
Abstract of thesis

Separating Instruction Fetches from Memory Accesses : ILAR

(Instruction Line Associative Registers)

Due to the growing mismatch between processor performance and memory

latency, many dynamic mechanisms which are “invisible” to the user have been

proposed: for example, trace caches and automatic pre-fetch units. However, these

dynamic mechanisms have become inadequate due to implicit memory accesses that have

become so expensive. On the other hand, compiler-visible mechanisms like SWAR

(SIMD Within A Register) and LARs (Line Associative Registers) are potentially more

effective at improving data access performance. This thesis investigates applying the

same ideas to improve instruction access.

ILAR (Instruction LARs) store instructions in wide registers. Instruction blocks

are explicitly loaded into ILAR, using block compression to enhance memory bandwidth.

The control flow of the program then refers to instructions directly by their position

within an ILAR, rather than by lengthy memory addresses. Because instructions are

accessed directly from within registers, there is no instruction fetch cycle in executing

each instruction. This thesis proposes an instruction set architecture for ILAR,

investigates a mechanism to load ILAR using the best available block compression

algorithm and also develop hardware descriptions for both ILAR and a conventional

memory cache model so that performance comparisons could be made on the instruction

fetch stage.

KEYWORDS: Memory latency, CRegs (Cache Registers), SWAR (SIMD Within a

Register), LARs (Line Associative Registers), Searching block compression algorithm

using a GA (Genetic algorithm).

Separating Instruction Fetches from Memory Accesses : ILAR

(Instruction Line Associative Registers)

By

Nien Yi Lim

 Dr. Hank Dietz

 (Director of thesis)

 Dr. Stephen Gedney

 (Director of Graduate Studies)

 11/23/2009

(Date)

RULES FOR THR USE OF THESIS

Unpublished theses submitted for the Master’s degree and deposited in the University of

Kentucky Library are as a rule open for inspection, but are to be used only with due

regard to the rights of the authors. Bibliographical references may be noted, but

quotations or summaries of parts may be published only with the permission of the

author, and with the usual scholarly acknowledgments.

Extensive copying or publication of the thesis in whole or in part also requires the

consent of the Dean of the Graduate School of the University of Kentucky.

A library that borrows this thesis for use by its patrons is expected to secure the signature

of each user.

 Name Date

THESIS

Nien Yi Lim

The Graduate School

University of Kentucky

2009

Separating Instruction Fetches from Memory Accesses : ILAR

(Instruction Line Associative Registers)

THESIS

A thesis submitted in partial fulfillment of the

requirements for the degree of Master of Science in the

College of Engineering

at the University of Kentucky

By

Nien Yi Lim

Director: Dr. Hank Dietz, James F. Hardymon Chair in Networking

Professor of Electrical and Computer Engineering

Lexington, Kentucky

2009

Copyright © Nien Yi Lim 2009

This thesis is dedicated to Ching Joo Khor, my mom and dad

ACKNOWLEDGEMENTS

This thesis would not be possible without the support and guidance from people

around me. First of all, I want to thank my adviser Dr. Hank Dietz for his timely and

insightful advises. I would also like to extend my gratitude to Dr. Robert Heath for words

of wisdom and support throughout my graduate school curriculum. In addition to that, I

would also like to acknowledge Dr. Meikang Qiu for his willingness to serve on my

defense committee. Without the advises from my thesis committee, I would not have

been able to overcome technical barriers and keep myself on track for graduation.

Secondly, I would like to thank Ching Joo Khor for her understanding and

unconditional support while working on my thesis. Next, I would also like to thank my

parents: Piang Lim and Shan Shan Ng for their unconditional guidance, financial support

and for giving me the opportunity to pursue my MS degree at the University of Kentucky.

I really appreciate the emotional support and space given from them to concentrate on my

thesis.

Thirdly, I would also like to thanks my friends in Kentucky who I shared many

happy memories together during the semester. Furthermore, I would also like to thank the

staffs at University of Kentucky Department of Electrical and Computer Engineering who

provided a good working environment and who helped in scheduling of my thesis

defense.

Without the guidance and encouragement from all of the parties above, I would

not have gotten this far.

Table of Contents

Abstract of thesis..1

ACKNOWLEDGEMENTS..7

List of Tables..10

List of Figures..11

List of Files..12

1. Introduction..13

1.1 Motivation...14

1.1.1 Survey on current memory models..15

1.1.2 Background on SWAR and CRegs..17

1.1.3 Background on LARs..18

1.1.4 Compression and prior work...20

1.1.5 My thesis and block compression..23

1.2 My thesis organization..25

2. Overview and benefits of ILAR...27

2.1 Benefits of ILAR...27

2.2 Issues in ILAR...28

2.3 ISA (Instruction Set Architecture) for ILAR...29

2.3.1 Instruction fetch...30

2.3.2 Control transfer instruction ...32

2.4 Remaining instruction sets..32

3. Block compression algorithm and design..34

3.1 Compression algorithms format..34

3.1.1 Compression stages - iteration one..37

3.1.2 Compression stages – iteration two...37

3.1.3 Compression stages – iteration three...39

3.2 Compression algorithm customization..40

3.2.1 Number of opcode references..41

3.2.2 Number of register references...42

3.2.3 Number of immediate references..43

3.2.4 Number of bits...44

3.2.5 Block number..45

3.2.6 Block size..45

4. Software simulator and genetic algorithm...46

4.1 Software simulator..46

4.1.1 Generating the assembly instruction input file..47

4.1.2 Interpreting the assembly instructions...47

4.1.3 Executing the block compression algorithm...48

4.2 Genetic algorithm (GA)..48

4.2.1 Searching for the best block compression algorithm......................................49

5. Hardware descriptions of models...53

5.1 ILAR hardware..54

5.2 MIPS IF memory-cache hardware..55

5.3 ILAR decompression hardware...56

5.3.1 Lowest hierarchy...57

5.3.2 Intermediate hierarchy...58

5.3.3 Highest hierarchy...60

6. Results..61

6.1 Memory latency..61

6.2 Compression performance..63

6.3 Hardware utilization..64

7. Conclusions and future work...66

Bibliography..68

Vita..71

List of Tables

Table 1: ILAR Structure...28

Table 2: Summary of the ISA for ILAR...29

Table 3: Number of bits field decoding...31

Table 4: Example of instruction fetch..32

Table 5: Summary of ISA for DLAR...33

Table 6: MIPS32 assembly instructions...36

Table 7: MIPS32 equivalent compressed block...36

Table 8: Parameters of the genetic algorithm..50

Table 9: Results of executing the genetic algorithm..52

Table 10: Comparison of the execution time between the hardware for both models.......63

Table 11: Compression performance of algorithm implemented.......................................64

Table 12: Summary of hardware utilization of the two models...64

List of Figures

Figure 1: Comparison with ILAR hardware..19

Figure 2: Fetch Instruction...30

Figure 3: Select Instruction..32

Figure 4: Typical header-instruction compressed block format...35

Figure 5: Intermediate compressed block format – Iteration one......................................37

Figure 6: Intermediate compressed block format – Iteration two......................................38

Figure 7: Intermediate compressed block format – Iteration three....................................40

Figure 8: Typical and exception instruction encoding format...41

Figure 9: Example of register offsets with typical instruction encoding format...............43

Figure 10: Software simulator model..47

Figure 11: Layout of the genetic algorithm for searching the best compression method. .50

Figure 12: MIPS 5 stage pipeline...53

Figure 13: ILAR changes to the MIPS IF-stage..54

Figure 14: Block Diagram of the ILAR_MODULE_P module...55

Figure 15: Block Diagram of the MIPS IF Memory-Cache module.................................55

Figure 16: Hardware model...56

Figure 17: Block Diagram of the DEC_BLOCK0/1/2/3/4 module...................................57

Figure 18: Block Diagram of the LARS_DECOMP0/1/2 module....................................59

Figure 19: Block Diagram of the LARS_DECOMP_PIPE module..................................60

Figure 20: Waveform of reading from cache in the MIPS IF Model.................................62

Figure 21: Waveform of the decompression process in the ILAR model.........................62

Figure 22: Waveform of reading instructions from the ILAR model................................62

List of Files

MS_Thesis_Nien_Yi_Lim.pdf ..476 KB

Sofware_Simulator.tar.gz...36 KB

Hardware_Model.rar.. 231 KB

1. Introduction

Over many years, the amount of computation that can be executed by a processor

in a fixed period of time has steadily increased. This steady increase has been driven by

both speed and density improvements in circuits fabricated using silicon. The density

improvements are more significant, and they also are the trend predicted by Moore's law.

In 2008, Intel launched Hafnium-based 45nm high-k metal gate silicon technology in it's

Core architectures [1] . In 2009, Intel now is launching a new 32nm logic technology.

There is no doubt that tomorrow's chips will hold many more, yet smaller, transistors.

However, the performance of a computing system is not directly a function of

how many transistors are available to build it, nor even of how quickly those transistors

can switch. The key to steady improvement of performance is balance. Not only must the

processor be fast, but the rest of the system must be able to support it running at that

speed. For example, buses, interconnection networks, and especially memory must be

able to meet the processor's demands. Achieving this balance is the focus of modern

computer architecture and the concern addressed in this thesis.

Specifically, improvements in memory performance have not been as rapid as

improvement in the logic circuitry. This growing deficit is visible in two main ways.

First, access to data stored in main memory has become prohibitively expensive, so it has

become necessary to invent mechanisms that can reduce the frequency and impact of

such access. Second, frequent fetching of instructions from main memory has become

impractical. Whereas most recent architectural proposals focus on the first problem, this

thesis attacks the second: literally, this thesis is attempting to provide an alternative to the

conventional Von Neumann instruction fetch model.

A conventional Von Neumann instruction fetch model consists of mechanisms that

enable sequential fetching of instructions. Since the 70s, computer scientists have

realized that main memory accesses are slow and therefore created a second level of

memory containing buffer-like structures called instruction caches. Instruction caches are

intended to store frequently used instructions so that future instruction references can be

accessed directly from the caches. Nevertheless, although memory systems have become

larger in capacity, the relative bandwidth versus latency improvement of processors has

outperformed memory systems and this trend continues to be true until today. In fact, the

exponential increase in the performance of processors have produced a wider and wider

gap between them.

As the speed of processors continues to increase, one big problem with the Von

Neumann model is that memory latency is not reduced if instructions are not found in

instruction caches during a cache “miss”. Also, addresses in caches are memory addresses

and control transfer instructions, like branch instructions will require accesses to main

memory. These two main problems form the motivation for this thesis, where a new

instruction fetch mechanism needs to be develop to meet future needs of computing

performance.

1.1 Motivation

As the improvement in latencies of memory continue to lag behind the bandwidth

of processor chips, computer designers faced a “memory wall” in designing a balanced

system. To hide the growing mismatch between processor and memory, a variety of

processor and memory architectures have been proposed. All of these approaches so far

tend to be “invisible” to users and system software, implemented dynamically at run time

by hardware. For example, multilevel caches, automatic prefetches, multithreading and

different bus interfaces and protocols are all intended to keep the programmer's model

intact. However, it has become inherently apparent that classical sequential execution of

the Von Neumann architecture has become not suitable in a world where random access

to memory is extremely expensive.

