles; usually more complex than prokaryotic cells.
- <u>Prokaryotic cells</u> = does NOT have a nucleus or other membrane-bound organelles.

55

3 Domains:

- 1. Bacteria
- 2. Archaea (pronounced ar KEE uh)

Bacteria :

- Prokaryotes
- Cell walls contain peptidoglycan (polymer of sugars)
- Contains Kingdom Bacteria

B. Archaea

More ancient than bacteria Prokaryotes

56

- Cell walls <u>DO NOT</u> contain peptidoglycan
- Live in <u>extreme</u> environments
 - Boiling hot springs, salty lakes, thermal vents on the ocean's floors, mud of marches where ther is NO oxygen.

C. Eukarya :

- Eukaryotes
- Contains Kingdom Protista, Kingdom Fungi, Kingdom Plantae, Kingdom Animalia

A. BACTERIA:

Cell type - prokaryote

Cell walls with peptidoglycan Unicellular Autotroph

61

BACTERIA: (contd)

Common bacteria Ex: bacteria you on your skin -Ex: streptococcus causes strep throat Ex: Eschericia coli

B. ARCHAEA:

- Cell type prokaryote
- Cell walls **DO NOT** contain peptidoglycan
- Unicellular
- Autotroph or heterotroph

C. PROTISTS:

- Most <u>diverse</u> group
- Cell type eukaryote
- Unicellular and multicellular
- Some plant-like , animal-like and fungus-like
- DO NOT have organs
- Usually live in <u>moist</u> environments
- Ex: paramecium, slime mold, kelps

64

D. FUNGI:

- Cell type eukaryote
- Most multicellular
- Heterotrophic absorb nutrients obtained by decomposing dead organisms and wasts in environment.
- Cell walls with chitin (polymer)
 - Ex: <u>mushrooms</u>, <u>molds</u>

E. PLANTS:

Cell type – eukaryote Multicellular Photosynthetic -(autotrophs)

Most have cellulose in their cell walls. Tissues organized into

organs (roots, stems, leaves)

11

F. ANIMALS:

Cell type – eukaryote Most multicellular Consumers that <u>eat</u> and digest <u>other organisms</u> for food No <u>cell walls</u>

Have tissues organized into complex organ systems.

67

Classification

Classification

Viruses vs. Living Organisms

- A <u>virus</u> is a nonliving particle made of proteins, nucleic acids, and sometimes lipids.
- Viruses can <u>reproduce</u> only by infecting living cells.

70

Structure & Composition

Viruses differ widely in terms of <u>size</u> and <u>structure</u>. The protein coat surrounding a virus is called a

capsid .

Tebecco Moseic Virus Dat

Structure & Composition

Viruses must bind precisely to <u>proteins</u> on the host cell surface and then use the host's <u>genetic</u> system.

Most viruses infect only a very <u>specific</u> kind of cell

Structure & Composition

Plant viruses infect plant cells

Tobacco mosaic Virus

73

Structure & Composition

Viruses that infect bacteria are <u>bacteriophages</u>.