Improvements to the Von Neumann architecture of having a processing unit and a

single storage of data and instructions have been slow and painful. So, although this

problem has been around for a while, changes in architecture and the programming model

haven been slow to catch on. Despite that, the 1990s saw the introduction of the SWAR

(SIMD Within a Register) concept. [3][4][5] Other architecture models that are designed

to reduce fetches from memory for example, CRegs (Cache Registers) did not catch on as

fast as the SWAR concepts. Nevertheless, like SWAR, it also tries to minimize the

number of memory accesses by combining the functionality of caches and registers. [6]

Combining the benefits of both of these concepts, this thesis proposes an

instruction fetch mechanism that is able to reduce memory latency by limiting memory

accesses. The following sections provide a survey of the current memory models and the

background on the concepts behind this new instruction fetch mechanism: SWAR and

CRegs.

1.1.1 Survey on current memory models

Many researchers have acknowledged that memory latency is hindering the

overall improvements in processor speed. As a result, many journal and conference

publications have been generated to address the issue mainly based on improvements in

the Von Neumann architecture. This section discusses a survey carried out on instruction

fetch models that attempts to minimize latency.

Eyerman and Eeckhout [7] proposes a smart fetch policy to exploit MLP

(Memory-Level Parallelism) in SMT (Simultaneous Multi-threading) processors. This

fetch policy makes decisions on whether the threads should be allocated memory

resources during long latency loads to make use of MLP: No additional resources are

allocated to long latency loads which have no MLP, in the case where MLP is present,

just-enough resources are allocated. The MLP-aware fetch policy enables other threads to

use the spare resources and improve performance.

Other researchers focuses on developing novel fetch policies to control

performances of threads in SMT processors. The proposed fetch policy tries to minimize

the effects of L2 caches by introducing multiple fetch priorities. [8] Threads are assigned

priorities based on their behavior in cache. In a later paper, the authors proposed another

fetch policy that adjusts fetch priorities by comparing threads, where time critical threads

get higher priority. [9] At the same time, this fetch policy tries to maximize the

throughput of the non-critical threads by implementing predictable performances for

critical threads.

Other proposed solutions to improve performance on SMT processor architectures

include introducing a dynamically allocated “ready thread buffer”. [10] The solution is

divided into two stages: the first stage estimates the confidence level for each of the

possible branches and marks the threshold for each branch. The second stage applies a

fetch mechanism based on the marked threshold and the “ready thread buffer” is then

used to manage instructions from threads with different confidence levels.

In addition to that, researchers have proposed instruction fetch schemes to run on

super scalar processors, where multiple instruction could be processed in a single cycle.

This proposed scheme contain a “flag-in-cache” where a flag contained in the instruction

cache is used together with a instruction branch prediction scheme to increase fetch

efficiency. [11] This fetching scheme not only decreases the time required for parallel

execution checks, it also helps increase the accuracy of instruction pre-fetches in super

scalar processors.

Other investigations on out-of-order instruction fetch in super-scalar processors

include trying to increase the instruction fetch bandwidth, efficient use of available ILP

(Instruction Level Parallelism) and accurate branch predictions. [12] In order to do so,

empirical models of super-scalar processors were made and to double the performance,

the conclusion obtained was to double the fetch rate and decrease by four-fold the mis-

predicted branches.

A group of researchers also propose an extension to the classical Von Neumann

architecture by using “Instruction Fetch Registers” to improve access to frequently

occurring instructions. [13] Instruction Fetch Registers are used as a complementary

technique with instruction caches to minimize bottlenecks and to provide additional fetch

bandwidth. Compiler technology is used to packed an application's instructions resulting

in decreased code size, better execution time and a smaller memory footprint in

instruction caches. Another approach is to subdivide the instruction cache into categories

based on execution frequency. [14][15] Frequently executed sections of code are placed

into smaller and lower powered cache to handle energy requirements. The splitting for

the lookup of the different categories in cache reduces the miss rate.

Besides these work, researchers have look to improve existing instruction pre-

fetching techniques by attacking the flaws in the design. One research group look to

improve the branch prediction bandwidth so that accurate pre-fetching of instructions

could take place. [16] A mechanism called “Temporal Instruction Fetch Streaming” is

used to pre-fetch temporally-correlated instruction streams from lower-level caches.

Rather than exploring a program's control flow graph, this mechanism predicts future

instruction cache misses directly by recording and replaying recurring L1 instruction miss

sequences.

1.1.2 Background on SWAR and CRegs

The SWAR model as described in the thesis of Fisher [4] uses SIMD's (Single

Instruction stream, Multiple Data stream) concept of data parallelism in a single CPU

register. SIMD is a processing model that exploits data parallelism by executing one

instruction across as many data points as possible.

SWAR allows “micro-parallelism” to be executed within multiple data stored in a

register where all of these data are manipulated by a single instruction stream. This

creates a general-purpose programming model of registers, which allows sub-word

processing whenever a data consists of bits that are less than a full machine word. SWAR

are largely driven by memory performances and many data objects, especially those

associated with multimedia processing are much smaller than the natural word size and

datapath widths used in modern processors. By adding the ability to perform SIMD-like

operations on fields within a register or datapath, SWAR operations replaces a series of

memory accesses and field extraction/insertion operations with a single access for a

word's worth of fields. SWAR concept provides so many benefits that most modern

processors include some form of SWAR instructions.

Another concept worth mentioning is CRegs. CRegs have been introduced in the

late 1980's and it combines the hardware of both a conventional cache and a register to

create a new memory structure. [6] CRegs are used to replace cache hardware and this

allows ambiguously aliased names to be grouped together. Therefore, this results in a

more efficient execution of instructions than even the combination of conventional caches

and registers.

Ambiguously aliased variables cannot be placed efficiently in registers because of

the limited number and the need of constant flushing of registers. One might think that

this can be resolved by placing them in caches. However, caches can be ineffective too

when dealing with ambiguously aliased variables. This is because references to other

objects might have addresses hashing to the same cache line, thus there is a possibility of

overwriting the desired object from cache. Therefore, the combination of the functionality

of caches and registers in CRegs hardware allows value to be buffered, ambiguously

aliased or not. Besides maintaining the full benefits of a register, it also allows short name

for addresses, therefore reducing the instruction-fetch bandwidth latency. The

ambiguously aliased problem does not apply to CRegs because CRegs associatively

updates names of fields that match.

Despite the obvious benefits of CRegs, the adoption of CRegs were impeded by

the need of a specialized CRegs Instruction Set Architecture (ISA). Furthermore, unlike

caches, it does not utilize spatial locality. Therefore, this call for a new hardware model

that addresses these issues. By adopting SWAR concepts within CRegs, a new model has

been proposed, named as LARs (Line Associative Registers) The following section

describes the background behind this new model.

1.1.3 Background on LARs

LARs is a new memory access model proposed in Melarkode's thesis in 2004. [7]

It combines the concepts of SWAR operations on long lines into the cache-like

associativity of CRegs hardware. Due to it's similarity with conventional caches, only

minor ISA modifications need to be made to an architecture for it to fully utilize the

benefits of LARs.

LARs hardware inherits all the benefits from CRegs and also reap spatial locality

benefits by utilizing SWAR concepts of having long lines. Besides that, by having a wide

width, the number of references to memory is reduced, which in turn improves the

memory bandwidth. LARs is separated similar to the Harvard memory architecture,

where it is divided into Data LARs (DLAR) and Instruction LARs (ILAR). Conveniently,

it separates the storage for data and instructions.

LARs in general are useful because they are fully associative where the hardware

is explicitly told to load which specific entry. Although the uses of DLAR and ILAR are

totally different, the hardware layout differences between DLAR and ILAR are minimal,

with the former hardware having two additional fields of “Type” and “Status”. One

benefit of DLAR is that they are organized in “lines” where vector operations can be

performed easily with minimum memory references. [17] Also, DLAR record the current

data position within it's data field. Therefore, the “Type” field in each DLAR contains the

current object data type. Since data are type tagged in DLAR, the benefit is that the type

information does not need to be encoded in scalar arithmetic operations.

On the other hand, ILAR is derived directly from SWAR and CRegs by applying

the data concepts to instruction fetches. Figure 1 shows how the ILAR hardware differs

from conventional registers, caches and CRegs. Melarkode's thesis provides an

introduction to ILAR hardware, but no mechanisms for fetching instructions using them

were proposed. The motivation behind having an ILAR hardware is that it totally

removes the instruction fetch process from each instruction cycle, replacing this process

with an explicit fetch instruction that is able to load a specific number of ILAR.

 The other motivation of ILAR is that it uses instruction positions within ILAR as

addresses. Although the layout of ILAR as shown in Figure 1 is similar to instruction

CRegs, instruction CRegs are designed in the namespace of instruction addresses in

memory, whereas ILAR contains “Obj. Addr.” that are local addresses within that ILAR.

Furthermore, in an ILAR, “Obj. Addr.” are relatively short compared to “Line Addr.” of a

Cache. Short “Obj. Addr.” provides ILAR the means to contain local offsets to

instructions. Hence, if a block that is already in another ILAR is being requested, the

Figure 1: Comparison with ILAR hardware

DatumName:Register

Line
Addr.:

Cache

Name:CRegs

Line Addr.

Obj. Addr.

Name:ILAR

Datum

Obj. Addr.

Status

Status

Data

Data

block is logically copied without any additional memory activity. The motivation of

having ILAR hardware also can be seen when there is control flow instructions, for

example, branch instructions. Branch targets are specified as local offsets within an

ILAR. Thus, by doing so, it reduces the overall memory footprint, improves the

utilization of memory bandwidth and also completely remove the latency of “misses”

during instruction processing.

Having discussed the motivation behind ILAR, how do one efficiently fetch

instructions into ILAR? Since ILAR has wide widths, it will take a long time for us to

fetch one instruction at a time. Instead of fetching single instructions, an efficient way is

to fetch blocks of instructions that can populate the ILAR. Nevertheless, the block size is

directly proportional to the number of instructions in ILAR and can become very large.

Therefore, there needs to be a compression scheme in place where instructions are

decompressed from main memory before being fetched into the ILAR hardware.

1.1.4 Compression and prior work

Code density in computing is an area of research that has been looked into

seriously, especially by embedded application developers. For example, a smaller code

size translates to less physical storage and a more portable device. [18] Logically, as the

architecture becomes more and more complex, the code size is also increased. Thus, in

order to achieve better code density, many developers have employed some form of

compression in their designs.

In recent years, especially in the “memory wall” era, it is essential to have a small

code size with efficient memory accesses because memory accesses are so expensive.

Therefore, many developers for HPC systems have started to take code density seriously

by using compression techniques to help reduce the instruction space occupied and

improve the memory fetch bandwidth. Compression for HPC are generally divided into

two large categories: instruction set independent compression methods and instruction set

specific compression methods. Instruction set independent compression methods, for

example PPM (Prediction by Partial Match) technique uses previous symbols in the

uncompressed stream to predict the next symbol.

Possible instruction set independent compression schemes can be derived from

well known lossless compression techniques. There are many forms of lossless data

(instruction) compression techniques and are usually dictionary or/and frequency based.

For example, a well known compression algorithm that is dictionary based is the Lempel-

Ziv (LZ) compression algorithm. The LZ77 and LZ78 are universal algorithms that do

not require priori knowledge of the input source characteristics because the words are

compressed by building dictionaries based on the input source bits. [19] LZ77 build the

dictionary to encode future codewords based on previous outputs. Whereas LZ78 forward

scans the input buffer by adding new words into the dictionary. Popular variations of the

LZ algorithm like the Lempel-Ziv-Welch (LZW) also uses similar concepts where words

or part of the words are replaced by longest entries in the dictionary. The dictionary is

then grown by adding in partly compressed words. Therefore, larger chunks of string

could be encoded in future replacements. All of these LZ algorithms provide efficient and

universal methods that could be applied for a wide range of applications that are suitable

for source bit based compressions.

Another popular source coding technique is Huffman encoding. Huffman

encoding is an entropy or frequency coding based lossless data compression method. It is

independent of the characteristics of the source and utilizes a variable length code table to

encode the source symbols. These encodings are also known as “prefix codes” where the

encoding represents common symbols with shorter bit strings than less common source

symbols. The common implementation of Huffman encoding is by building a binary tree

using a bottom up approach. [20] A sorted queue is created with nodes and internal nodes

which have ascending probabilities. The two nodes which has the least probability are

used to form a new internal node which has the sum of both of the child's probabilities.

This process is repeated until the probability of unity is achieved. Subsequently, parent

nodes and child nodes are assign encoding bits. The common encoding notation used is

“0” for the left child and “1” for the right child. Huffman encoding could be implemented

in linear time where the the time is proportional to the n size of the input, O(n) or could

be implemented as logarithmic time, O(log n). Since Huffman encoding uses variable bit

length encoding, decoding blocks of compressed texts will require a frequency look up

table that is stored efficiently with the text.

On the other hand, some compression methods are developed to target certain

instruction sets. For example the Thumb instruction set in the ARM7TDMI processors

balances between code density and performance by extracting only the most commonly

used instructions from the ARM instruction set. By doing so, Thumb compresses the

original 32-bit instructions down to 16 bits. Besides that, it also provides the

interoperability between the compressed and original instruction sets to retain full

functionality. Nevertheless, each instructions are compressed individually and are limited

only to instructions from the ARM instruction set. [21] Besides that, not all ARM

instructions have Thumb equivalents, so some ARM instruction needs to be called before

returning to the Thumb code. [24]

Other examples of instruction set dependent compression algorithm includes the

compression for Intel's iAPX432 instruction set. This instruction sets has compression to

encode all of its 200 over variable length, four field instructions. [22] The first two field

which are the class and format field specifies the number of operands in each instruction

and how they should be accessed. The third field is the reference field which specifies the

logical addresses for its operands, if any. The last field is a optional opcode which is

Huffman encoded to determine the instruction's operator. These variable length

instructions are read in from memory as 32 bit length streams for decoding and one of the

drawbacks is the complexity of the decoding unit for the compressed instruction set. Due

to the decoding complexity, the iAPX processor has 3 separate chips, one for instruction

fetch and decode, one for execution and one for interface processing. Having 3 separate

chips make the iAPX design very hardware intensive for fetching and decoding

instructions.

Due to the benefits of compression, many researchers have employed

compression methods in the instruction fetch model itself when dealing with architectures

that require a substantial amount of memory accesses. Taking the popular memory cache

model as an example, compressed instructions could either be stored in main memory or

in caches.

An example of using compression in the instruction fetch model is the

Compressed Code RISC Processor (CCRP) proposed by Wolfe and Chanin. [23] This

processor model keeps all the benefits of a RISC processor including pipelining and also

provides denser instruction storage. This processor model keeps the programmer's model

intact by utilizing traditional RISC compiler and linker to generate the object code. The

object code is then compressed and stored in the instruction memory. At run time, the

compressed instructions are decompressed to fill an empty cache line or during a cache

miss. The main benefit of the CCRP model is that it keeps the programmer's model intact

so that the original optimizing compilers could still be used and it also improves the

instruction fetch bandwidth.

On the other hand, another method to reduce the instruction fetch bandwidth is by

utilizing a specialized cache called a trace cache proposed by Rotenburg, Bennett and

Smith. [25] Trace caches increases the instruction fetch bandwidth of processors thus has

been incorporated into the Pentium 4 architecture and newer architectures like the

Pentium Itanium 2. A trace cache stores traces of decoded instructions which include

taken branches, therefore allowing fetching of multiple blocks without considering

branches in the execution flow. Trace caches make use of temporal locality to predict

branch behavior and relies on dynamic sequences of code to be reused. Therefore, in this

model the cache stores compressed traces of instructions.

Nevertheless, since compression methods described for the instruction fetch

models are used in conventional memory-cache models, fetch instructions are implicit

and additional memory latency would be introduced on cache “misses”. Therefore, there

needs to be a new instruction fetch mechanism that minimizes memory latency and still

maintains code density. My thesis proposes that lLAR is used and also describes a

mechanism to decompress blocks of compressed instructions needed to load ILAR. Using

ILAR, all instruction fetches are explicit, which allows fetch instructions to be

rescheduled if needed. Furthermore, instructions are accessed in ILAR namespace, not by

memory addresses, therefore this minimizes memory activity. The following section

describes the work carried out in this thesis.

1.1.5 My thesis and block compression

My thesis introduces ILAR and defines an instruction set for the hardware model.

In addition to that, an instruction fetch mechanism that can utilize the instruction sets

defined is also proposed. A block compression algorithm is used to compress instructions

in main memory and decompression takes place when a fetch instruction is received to

load the ILAR. After loading the ILAR, instructions are referenced using the ILAR

number and position of the instructions within the ILAR.

Block compression is not a new method of compressing information. Mobile

communication systems uses block coding schemes to maintain a suitable information

rate within the channel capacity. Unlike source coding schemes like Huffman encoding,

block compression is a fixed length encoding scheme which encodes a fixed set of

messages with a fixed set of bits.

Therefore, by having a finite number of encoding bits, a simple decoding

hardware for block compression schemes can be developed. Besides that, by knowing the

bit boundaries, the decoding process will be fast as many decoding blocks could be

processed at the same time. These concepts form some of the pre-requisites for the block

compression algorithm developed in this thesis. The first requirement is that instructions

should be vertically encoded to safe instruction bits in the compressed block. Vertical

encoding encodes decompressing information in the compressed blocks. Although it

requires extra decoding logic to decode this information, the benefits of having a better

compression outweighs the cons.

The second requirement is that the compression scheme developed has to be

implemented on a simple decompression hardware to allow decompression to be

performed near to constant time. Decompression near constant time does not depends on

the number of instructions in the compressed blocks. Therefore, to be able to do so is

vital because extra latency will be introduced for decompression if it is done otherwise.

The third requirement is that there needs to be constant block size for the

compression so that a constant compression rate could be achieved. Choosing this

constant block size is important because very large block sizes causes redundancy and

thus decreases the compression rate.

As block compression is a fixed length compression scheme, the compression

algorithm used depends on how well the algorithm is able to compress a given sequence

of input instructions. Therefore, to obtain a good compression rate, there needs to be a

way for us to determine the best compression algorithm for a given set of input

instructions. My thesis here developed a search algorithm to determine the best available

compression algorithm for a given input instruction sequence.

Having determined the best compression algorithm, the next step is to determine

whether it is easily decompress-able. A easy way to prototype this is to build a FPGA

hardware description of the decompression hardware. This hardware model is also useful

for comparing with a conventional memory-cache model hierarchy to clearly showcase

the benefits of the new instruction fetch mechanism using ILAR. Here is a summary of

the objectives of my thesis:

1. Propose a new instruction fetch mechanism using ILAR hardware and define

instruction sets needed for executing using this model.

2. Develop a set of block compression algorithms that could potentially be used to

compress a given input instruction sequence.

3. Develop a search method that could determine the best compression algorithm

given an input instruction sequence.

4. Select one of the best compression algorithm to build a hardware description of

the decompression hardware.

5. Build hardware descriptions for ILAR and a conventional memory-cache model

so that performance comparisons could be made.

1.2 My thesis organization

There are two major pieces to my thesis, the first piece discusses the block

compression algorithm design and development. The remaining piece describes hardware

prototypes for the models used and also the results obtained. Based on these two pieces,

my thesis is divided into seven chapters.

Chapter one gives an introduction of the background related to the proposal of

ILAR. Also, it provides the motivation behind ILAR and also the objectives of this thesis.

Chapter two describes the benefits and issues of ILAR. The instruction sets defined for

ILAR are also described in this chapter. Subsequently in chapter three, the block

compression algorithms design and customizations available are discussed. Continuing in

chapter four, a software simulator written for developing the block compression

algorithms is described and the best block compression method is determined by using a

genetic algorithm.

Chapter five describes the hardware description developed for ILAR, a memory

cache model and the block decompression module. Chapter six then discusses the results

obtained from the hardware modules and also analyses the performance of ILAR.

Chapter seven concludes and present future work in this area.

2. Overview and benefits of ILAR

As described in the introduction chapter, LARs extends the concepts of SWAR

and CRegs to allow the direct manipulation of data and instruction objects within wide

registers. Following Harvard memory architecture of separating memory into data and

instruction memory , LARs can be divided into DLAR and ILAR. Both of these proposed

memory models minimizes memory references to reap the benefits of having wide

registers.

Besides reaping the benefits of having a wide width to work with, data in DLAR

are type-tagged to absorb the type conversion latencies found in most architectures.

Furthermore, DLAR have an address field that increases the data fetch bandwidth by

eliminating ambiguous aliasing and the need to associatively update other DLAR. The

discussion of DLAR here is used as an introduction to the fields contained in data

instructions in the instruction set. Since DLAR manipulates data in the proposed

architecture, it will not be discussed further in this thesis because the focus here is

primarily on the instruction fetch/decode stages.

2.1 Benefits of ILAR

ILAR can be considered as a group of register files used to store instructions.

However, ILAR differs from traditional registers or caches because it eliminates the

traditional instruction fetches, making the process of getting instructions from main

memory independently controllable by the compiler.

Table 1 shows the overall structure of an arbitrary sized, thirty two (I0 - I31) 1024

bits wide ILAR. Each line of an ILAR has an immediate address field which corresponds

to the address in main memory. Instructions in an ILAR can be accessed by local offsets

from the immediate address. In addition to that, control transfer instructions, for example

branch instructions, have target addresses which uses these local offsets. The overall

benefit is less memory accesses during program execution and an efficient instruction

fetch process where instructions are read using local ILAR addresses.

Table 1: ILAR Structure

Address Instructions

I0

I1

I2

I3 32 bit Instr.

I...

I...

I31

 Loading instructions into ILAR is also a simple process. Comparing to caches,

instead of loading or replacing one cache line at a time, ILAR has the ability to pre-load

several ILAR worth of instructions. As this allows the instruction fetch process to

proceed without additional memory accesses, it completely removes the latency of

“misses” from the instruction fetch process. Besides that, ILAR takes advantage of

having instructions in “registers”, as this allows immediate access to instructions,

improving upon existing pre-fetch designs.

As addresses in ILAR are local offsets, lengthy memory addresses that are present

in existing caches could be avoided. Furthermore, if a load request a block that is already

in another ILAR, the decoded instruction block is logically copied without any memory

activity. This also contributes to less memory latency.

2.2 Issues in ILAR

ILAR is new low memory latency model that can be use to replace the existing

instruction fetch process. However, there are certain issues with ILAR that needs to be

overcome for it to reach it's full potential.

The first issue with ILAR is that a new ISA needs to be defined. In general,

whenever a new architecture is defined, it requires a new ISA. Fortunately for ILAR,

since only a new instruction fetch process is being proposed, most of the instruction sets

stay the same. A new instruction set that is needed to load the ILAR has to be defined.

Also, branch instructions need to be modified to be able to contain local addresses of

ILAR.

ILAR requires a new instruction fetch mechanism to be defined. In order for the

instruction fetch to work, ILAR needs to be loaded. Loading the ILAR with instructions

can be a slow process given that ILAR has wide widths. Therefore, this issue could be

resolved by employing a compression scheme able to compress instructions in main

memory at compile time. During run time, these compressed block are decompressed to

load the required ILAR with instructions. Therefore, an efficient loading of ILAR could

take place.

2.3 ISA (Instruction Set Architecture) for ILAR

An instruction set is defined to be executed on the described LARs hardware. ISA

presented in this section contains instruction sets for fetching to and branching within an

ILAR. The summary of the instructions sets for ILAR are shown in Table 2 .

The ISA for LARs are divided into five large categories. Data Transfer, Type

Conversion, Arithmetic and Logical instruction sets are used to manipulate data in

DLAR. These instruction sets are presented at the end of this chapter to give an idea of

the instructions available to be loaded into the ILAR. Whereas, Control Transfer and

Fetch instruction sets are used for branching in execution and loading the ILAR

respectively These two categories of instruction sets have unique opcodes associated with

them. The Control Transfer and Fetch instruction sets will be discussed in detail in the

following sections.

Table 2: Summary of the ISA for ILAR.

Category Mnemonics No. of different

opcodes

Description

Control

Transfer

SELECT 1 Selects one of the two ILAR and

branches execution to the given

offset

Fetch FETCH 1 Fetches blocks of instructions at the

given offset to populate the ILAR.

2.3.1 Instruction fetch

Many researchers try to minimize the latency of fetching instructions by

dynamically keeping track of instruction sequences so that fewer fetches from main

memory are made. Logically, a wider register or cache will provide better instruction

throughput but will introduce additional latency.

However, with the support of compiler technology, compressed instruction blocks

can be fetched from main memory to populate a line of cache registers. Therefore, the

proposed design provides a good throughput and reduces memory latency without

introducing additional latency to the fetch cycle. The proposed solution is described in

the following sections.

Opcode

[31:27]

DEST LAR

[26:22]

SRC1

[21:17]

SRC2

[16:12]

NUM

[11:10]

IMMEDIATE

[9:0]

Figure 2: Fetch Instruction

Figure 2 shows the format of a Fetch instruction. The Fetch instruction loads

the ILAR after decompressing the instructions stored in the instruction memory. The

destination LAR field specifies which ILAR to load the instructions to. The SRC1 field

specifies the data pointed to by data LAR and SRC2 refers to the address pointed to by

the instruction LAR. The NUM field specifies the number of contiguous ILARs to load.

IMMEDIATE is a 10 bit immediate field that can be assigned an integer value between 0

and 1024.

The first step after receiving an instruction fetch is to calculate the effective

address. Next, the calculated effective address of the destination ILAR is compared with

all other ILARs. If there is an address match, the processor cancels the load from

memory, if not, it will load instructions from instruction memory. The effective address of

the ILAR will always be multiples of 32 since there will be 32 instructions in each 1024

bit wide ILAR. (32 x instruction length of 32 bits). This instruction can be better

understood with the help of the following example.

Fetch i2, d3, i5, 990

The effective address is calculated in the same way as the load and store

instructions:

Effective address of ILAR = SRC1. Address + SRC2.Data + Immediate value

990 = 1111011110, which is the combination of the NUM and IMMEDIATE field.

Therefore, the 10 bit Immediate field will be (11011110)2 = 222 with the two most

significant bits being the NUM field which tells the processor to load 4 contiguous ILAR

lines starting from the effective address calculated. Since the effective address to load

from memory needs to be multiple of 32, the address to fetch from memory is rounded

down to 192. The number of ILARs to be loaded is decoded as described in Table 3.

Table 3: Number of bits field decoding

Bits [11:10] # of ILAR loaded

00 0

01 1

10 2

11 3

In the above example, 4 ILARs will be loaded. The effective address eff, eff+32,

eff+64 and eff+96 will be compared to all the existing ILARs to determine if a load from

memory has already occurred. Instructions are copied locally for effective addresses that

are found in existing ILARs. Otherwise, a fetch from Instruction memory will be

initiated. The operation is similar to how a conventional cache hits and misses is handled.

The table below shows an example of the ILARs after an instruction fetch.

Table 4: Example of instruction fetch

ILAR Effective Address Instructions

...

I2: 992 Instruction 992 to 1023

I3: 1024 Instruction 1024 to 1055

I4: 1056 Instruction 1056 to 1087

I5: 1088 Instruction 1088 to 1119

...

I31:

2.3.2 Control transfer instruction

The following figure shows the format of the Select instruction. This

instruction handles all the branch requests in a program.

Opcode

[31:27]

DEST LAR

[26:22]

SRC1 LAR

[21:17]

SRC2 LAR

[16:12]

OFFSET

[11:0]

Figure 3: Select Instruction

The field DEST LAR is the destination address port of the data LAR. SRC1 and

SRC2 are the instruction LAR pointers which point to the starting addresses of one of the

instruction LARs (ILARs). Offset field specifies the offset of the instruction in that

particular ILAR. Therefore, a Select instruction could let the program execution jump

to any location inside the ILARs. The DEST LAR field points to one of the DATA LARs

and the data of this particular LAR is checked for zero value. If the data in the Data LAR

equals to zero, the instructions in ILAR1 will be executed. Otherwise, the instructions in

ILAR2 will be executed instead.

Select d0, i2, i3, 30, 25

The example describes that if the data in the Data LAR equals zero, instructions in

ILAR i2 starting from the 30th instruction (bits 960) will be executed. Otherwise,

instructions in ILAR i3 starting from the 25th instruction (bits 800) will be executed.

2.4 Remaining instruction sets

Although the basic instruction set for data manipulation using DLAR is somewhat

separable from instruction fetch using ILAR, the compression methods and their

effectiveness is in part a function of the DLAR instruction encoding. Table 5 shows the

remaining instructions sets defined for DLAR and gives an insight of the fields needed to

be manipulated in the compression method.

For Data Transfer and Type Conversion instruction sets, each of the opcodes

represent operations on byte (B), half-word (HW), word (W) and double-word (D)

respectively. For Arithmetic and Logical instruction sets, there are only one opcode for

each operation as additional bits in in instructions are allocated for decoding purposes.

One bit is used to differentiate between vector or scalar operation, whereas another bit is

used to differentiate between modular or saturation arithmetic.

Table 5: Summary of ISA for DLAR

Category Mnemonics No. of

different

opcodes

Description

Data Transfer LOADU[B,HW,W,D] 4 Load unsigned [byte, half-word,

word, double]

LOADS[B,HW,W,D] 4 Load signed [byte, half-word, word,

double]

Type

Conversion

STOREU[B,HW,W,D] 4 Change the Type, Size and Address

information to unsigned [byte, half-

word, word, double]

STORES[B,HW,W,D] 4 Change the Type, Size and Address

information to signed [byte, half-

word, word, double]

Arithmetic

and Logical

ADDVM, ADDVS,

ADDSM, ADDSS

1 Add vector or scalar data with

Modular or Saturation arithmetic

SUBVM, SUBVS,

SUBSM, SUBSS

1 Subtract vector or scalar data with

Modular or Saturation arithmetic

ANDS, ANDV 1 And vector or scalar data

ORS, ORV 1 Or vector or scalar data

EXORS, EXORV 1 Exor vector or scalar data

3. Block compression algorithm and design

Block compression is a fixed length compression method that could be used in our

proposed instruction fetch mechanism using ILAR. Since ILAR has wide widths, loading

them would be slow and inefficient. Therefore, block compression is proposed as the

method to compress instructions in main memory and during a Fetch instruction, the

compressed instruction blocks are decompressed to load the specified ILAR.

In this section, the block algorithms proposed and the design customization of

each of them is described in detail.

3.1 Compression algorithms format

The compression algorithms are developed based on the concept of compressing

instructions in blocks. Each block compresses instructions that could potentially be used

to load one ILAR. Since block compression is a fixed length compression scheme, a

constant compression rate will be achieved. So, by determining what compression rate is

desired, the block size of the compressed blocks can be known. Therefore, if there are

thirty two 32-bit instructions in an ILAR, each compressed block's size have to be 512

bits to have a 2x compression. Similarly to have a 4x compression rate, each block has to

be 256 bits wide.

Each compressed block consist of two parts, namely the header block and the

instruction block. There is an exception to this where some compressed blocks consist

only of the instruction blocks without a header block. These special blocks will be

distinguished from the conventional header-instruction format blocks. The header block

acts as a dictionary for instructions compressed in the block. It is further divided into the

3 sectors, namely the opcode reference, register reference and the immediate reference.

Figure 4 shows the general layout of a compressed block. The references contained in the

header block determines how many instructions can be compressed in the block and how

good the compression algorithm is.

The instruction block typically consists of offsets referenced from the block's

header. It could also contain local offsets between similar fields, for example SRC1 field

is compressed as the offset from DREG. Compressed instructions are concatenated

together to form the instruction block.

It will be ideal to load an entire ILAR in one compressed block. Fundamentally,

this could be achieved by a smart compiler generating instructions that could be

compressed well in a block. However, at this point in time the instructions are hand

assembled and are therefore not optimized in any way. In order to maintain a fixed block

length and a fixed compression rate, NO-OPs are padded in any unfilled instruction

blocks. Subsequently, instructions that do not fit in the block are compressed using a new

block header.

To make the compression concept clear, a MIPS32 equivalent example using

block compression is shown in Table 6 and Table 7. Firstly, the MIPS32 assembly

instructions are converted into bit patterns. Next, these instructions are compressed into a

block by extracting similarities in the opcode, register and immediate fields. These

similarities form the references in the header block. Subsequently, instructions in the

instruction block references the field by a simple offset.

Figure 4: Typical header-instruction compressed block format

 NO-OP

Immediate reference

Opcode reference Register reference

off1 off2 off3 off4

Register reference

off1 off2 off3 off4

Header
block

Instruction
block

off1 off2 off3 off4

off1

off2 off3 off4

NO-OP

Table 6: MIPS32 assembly instructions

LW $t1, j($sp)

LW $t2, 0($t1)

LW $t3, k($sp)

LW $t4, 0($t3)

LW $t5, k($sp)

LW $t6, 0($t4)

ADD $t6, $t2, $t4

SW $t6, 0($t5)

LW $t2, 0($t1)

LW $t4, 0($t3)

AND $t4, $t2, $t4

SW $t4, 0($t3)

Table 7: MIPS32 equivalent compressed block

MIPS32 bit patterns MIPS32 compressed block

100011 01001 11101 0000000000001010

100011 01010 01001 0000000000000000

100011 01011 11101 0000000000001011

100011 01100 01011 0000000000000000

100011 01101 11101 0000000000001011

100011 01110 01100 0000000000000000

000000 01110 01010 01100 00000 100000

101011 01110 01101 0000000000000000

100011 01010 01001 0000000000000000

100011 01100 01011 0000000000000000

000000 01100 01010 01100 00000 100100

101011 01100 01011 0000000000000000

100011 000000 101011 Opcode Ref.

01001 01010 01011 01100 11101 01101

01110 Register Ref.

0000000000000000 0000000000001010

0000000000001011 0110000000100000

0110000000100100 Immediate Ref.

00 000 100 001 00 001 000 000

00 010 100 010 00 011 010 000

00 101 100 010 00 110 011 000

01 110 001 011 10 110 101 000 Offset

00 001 000 000 00 011 010 000

10 011 001 100 10 011 010 000

The compression algorithms developed follow the general idea described above.

However, a good compression rate could not be achieved by simply grouping instructions

into blocks. Therefore, a divide-and-conquer approach is used where intermediate blocks

go through similar iterations to obtain the final compressed instruction block. Each

compression algorithm will need to go through three main iterations. These iterations

have to be done in order for the algorithm to work. The following section describes each

iteration of the compression algorithms.

3.1.1 Compression stages - iteration one

 The first stage of the compression groups instructions into intermediate blocks

following the compiled order. Intermediate blocks have the header-instruction block

layout as shown in Figure 4. In addition to that, an additional field named No. of Instr is

included in the intermediate block. This field is a fixed 5 bit field which sums the total

number of instructions compressed. Figure 5 Shows how an intermediate block would

look after iteration one. The first iteration is complete once the number of instructions

being compressed within an intermediate block is known. The compression algorithm

continues with iteration two.

3.1.2 Compression stages – iteration two

Just by looking at the block format layouts, the block header takes up a large

portion of the block as a dictionary. Besides that, not all entries that have the same lookup

are referenced in the same block. Therefore, to reduce this overhead, the intermediate

blocks from the first iteration is processed further.

In the second iteration, the intermediate blocks are numbered in ascending order.

The numbered intermediate blocks are searched exhaustively to find blocks instances that

have the same header block. Then, the instruction blocks of these instances are

concatenated with the intermediate block that has the lowest block number. In other

words, repetitive header blocks are removed by recombining instructions out-of-order.

Out-of-order compression could be performed on the instructions by adding in decoding

Figure 5: Intermediate compressed block format – Iteration one

 NO-OP

Immediate reference

Opcode reference Register referenceRegister reference

off1 off2 off3 off4

Header
block

Instruction
block

off1 off2 off3 off4

off1No. of Instr.

off2 off3 off4

NO-OP

New field

information to the compressed block. Figure 6 shows the layout of the intermediate block

after iteration two.

Since intermediate blocks that have the same header block are combined, the first

section of the compressed block in this stage consist of the similar header block used in

all instances. As can be seen from Figure 6, a new variable length number of bits and

block number field is added to the compressed block. The block number field is the

number associated with the compressed block in this iteration. The width of this field

could be determined by the number of blocks being processed. For example if after

iteration one there are 65 blocks, 7 bits have to be used for the block number field. On the

other hand, the number of bits field is the summation of the total number of bits after this

field onwards until the end of the block. This field is also inclusive of the bits in optional

continuation block(s) that follow. Therefore, the optional continuation block(s) is/are

Figure 6: Intermediate compressed block format – Iteration two

No. of Instr.Block no.

New field

… NO-OP

Continuatio
n instruction
block
(optional)

off1 off2 off3 off4off1 off2 off3 off4

No. of Instr.Block no.off1 off2 off3 off4

off1 off2 off3 off4off4 off1 off2 off3 off4

No. of Instr.Block no. off3off2off1off4

off2

off3off2

off1

off1 off2 off3 off4off3

off3 off4

off4 off1

Instruction
block

off2off1off4off2 off3 off1 off2 off3 off4

No. of bits No. of Instr. off1

Header
block

Immediate reference

Register referenceRegister referenceOpcode reference

distinguished from a new header-instruction block by this field.

The layout of the intermediate block after iteration two is as follow. After the

number of bits field, the instruction block that has the lowest block number is copied.

This is followed by the concatenation of the instruction blocks that have similar header

block instances. Each of the concatenation is separated by the block number field, which

identifies where the combined instruction blocks come from. In the example shown in

Figure 6, three instruction blocks which have similar header blocks are combined with

the intermediate block which has the lowest block number.

Iteration two is continued until all blocks which have similar header blocks are

combined. Subsequently, iteration three of the compression algorithm is executed.

3.1.3 Compression stages – iteration three

In this iteration, the intermediate blocks are further processed to achieve a better

density of instructions compressed. Intermediate blocks that have the same opcode

references and register references in the header block are combined.

Similar to iteration two, the intermediate blocks are numbered in ascending order.

Then, these immediate blocks are searched exhaustively for matches in the header blocks.

After that, the instruction blocks are concatenated with the immediate block that has the

lowest block number. Similar decoding information are added to the blocks with an

additional local header field, where the difference in the header blocks among similar

instances (the immediate reference) is specified. Figure 7 shows the layout of the

compressed block after iteration three.

Among the similar instances, the intermediate block that has the lowest block is

used as a base where all similar instances are concatenated. Subsequently, a new number

of bits field is added. This field sums the total number of bits for the combinations in this

iteration after this field onwards until the end of the block. Following this field is a local

header field which contains the immediate reference(s) of the block instance not

contained in the header block. Then, the block number field is added which specifies

which intermediate block the instruction blocks come from. Subsequently, the instruction

block is concatenated which includes the number of bits and number of instruction field

from previous iterations

This iteration is repeated until all intermediate blocks which have similar opcode

and register references in the header block are combined.

3.2 Compression algorithm customization

The compression algorithms proposed in this thesis are block based. Instructions

are compressed in blocks of fixed size and each of these compressed blocks has a header

block that determines how good the compression algorithm will be. Since only a weak

correlation exist among the set of inputs, it is almost impossible for us to manually

determine which is the best header selection for a set of inputs. Besides that, one

algorithm could yield a great compression rate for a particular set of inputs but not for

another set of inputs. So, there needs to be method for us to customize and search for the

compression algorithm that yields a good compression rate for a particular set of inputs.

Figure 7: Intermediate compressed block format – Iteration three

Immediate reference

Opcode reference Register referenceRegister reference

off1 off2

Header
block

Instruction
block

off1 off2 off3 off4

off1No. of Instr.

off2 off3 off4

No. of bits

off3 off4

off3 off4

Block no. No. of Instr. off1 off2

off1

off2

Continuatio
n instruction
block
(optional)

off1 off2 off3 off4

off1 off3

off3

off4

off4 Block no. No. of Instr.

off2

off1 off2 off3 off4

off1 off2 off3 off4

off1 off2 off3 off4

No. of Instr.

off1 off2 off3 off4 off1 off2 off3 off4

… NO-OP

No. of bits Local header

Block no. No. of bits

New field

Next, the different customization of the blocked based compression algorithms are

investigated. All the customization described in this section still uses the three iterations

of the compression algorithm described in the previous section. The following section

describes the customizations that have been developed.

3.2.1 Number of opcode references

Let's say the LOADSW, ADDS and ANDS opcodes get executed frequently in a

group, it will be beneficial to be able to compressed all similar group instances in one

instruction block. In order to get a good compression rate, the number of opcode

references in the header block needs to be varied to suit the number of opcodes in this

frequent group input sequence. Since header references are referenced in the instruction

block using offsets, the number of opcodes that could be used as a reference will change

with the power of two. A compression algorithm could have either 2, 4, 8 or 16 opcode

references in the block's header. The corresponding Op. off field in the instruction block

will be 1, 2, 3 or 4 bits wide.

Not making any assumptions about the inputs and to ensure that all the twenty

three opcodes from Table 2 are available for selection, header sets are generated

randomly at compile time. A header set contains opcodes that are used as opcode

references. The number of header sets generated depends on the number of opcode

references used in the compressed blocks. The total number of header sets is calculated

by dividing the total number of opcodes (23 + 1 special opcode) with the number of

opcode references used. The special opcode is needed for exception encoding and is

Figure 8: Typical and exception instruction encoding format

v – variable width

Exception
encodingOp. off Dreg off Immd. offSrc2 l. offSrc1 l. off

v v 5 v5

Sp. off

v

Typical
encodingOp. off Dreg off Immd. offSrc2 l. offSrc1 l. off

v v 2 v2

shown in Figure 8 in the next subsection. For example, if 8 opcode references are used, 3

unique header sets will be generated. When 16 opcode references are used, 2 header sets

will be generated where one will contain 8 repetitive opcodes. The header sets are used

as opcode references for all header blocks.

In iteration one, header sets are selected as opcode references in the header block

when there is a match in the input's opcode. Subsequent inputs that have the same

opcodes in the header set will be encoded in the same block. If there is no match in the

header set, a new block will be created with the header set that contains the opcode

match, provided the register and immediate references are valid. Otherwise, changes to

the two latter references in the header block are also made in the newly created block. As

described in the previous section, iteration two and three will try to combine blocks

which have similarities in the header block.

3.2.2 Number of register references

Other than allowing variation to the number of opcode references, the number of

destination register references in the header block are also allowed to be varied to suit the

register usage in the inputs. To use efficient encoding, the number of register references

available also varies with the power of 2. The specific numbers are 1, 2, 4, 8, or 16

register references. The corresponding Dreg off field in the instruction block will be 3, 1,

2, 3 or 4 bit(s) wide. It may seems counter intuitive when only one register reference is

used, 3 bits offset is needed. This will be explained later in this section.

The algorithms are developed to be able to compress instructions in two encoding

formats. Instructions are primarily compressed using the typical encoding format, but

when an exception occurs, the exception encoding format is used. In a typical instruction

encoding format, Src1 l. off and Src2 l. off fields are 2 bits local offsets from the

destination register. However, if the local offsets are not sufficient, an exception occurs

and the instructions are encoded differently. For example, ANDS R5, R0, R1 will cause an

exception to occur. In the exception encoding format, an extra special opcode referenced

by the Sp.off field from the header block is used to distinguish it from the typical format.

Since the local offsets for SRC1/2 are not sufficient in the exception case, the SRC1/2 5

bit register values are used in the exception instruction encoding format. The two

different encoding format are shown in Figure 8. Field are labeled – v to indicate variable

width, since these fields are customizable for a compression algorithm.

When 2, 4, 8 and 16 registers are used as references in the header block, the Dreg. off

field is used to referenced each of these available registers. The register references are

registers that have been used recently. The SRC1 l. off and SRC2 l. off are local offsets

Figure 9 shows an example of 4 registers being used as reference and a typical instruction

encoding format after iteration one. The first instruction has offset 11, 11, 10. So, by

looking at the header block, the destination register is R4, whereas the SRC1 and SRC2

register are R1 and R4 respectively.

When 1 register reference is used in the header block, the Dreg. off field is used

as a 3 bit offset from this register. Since the offset used is 3 bits, the only four valid

reference registers are R0, R8, R16 and R24. For example, if RO is the register reference

in the header block, an offset of 101 will indicate the destination register is R5. SRC1 l.

off and SRC2 l. off fields are still 2 bit offsets from the destination register.

3.2.3 Number of immediate references

Similar to the number of opcode and register references, the immediate references

could also be customized in the block header. There could be 1, 2, 4, 8 or 16 immediate

references. The Immd off field as shown in Figure 8 is scaled accordingly to the number

of references.

When 2, 4, 8 and 16 immediate references are used, the Immd off field will be

used to reference these references in the header block. The immediate reference header

Figure 9: Example of register offsets with typical instruction encoding format

NO-OP

Instruction
block

Immd. off01

10op. off 00Immd. off00

Immediate reference

1111op. off

Header
block

R4R16R31R8Opcode reference

block is formed by the most recently used immediate values. The scenario is similar to

Figure 9, only that immediate references and offsets are involved. As shown in Figure 7,

the local header inserted in iteration three is going to be number of immediate

reference(s) used in the compression algorithm.

When only 1 immediate reference is used in the header block, Immd off field is 3

bits wide, which allows LLS (<<) of the base immediate reference up to seven times.

Three randomly chosen values are used as the base immediate reference, which are 8, 24

and 160 respectively. These three base references allow the most frequently used

immediate values to be obtained after LLS. Nevertheless, if these references could not be

used even after shifting, the immediate value of the input is used as the reference of that

particular compressed block.

3.2.4 Number of bits

The algorithm customizations described up until now has the potential of using

variable width fields. Thus, there is a dynamic nature to these fields which do not allow

field boundaries to be determined at compile time. Owing to that, once the field

boundaries are known, extra processing could be performed to further improve the

density of the compressed blocks.

Another customization is to allow the number of bits field as shown in Figure 7. to

be optimized to use the least number of bits required. The default width for the field is

fifteen bits. The largest number of bits for all the intermediate blocks after iteration two

could be used to determine the optimum width of this field. Using this information, an

extra iteration is performed on the intermediate blocks to obtain the optimum bit width

for this field. The same procedure is also applied after iteration three. Therefore, this

yields the optimum number of bits field for the compression block.

Using the minimum possible number of bits for each field allows more

instructions to be compressed into a single bock. For example, if the value of the number

of bits field is 1,579 after iteration three, this field could be stored in a few as 11 bits

because 2^11 allows a range from 1,024 - 2,047.

3.2.5 Block number

The block number field from iteration two and three could also be further

optimized to use the least number of bits. The default number of bits for the block

number field is eight bits.

Similar to the customization of the number of bits field in the previous section, the

extra iterations after iteration two and three is performed to obtain the least number of

bits for the block number field. For example, if after iteration two, 61 blocks are required

to compress the instructions, the block number field will be optimized to have only 6 bits

because 2^6 allows a range from 32 - 63.

3.2.6 Block size

The default block size for the compression algorithm is 512 bits which yield a 2x

compression when loading a 1,024-bit-wide ILAR. Nevertheless, It is possible to vary the

block size field to investigate the feasibility of having a higher compression rate. To

obtain a 4x compression, the block size of 256 bits is used. All of the algorithm

customization discussed up until now, apply also to a 4x compression algorithm.

4. Software simulator and genetic algorithm

Based on the block compression algorithm discussed in the previous chapter, a

software simulator is developed to simulate the compression process. This simulator also

generates the final compressed blocks of instructions depending on the algorithm

customization discussed. Therefore, this simulator is useful for us to get a good estimate

of the effectiveness of the block compression algorithms developed.

Furthermore, which set of block compression algorithm customization is suitable

for a given input instruction sequence needs to be determined. This is done by searching

through the outcomes of the software simulator using a genetic algorithm (GA). The

following sections describes the software simulator in detail and the search process using

a GA.

4.1 Software simulator

The software simulator model is used to test the feasibility of the compression

methods proposed. All the codes are written in C and are compiled using the gnu gcc

compiler. The input to the software model is a .csv file containing test datasets of LARs

assembly instructions defined in the ISA. The assembly instructions are decoded to

binary code by an interpreter. The binary code of the instructions are then compressed by

the simulator using a random compression method. The results of the software simulator

is then searched using a GA for the best compression method among a population of

compression methods. The GA provides us with a framework of determining the best

compression algorithm among a defined population.

The output of the compression algorithm is the compressed instruction blocks

generated by a random compression method. These compressed blocks are outputted to

a .txt file. The block diagram in Figure 10 shows how the software simulator is laid out.

The code for the software simulator is included in the list of files attached with this

thesis.

4.1.1 Generating the assembly instruction input file

The assembly instruction inputs are assembly instructions that are to be fetched

and decoded by the processor pipeline. In order for the algorithms and performance of the

LARs model to be determined the input sequence of assembly instructions need to be

defined.

By comparing the ISA of LARs with the well-known MIPS32 architecture, there

are many similarities between them. First and foremost, MIPS pipelined uses two source

operands and hold the outcome in a destination register. The LARs pipelined architecture

is also based upon this. Secondly, many instructions are similar to MIPS32. For example,

the MIPS ALU instructions are also defined in the LARs architecture and a BEQ

instruction could be translated to a SELECT instruction in LARs.

Therefore, the test input file for LARs are defined from the assembly output of a

MIPS based processor. Two well know algorithms, namely the bubble sort and binary

search algorithms are compiled with gcc using the “-a” command in a MIPS32 cross

compiler toolchain for Linux. The generated MIPS32 assembly instructions are then

manually converted to the equivalent LARs instructions which is saved in a .csv file

extension format.

4.1.2 Interpreting the assembly instructions

The LARs assembly instructions saved in .csv format needs to be interpreted

Figure 10: Software simulator model

Compressed
instruction

blocks (.txt)

Returns
best
algorithm

 Assembly
instruction
file (.csv)

Genetic
algorithm

(GA)
code

Compression
algorithm

code

Interpreter
code

based on the definition in the ISA. As shown in Figure 10, C code is written to do the

conversions.

The C source code and header file, intp.c and intp.h are compiled using the “make

intp” command. It performs the following command in gcc.

gcc intp.c -o intp.out

To perform conversions, the .csv assembly instruction input file are inputted in the

following manner. Bubble.csv is an example assembly instruction input file and

bubble.txt is the generated input file of the compression algorithm.

./intp.out < bubble.csv > bubble.txt

4.1.3 Executing the block compression algorithm

The block compression algorithm could be compiled using “make comp”

command which performs the following in gcc.

gcc block_comp.c -o a -lm

Then, the compression algorithm could be executed using the following command

line and the compressed blocks are outputted to an example file input.txt.

./a > input.txt

4.2 Genetic algorithm (GA)

The previous section described many different customization that can generate

different algorithms. By customizing the algorithm differently, the compression rate

achieved could be different even for a fixed set of test inputs. In order words, for two

distinctly different input sets A and B, one particular compression algorithm could be

optimum for test input sets A but might yield a terrible compression rate for test inputs B.

Therefore, different algorithms need to be run on the test inputs to find the best

compression algorithm available.

There are 400 parametrically different algorithms that could be generated from the

customization described and an exhaustive search could be performed to search for the

best algorithm. Nevertheless, given that each algorithm simulated takes up processing

time of a CPU, an exhaustive search which involves testing each and every possible

algorithm will be slow. Therefore, a GA is developed to take a sample of algorithms and

search for the best among them.

GA is a type of evolutionary computing technique where one tries to evolve to the

best solution of a problem. Firstly, the genetic algorithm creates random set of

chromosomes, named as the population. Then, a solution to the problem is found for this

initial population and a fitness score is assigned for each solutions. Subsequently,

solutions to this problem are taken to form a new population. The populations created

depends on the number of generations. From the initial populations, solutions that are

less fit are either recombined or mutated based on the respective crossover and mutation

rates. Less fit solutions that have their chromosome bits recombined are named

crossovers. On the other hand, solutions whose chromosome bits are mutated are named

mutants. Solutions to This is driven by hope that the new population will be better than

the old one. These steps are repeated for N generations.

By taking a significant amount of samples in a population, a good estimate on the

best algorithm could be achieved. Besides that, a GA also reduces the search time

significantly by having many generations that replaces badly performing algorithms with

crossovers and/or mutants.

4.2.1 Searching for the best block compression algorithm

In this thesis, the big problem is how to obtain the best algorithm for a set of test

inputs? The best algorithm is one that has a good compression rate which translates to the

least number of compression blocks. Therefore, the number of blocks compressed

produced by an algorithm is used as a fitness measure to evaluate the effectiveness of the

compression scheme in the search process.

Figure 11 summarizes how the GA is set up. The GA is created such that it uses

the block compression algorithm as the fitness function. Firstly, parameters shown in

Table 8, that represent a unique compression customization is randomly generated to

create the initial population. Then, each of the compression algorithm is evaluated and the

solutions are sorted in ascending order based on the number of compression blocks.

Depending on the number of generations, new populations are created based on the

previous population of compression algorithms. Compression algorithms that have large

block sizes are discarded and could be replaced by crossovers or mutants. In Table 8,

shorten field represents an optimized number of bits and block number fields.

Table 8: Parameters of the genetic algorithm

Encoding\P

arameters

No. of Opcode

References

No. of Register

References

No. of Immediate References

000 Two One One

001 Four Two Two

010 Eight Four Four

011 Sixteen Eight Eight

100 Sixteen Sixteen

101 One (Shorten field) One (Block size = 256)

110 Four (Shorten field) Two (Block size = 256)

111 Sixteen (Shorten

field)

Four (Block size = 256)

Figure 11: Layout of the genetic algorithm for searching the best compression method

Parameters

No. of
compression
blocks

GA

(ga.c,
fn.h)

Fitness function

(block_comp.c,
block_comp.h)

The GA is compiled using the following using “make ga” command which is the

following command line in gcc.

gcc ga.c block_comp.c -o ga -O2 -lm

The GA is then executed using the following format in the command line. 10

specifies the number of initial population to be created and searched. 5 is the number of

crossovers to use. 3 is the number of mutants to use and 2 specifies the number of

generations to make. Alternatively, “make all” could be used to run the GA with

predefined values.

./ga 10 5 3 2

Search results of the GA are returned in the following format. The generation

number is specified followed by the best and worst number of compressed blocks

produced in the generation. Next, it specifies the parameter of the best performing

compression algorithm, following by the number of compressed blocks used.

Generation 1: 6.0..999.0: 192

best is 192 → 6.0

 A test case is carried out to search for the best compression algorithm among these

algorithm. The genetic algorithm with ./ga 10 5 3 2 is executed thirty times and the best

number of compressed blocks used are recorded. Table 9 shows the summarized results

of the genetic algorithm.

As can be seen, the best compressed block numbers are produced when eight

opcode references, one register reference, and either one or two immediate references are

used. Also, the same number of compressed blocks are obtained when four opcode

references, one register reference and one immediate reference are used. Besides that,

shortening the number of bits field also helps give us better compressed blocks.

Table 9: Results of executing the genetic algorithm

Num. of Opcode Ref. Num. of

Register Ref.

Num. of

Immediate Ref.

Average Num. of

Compressed Blocks

16 1 (Shorten field) 1 or 2 3.33

16 1 2 3.5

16 Others Others 8.75

8 1 (Shorten field) 1 or 2 3

8 1 1 or 2 4

8 Others Others 7

4 1 (Shorten field) 1 3

4 1 1 4

4 1 (Shorten field) 4 7

Based on this result of the GA, a compression algorithm is picked to be

implemented on hardware. The following chapter describes the design of the

decompression logic needed for the selected algorithm.

5. Hardware descriptions of models

The results of the GA selects the best block compression available. For this

algorithm to be used in loading the ILAR, a decompression process needs to take place

Since the decompression process takes place during runtime, it needs to be performed

close to constant time.

Before investigating the decompression hardware, how the ILAR hardware is

being laid out needs to be understood. Also, since the newly proposed memory model is

compared to the conventional MIPS IF model, a hardware description of both of these

models are built so that comparisons on the performance could be made. The

conventional 5 stage MIPS pipelined is shown in Figure 12; the changes to the MIPS

architecture introduced by ILAR is shown in Figure 13 .

Figure 12: MIPS 5 stage pipeline

PC

Instruction
Cache

Instruction
Memory

Zero

IF
/

ID

Register
File

Sign
ext.

Mux

Mux

ALU
Data

Memory

Mux

Mux

ID
/

EX

EX
/

M
E
M

M
E
M
/

W
B

Adder

All the hardware description models are coded in Verilog and developed in Xilinx

ISE 10.1.03. The target technology is Xilinx Virtex II xc2v8000 chip. Models are also

post implementation simulated using Modelsim SE 6.4a. The HDL files are included in

the list of files together with this thesis.

5.1 ILAR hardware

A hardware description of the ILAR hardware is developed as shown in Figure

14. ILAR_MODULE_P consist of 6 ILAR modules where each of them are 32 x 32 bits

or 128 B wide. The operation of ILAR is similar to a normal ram memory where

read/write signals can be inserted to read from/write to addresses specified by addr.

Instead of having a program counter to specify which address to read from, a

instrsel (instruction select) and rowsel (instruction select) pointer are defined where

rowsel selects the ILAR number and instrsel selects which instruction position is being

referred to in the ILAR.

Figure 13: ILAR changes to the MIPS IF-stage

ILAR

Instruction
Memory

Zero

IF
/

ID

Register
File

Sign
ext.

Mux

Mux

ALU
Data

Memory

Mux

Mux

ID
/

EX

EX
/

M
E
M

M
E
M
/

W
B

Compressed instruction blocks stored in main memory are decompressed to be

loaded into the specified ILAR whenever a Fetch instruction command is received. The

size of this memory or specifically the RAM_COMP_MODULE as shown in Figure 18

has been developed to be 256 x 1024 bits or 64 GB.

5.2 MIPS IF memory-cache hardware

Besides developing the ILAR hardware described in the previous section, a

MIPS-like IF stage is developed in Verilog to simulate a typical instruction fetch cycle.

This model consists of a memory and a direct mapped cache model which are used to

store and fetch instructions in an instruction fetch stage. A block diagram of this module

is shown in Figure 15.

Figure 15: Block Diagram of the MIPS IF Memory-Cache module

CACHE_CONT
ROLLER

CACHE_MOD
ULE

Instruc-
tions

WRITE
READ

PC_CO
UNTER

CLK

IF_ID_
PIPE_
MODU
LE

RAM_SYNC

Figure 14: Block Diagram of the ILAR_MODULE_P module

instrsel rowsel
35

addr

32

7
datain

Instructions
32

1
read/write

CLK
1

ILAR_MODULE_P

The PC_COUNTER module counts off the clock and provides a count for both the

RAM_SYNC and CACHE_MODULE. This count is used by the CACHE_MODULE to

load the cache so that future references to the same instructions do not need to be loaded

directly from RAM_SYNC. The CACHE_CONTROLLER module provides the necessary

control signal to the cache and the IF_ID_PIPE_MODULE is a pipelined register to hold

the instructions fetched.

In order to provide a direct comparison with an ILAR module described in the

previous section, the RAM size is also developed to have 32 x 8192 bits or 64 GB. The

Cache module will have 1024 bits or 128 B in size. This is the size of one ILAR.

5.3 ILAR decompression hardware

A hardware description of the decompression algorithm is performed to establish

a proof of concept. The purpose of this hardware is to decompress compressed instruction

blocks in main memory to load the ILAR hardware as shown in Figure 14.

This model uses the compressed blocks generated by the software simulator and

the results of the GA from previous section. A block digram which shows how the results

from the software simulator is integrated with the decompression hardware is shown in

Figure 16.

Compressed instructions blocks generated by the simulator are inputted to a

Xilinx memory model through a binary text file using the $readmemb command. The

blocks are decompressed and loaded into a ILAR hardware descibed. The decompression

hardware model describes the logic building blocks needed in the decompression process.

A testbench waveform is generated and simulated using Modelsim SE 6.4a to validate the

compression algorithm.

Figure 16: Hardware model

Simulated
results of
compressio
n algorithm

ILAR
hardware

model

Decompression
hardware

model
(in Xilinx)

Compressed
instruction

blocks (.txt)

Testbench
waveform
(in Xilinx)

A structured behavioral coding style is used to decompressed the instruction

blocks. By using this coding method, the decoding process could be pipelined so that

similar modules could be instantiated to decode different parts of the instruction blocks

simultaneously.

An algorithm is picked to be implemented on hardware based on the search result

returned by the GA shown in Table 9. This algorithm has eight opcode references, one

register reference and one immediate reference. Besides that, this algorithm has an

optimized number of bits field where the software simulator chose the number of bits

field from iteration two and three to be 8 bits and 11 bits respectively. As for the block

number field, it is chosen to be 6 and 5 bits for iteration two and three respectively.

As the implementation of the decompression hardware can be deeply pipelined,

there will be different hierarchies of modules. There are three different hierarchy to the

pipelined decompression hardware. The modules that make up the hierarchies are

described, starting from the lowest hierarchy.

5.3.1 Lowest hierarchy

This is the lowest functional unit in the pipeline named DEC_BLOCK which

decompresses instructions contained in a single block. A single compressed block (512

bits) stored in the instruction memory is broken down into two 256 bits blocks and one of

Figure 17: Block Diagram of the DEC_BLOCK0/1/2/3/4 module

SPOP_COM
P_MODULE

BLIM/ILIM_COMP
_MODULE

IMMD_OFF/
SPOFF

SRC2_OFF

Deco-
mpres-
sed
instru-
tion

SRC1_OFF

PC_BART_
MODULE

DREG_OFF/
SPOFF

From MEM

BIT_ADDR
_REG

DATAO_MUX
_MODULE

LUT_OP/SP
OP

these blocks is loaded into a local register labeled as the BIT_ADDR_REG as shown

in Figure 17. This register read chunks of the compressed bit sequences at the

boundaries to be decoded. The register operates off a program counter labeled as

PC_BART_MODULE which increments a count associated with the bit boundaries in the

256 bit instruction block.

To differentiate the decompression of special instruction sequences from regular

sequences, a comparator labeled as SPOP_COMP_MODULE is used to check for the

special opcode. Using this information, decompression of the instruction fields are

performed using look-up tables (LUT) and adders. Instruction opcodes from the block

header are loaded into a LUT labeled as LUT_OP and LUT_SPOP. The instruction bit

sequences are used to lookup the corresponding instruction opcodes. The remaining

instruction fields, namely the register and immediate fields are offsets from reference

field in the header. Therefore, adders are used to decompress these fields. These adders

adds the offsets to the references in the block header and are labeled as follows:

DREG_OFF, DREGSP_OFF, SRC1_OFF, SRC2_OFF, IMMD_OFF and

IMMDSP_OFF. As described in the compression algorithm section in Chapter 4,

compressed instruction blocks may contain local immediate references. In hardware, this

translates to a 2 to 1 multiplexer labeled as IMMD_MUX_MODULE to select between

immediate header and local references.

A 2 to 1 multiplexer labeled as DATAO_MUX_MODULE is used to select the

correct decompressed instruction. As the instruction compression blocks could span

several blocks, two comparator models labeled as BLIM_COMP_MODULE and

ILIM_COMP_MODULE are used to load the next 256 bit blocks into the local register

for decompression.

5.3.2 Intermediate hierarchy

The second level module named LARS_DECOMP uses a structural coding style to

instantiate instances of DEC_BLOCK to perform the decompression within a compressed

instruction block.

The first block is a RAM where the compressed instructions are stored and is

labeled RAM_COMP_MODULE as shown in Figure 18. In this block, compressed

instructions are read out in blocks of 256 bis using a program counter labeled as

PC_RAM_COMP_MODULE.

The DEC_BLOCK module is then instantiated five times. Each DEC_BLOCK

modules enables the next DEC_BLOCK module when the bit boundaries are known. A

'done' signal is flagged when the DEC_BLOCK is finished decoding its part. If there are

more sub-blocks to be decompressed, operation from the DEC_BLOCK5 circulates back

to DEC_BLOCK0 until all the sub-blocks in the compressed instruction block are

decompressed.

A buffer labeled BUF_ADDR_DATA_MODULE will buffer all the decompressed

instructions from the five DEC_BLOCK modules. Decompressed instructions are placed

into ILAR based on the information decoded from the instruction blocks. Information is

decoded by the DEC_LAR_MODULE and the INORM_COMP_MODULE.

Figure 18: Block Diagram of the LARS_DECOMP0/1/2 module

Intermediate hierachy

Lowest hierachy

INORM
_COM
P_MO
DULE

DEC_L
AR_M
ODUL
E

DEC_BLOCK
4

DEC_BLOCK
3

Initial
MEM
count

Block
deco-
mpres-
sed
instru-
tions

DEC_BLOCK
2

Decompressed
instrutions

DEC_BLOCK
1

RAM_COMP
_MODULE

DEC_BLOCK
0

RAM_CO
MP_MOD
ULE

5.3.3 Highest hierarchy

The highest hierarchy of the hardware description ties all the blocks together to

decompressed blocks of compressed instructions. The highest hierarchy is labeled

LARS_DECOMP_PIPE as shown in Figure 19. Besides that, it also includes the

connection with the ILAR hardware model described which is named

ILAR_MODULE_P in the description.

Three of the intermediate module engines labeled LARS_DECOMP0/1/2 are

instantiated structurally in the hardware description. MEM_COUNTI_MODULE loads

the initial memory count to load the compressed block of instructions from main memory.

The decompressed instructions are buffered according in a buffer labeled as

BUFFER_P_MODULE.

Decompressed instructions in the buffer are loaded into the ILAR hardware in

order. After loading the ILAR, the instruction fetch process will be fast without requiring

additional memory accesses. During an instruction fetch, normal execution of a program

could be performed by using the instrsel and rowsel pointer.

Figure 19: Block Diagram of the LARS_DECOMP_PIPE module

Highest hierachy

Intermediate hierachy

instrsel rowsel

LARS_DECOMP2

Instruc-
tions

LARS_DECOMP1 ILAR_MO
DULE_P

BUFFER_
P_MODU
LE

LARS_DECOMP0

MEM_CO
UNTI_MO
DULE

6. Results

In this section, some of the results of the decompression hardware will be

discussed. Due to the complexity and drastic changes to the architecture model,

comparison to existing architecture will not be straightforward. Furthermore, the

compression algorithms developed here do not guarantee to be the best solution for every

instruction sequence. In addition to that, the “straw man” model of the decompression

hardware could only be used as a stepping stone reference for future work in the ILAR

area.

Despite that, considerable time and effort have been spend to prove that ILAR

changes to the architecture is beneficial to reduce the memory latency in a typical

instruction fetch cycle. In order to perform comparison to existing architectures, a

hardware prototype of the MIPS IF memory-cache model has been developed besides the

ILAR and decompression hardware model as described in the previous chapter. In this

chapter, the results obtained from the hardware prototypes developed are discussed.

6.1 Memory latency

In a typical MIPS architecture, the memory latency is the summation of the time

associated with reading and also loading the caches. During this time, the processor is

idle and this could potentially waste precious processor time.

In the MIPS IF model developed, it takes 6 clock cycles to fetch instructions from

main memory into a cache line. In other words, the cost of a cache miss is 6 clock cycles.

On the other hand, a cache hit is 3 clock cycles. Figure 20 Shows the waveform

simulation captured from Modelsim. In the example shown in Figure 20, pcsel=1

increments the program counter, whereas when pcsel=2 the address from count is loaded

into the program counter. This example shows the scenario of reading instructions stored

in the cache line. On the second read pulse, it is a cache hit and the instruction is

retrieved from cache line 0. The third read pulse tries to read instruction in address 32,

this caused a cache miss and the instruction retrieved from main memory is overwrite

into cache line 0. Subsequent reads form address 0 of main memory will cause cache

misses again.

On the other hand, the ILAR model does not introduce additional memory latency

to the overall processor time since instructions are read directly from the ILAR hardware.

Compressed instructions blocks are read from main memory and loaded into ILAR

hardware after decompression. Program execution will then read instructions in sequence

from ILAR. Since branches is performed locally in the ILAR, there will not be any

additional latency caused by misses in program execution. Figure 21 shows a waveform

of the decompression hardware in the ILAR model.

Instructions are decoded in parallel in the pipelined decompression hardware

model. Signal dbgbart0/1/2/3/4 are the decoded bit boundaries from the compressed

instruction block. The deco signal is the decoded sequence number of the instructions.

These decoded informations provide the necessary details for loading the appropriate

ILAR. The decompressed instructions are contained in the bufout signal.

After successful decompression of the compressed blocks, instructions would be

loaded into ILAR. This completes the instruction fetch stage. All future program

execution could read from ILAR by using the instrsel and rowsel signals. Figure 22

Figure 20: Waveform of reading from cache in the MIPS IF Model

Figure 22: Waveform of reading instructions from the ILAR model

Figure 21: Waveform of the decompression process in the ILAR model

shows the waveform of reading from ILAR. The rowsel signal is used to select the

specific ILAR to read from while instrsel selects which instruction to read from the

ILAR.

The execution time taken for both models to process a similar input sequence are

taken and compared in Table 10. As there will be no misses in the ILAR hardware, no

extra latency is introduced by needing to fetch instructions from main memory again. The

execution time for the ILAR model is inclusive of the time required to decompress the

compressed blocks. In actual fact, the execution time is shorter because program

execution could continue even during a Fetch instruction.

The MIPS IF Model requires longer execution given that there will be cache

misses occurring. The latency associated with misses will be larger given a longer

instruction sequence or a more complex code with many branch instructions. All of these

has no effects on the ILAR model.

Table 10: Comparison of the execution time between the hardware for both models

MIPS IF Model ILAR Model (no

cache misses)

Execution time (us)

60% cache miss 66

27
50% cache miss 62

40% cache miss 58

30% cache miss 54

6.2 Compression performance

The compression algorithm determines how good instructions are compressed in a

block. For the algorithm that is prototyped, a block size of 512 bits is used. Therefore, it

yields a constant 2x compression for every block.

For the input instruction sequence that is used, instructions are compressed into

six compressed blocks of 512 bits. These blocks are decoded by the decompression

hardware and are used to load 6 ILAR with instructions. Table 11 summarizes the

parameters obtained from the compressed blocks. All the compressed blocks are only

about 75 % filled with compressed instructions. Also, the algorithm developed in

hardware results in more than half the ILAR being empty.

Since the input sequence is hand assembled, smart compiler techniques could not

be utilized to obtain an easily compressed assembly instructions sequence. Also, not all

the compressed instruction blocks are utilized. Having a larger input sequence will also

help increase the compression performance.

Table 11: Compression performance of algorithm implemented

Parameters Percentage (%)

Average % of no-ops in ILAR 64.06

Average % of blocks filled 76.24

6.3 Hardware utilization

Both of the hardware prototypes are synthesized using Xilinx's XST simulator.

Then, the designs are translated and implemented using logic resources available on the

FPGA chip. All signals are successfully placed and routed using the IDE and the

summary of the device utilization is shown in Table 12. The gate count shown is an

estimate of the number of ASIC gates for the two prototypes using the ratio 1:5 for

slices/flip-flops/LUTs.

Table 12: Summary of hardware utilization of the two models

MIPS IF Model ILAR Model

Gate count 30780 679145

Slice registers 1488 7561

Flip - flops 132 7030

Latches 1356 531

Occupied slices 1173 42061

4 input LUT used as

logic

2007 78646

Bonded 83 680

RAMB16s 16 22

BUFGMUXs 4 8

Due to the fact of having more decompression logic in the ILAR model, there is a

5x increase in the slices of registers used. Furthermore, more RAMB16 (synchronous

block RAMs) of 16 bits width are used in the ILAR model. Even though the size of the

cache in the MIPS-IF model and an ILAR are developed to be of equal size on purpose,

the ILAR model has six ILAR developed in the hardware model to showcase the benefits.

Therefore, it results in more block RAMs used after synthesis. This also explains why

there are more BUFGMUX (multiplexed global clock buffer) for the ILAR model,

because it is used to select the desired clock within the FPGA chip. Besides that, the

decompression hardware is pipelined to decompress instructions in parallel. All of these

contributes to larger occupied slices for the ILAR model in the synthesis result.

In addition to that, more flips-flops are used for the state machines associated with

pipelining in the ILAR model. However, ILAR model provides savings in the number of

latches used since most of the modules are fully pipelined.

The ILAR model is developed to have logic to look up fields in the compressed

instruction blocks. For example, adders are instantiated for calculating offsets from

references in the header blocks. These instantiations get translated to LUTs in the

synthesis process and therefore contributes to almost 40x more 4 input LUTs in the ILAR

model.

7. Conclusions and future work

As a conclusion, the work that has been done for this thesis and the results

obtained from the experiments conducted are summarized.

In this thesis, the main research topic is LAR, specifically ILAR and how it

separates memory access from instruction access. ILAR is a wide register that utilizes

SWAR concepts, allowing pre-fetching of instructions into registers and also cache like

spatial locality benefits. It also removes conventional instruction fetches from main

memory and prevents cache misses in conventional memory-cache architectures. Despite

the obvious benefits, an efficient mechanism is still needed to fetch instructions into

ILAR. Therefore, the concepts of block compression is proposed as a method to populate

ILAR. The first part of this thesis focuses on proposing block compression algorithms by

developing a software simulator to compress a given input sequence of assembly

instructions. The algorithms are discussed in detail in Chapter 4.

However, the effectiveness of the compression algorithm depends heavily on the

input instruction sequence. Therefore, a search method is needed to determine the best

algorithm for a given input sequence. A GA is used to to search for the best algorithm.

This GA is general solution to determining the best algorithm as the fitness function

could be modified easily for new algorithms developed. In the experiment conducted

using the GA, an algorithm is chosen to be investigated further.

Part two of the thesis involves building a virtual hardware prototype of the

decompression hardware needed by this algorithm. Chapter 5 describes the design of the

decompression hardware prototype in detailed. This virtual hardware prototype is

compared with a MIPS IF direct mapped cache model to showcase the benefits of ILAR.

The results yielded by the experiments conducted are very encouraging. The

reduction in memory latency is definitely a big win for ILAR as cache misses are

eliminated and it brings an improvement in the use of memory bandwidth. Nevertheless,

the compression algorithm proposed and chosen to be implemented did not fully utilize

the ILAR hardware structure. The compressed instruction blocks are not fully utilized and

this may be a reason why the ILAR are filled with a large amount of no-ops. Other block

compression algorithms may also be investigated to yield better compression

performances.

As expected, more hardware is required for the ILAR model for decompression of

the instruction blocks. However, even though more hardware is needed, the latency is not

significantly affected. A large improvement in memory latency is still observed in the

models developed. Future work could further improve the “straw man” model of

decompression hardware and propose improvements to the compression algorithms once

the framework of an optimizing compiler has been defined.

Bibliography

[1] Intel, http://www.intel.com/technology/architecture-silicon/silicon.htm

[2] Computer Architecture A Quantitative Approach, John L. Hennessy and David A.

Patterson

[3] Hank Dietz, Technical summary: SWAR technology. Technical report, School of

Electrical and Computer Engineering, Purdue University , February 1997

[4] Randall J. Fisher. General-purpose SIMD Within A Register: Parallel processing on

consumer engineering. Purdue University, PhD Thesis proposal, November 1997

[5] Randall J. Fisher and Henry G. Dietz. The Scc Compiler: SWARing at MMX and

3DNOW! In Larry Carter and Jeanne Ferrante, editors, Proceedings of the 12th

International Workshop on Languages and Compilers for Parallel Computing, La Jolla,

California, August 1999. Springer – Verlag

[6] H. Dietz, C. H. Chi, “CRegs: a new kind of memory for referencing arrays and

pointers”, Supercomputing’88, pp.360-367, Jan 1988

[7] Eyerman, S; Eeckhout, L; A Memory-Level Parallelism Aware Fetch Policy for SMT

processors, HPCA 2007, IEEE 13th International Symposium on 10-14 Feb. 2007

Pages(s):240-249

[8] Caixia Sun, Hongwei Tang and Minxuan Zhang, “An Instruction Fetch Policy

Handling L2 Cache Misses in SMT Processors”, Proceedings of the Eight International

Conference on High-Performance Computing in Asia-Pacific Region 2005

(HPCASIA'05)

[9] Caixia Sun, Hongwei Tang and Minxuan Zhang, “Controlling Performance of a Time-

Critical Thread in SMT Processors by Instruction Fetch Policy”, Proceedings of the

Seventh International Conference on Parallel and Distributed Computing Applications

and Technologies 2006 (PDCAT'06)

[10] Jing Wang, Shengbing Zhang, Meng Zhang, Xiaoping Huang, Pan Yongfeng, “A

Modified Instruction Fetch Control Mechanism for SMT Architecture”, IEEE Region 10

Annual International Conference, Proceedings/TENCON 2007

[11] Shoji Yoshida, Shigeya Tanaka, Kotaro Matsuo, Takashi Hotta, Hideo Sawamoto,

Teruhisa Shimizu, “Instruction Fetch and Dispatch Schame with Flag-in-Cache/in-IBR,

Systems and Computer in Japan, Vol. 29, No.4,1998

[12] Pierre Michaud, Andre Seznec, Stepehn Jourdan, “An Exploration of Instruction

Fetch Requirement in Out-of-Order Superscalar Processors”, International Journal of

Parallel Programming, Vol. 29, No.1 2001

[13] Stephen Hines, Gary Tyson, David Whalley, “Addressing Instruction Fetch

Bottlenecks by Using an Instruction Register File”, LCTES'07 ACM, June 13-15, 2007

[14] Bellas, N., Haji, I., Polychronopoulos, C., and Stamoulis, G., “Energy and

performance improvements in a microprocessor design using a loop cache, In

Proceedings of the 1999 International Conference on Computer Design (October 1999),

pp. 378-383.

[15] Bellas, N., Haji, I., Polychronopoulos, C, Using dynamic cache management

techniques to reduce energy in general purpose processors, IEEE Transactions on Very

Large Scale Integrated Systems 8, 6 (2000), 693-708.

[16] Michael Fredman, Thomas F. Wenisch, Anastasia Ailamaki, Babak Falsafi, Andreas

Moshovos, “Temporal Instruction Fetch Streaming”, IEEE 2008

[17] Krishna Melarkode, Line Associative Registers. Master's Thesis, University of

Kentucky, October 2004, http://lib.uky.edu/ETD/ukyelen2004t00195/Krishna.pdf

[18] Lekatsas, Haris and Wolf, Wayne, Code Compression for Embedded Systems,

Proceedings of the 1998 35th Design Automation Conference, June 15, 1998 - June 19,

1998

[19] Jacob Ziv and Abraham Lempel; A Universal Algorithm for Sequential Data

Compression, IEEE Transactions on Information Theory, 23(3), pp. 337–343, May 1977

[20] Huffman's original article: D.A. Huffman, "A Method for the Construction of

Minimum-Redundancy Codes", Proceedings of the I.R.E., September 1952, pp 1098-

1102

[21] ARM7TDMI Technical Reference Manual, Rev. r4p1, 2004

[22] Intel iAPX432 General Data Processor Architecture Reference Manual, 171860-001

[23] A. Wolfe and A. Chanin, Executing compressed programs on an embedded RISC

architecure, In Proc. Int'l Symp. Of Microarchitectures, 1992

[24] Richard Phelan, Improving ARM Code Density and Performance, New Thumb

Extensions to the ARM Architecture, June 2003

[25]Eric Rotenburg, Steven Bennett, Jim Smith, Trace Cache: a Low Latency Approach

to High Bandwidth Instruction Fetching, April 11, 1996

Vita

Nien Yi Lim was born in Ipoh, Malaysia on 8th September 1983. Previously, he

attended Prime College in Subang Jaya and was a second year direct entry student at the

University of Bristol, United Kingdom. He graduate with first class honors in Electronics

and Communications Engineering in 2004. After graduation, he joined Motorola Inc as a

software engineer in November 2004. He worked at Motorola until July 2007 when he

decided to pursue his MS degree in electrical engineering at the University of Kentucky.

He has published papers in conferences where the most recent one is at the

International Conference on Parallel and Distributed Computing and Communication

Systems in with a paper titled, “A New Reconfigurable Network Node Processor

Architecture for Distributed Implementation of Ephemeral State Processing”.

