

Generating Custom Excel Spreadsheets Using ODS

Chevell Parker, SAS Institute, Cary, NC

ABSTRACT
This paper will demonstrate techniques on how to effectively
generate files that can be read with Microsoft Excel using the
Output Delivery System. This paper will further discuss a variety
of methods that will allow customization of the every part of the
Excel file from ODS. Some of the tips provided will work with
Excel 97, 2000 and 2002. However, much of what is covered
especially, the advanced techniques using XML and the special
Microsoft Office style properties apply to Excel 2000 and 2002.

INTRODUCTION
 As you will see, creating files with the Output Delivery System
that can be read with Excel is very easy, however, some
additional work may be required to customize the output as you
like. Topics of discussion will include the following: Techniques
for creating files with the ODS that can be read by Excel,
General appearance issues and common task, Advanced
techniques using XML and the ODS Markup destination to
modify the Excel file, and Using Excel Macros with ODS.

GENERATING EXCEL FILES
There are several methods of generating files that can be read
by Excel using the Output Delivery System. The methods
discussed in this paper will be using the ODS HTML and CSV
destinations to generate the Excel or spreadsheet files. Generic
XML files can be read with Excel 2002 and can be generated
with the XML engine on the LIBNAME statement.

When you specify a procedure or data step within the ODS
HTML statement with the .XLS or .CSV extensions, Microsoft
Excel is opened in the Results Viewer on the PC. Excel is not
an ODS destination and the fact that the file is opened in Excel
is not a product of ODS. Excel sees a file generated with the
registered extension of .XLS, or .CSV and attempts to open this
file within the registered program which is Excel on the PC.

ods html file=”c:\temp.xls”;
 proc print data=sashelp.class;
 run;
ods html close;

The new ODS CSV destination can also be used to create files
that can be read by Microsoft Excel. The acronym CSV stands
for Comma Separated Value. This new destination is
experimental with Version 8.2 as part of the ODS Markup
Language. The New CSV destination defaults can be changed
by modifying the default tagset as we will see shortly. Excel has
the ability to read CSV files, so specifying the ODS CSV
destination with the extension .CSV will create a comma
separated file that is opened in Excel by default. Also, the
delimiter can be changed from a comma to any other delimiter
by modifying the CSV tagset. Use the CSVALL destination to
maintain the titles and footnotes and bylines.

ods csv file=”c:\temp.csv”;
 proc print data=sashelp.class;
 run;
ods csv close;

GENERAL APPEARANCE AND COMMON
TASK

TITLES AND FOOTNOTES

Using the ODS HTML destination to create the .XLS or .CSV
files will place the entire title or footnote in the first cell. The
effect of this is that the first column will become the width of the
title or footnote. This occurs because the ODS HTML
destination uses the non-standard <Table> tag for the titles and
footnotes and bylines which Excel does not expect for a header.
The width of the title or footnote will extend as much as 4 cells
before wrapping. To change this behavior, one of the HTML
tagsets can be used. Most of the HTML tagsets use the header
tags <h1> by default for titles, footnotes and bylines. This is the
tag that Excel expects for its headers and footers.

The HTML tagsets shipped for 9.0 are HTML4, which is the
default with the ODS HTML destination in 9.1, HTMLCSS,
PHTML, CHTML and IMODE. The tagsets can be specified as
a destination like the example below, or as a value of the
TAGSET= option on the ODS MARKUP statement. The titles
and footnotes can also be merged in Excel using the
COLSPAN= attribute in the titles or footnotes to determine how
many columns to span. In the first example below, the PHTML
tagset is used to extend the titles beyond the first cell. The
second example spans the titles over 4 columns in the table
using the COLSPAN= HTML attribute.

ods phtml file=’c:\temp.xls’
stylesheet=”c:\temp.css”;
 proc print data=sashelp.class;
 run;
ods phtml close;

ods html file="temp.xls";
title "<td align=center colspan=4><font
size=4>this is a test</td>";
 proc print data=sashelp.class;
 run;
ods html close;

STARTING OUTPUT IN ROW 1

HTML

Output generated with the ODS HTML destination begins in row
2 by default. This happens because of the non-breaking space
character () in the anchor tag. The only way to get rid
of this anchor tag in the HTML destination is to post process
the HTML file. The HTML tagsets of the Markup destination can
also be used to begin the output in row 1. The HTML tagsets of
the ODS Markup destination do not have this non-breaking
space character in the anchor tag. See the prior example for
syntax.

CSV

The CSV destination generates output beginning in row 3 of the
Excel file. This is the default of the ODS CSV destination. The
defaults of the destination or tagset can be changed by
modifying the tagset and overriding the defaults. The sample
code below modifies the CSV tagset and starts the data in row
1 by removing the first 2 empty rows.

Government ApplicationsNESUG 16

 proc template;
 define tagset tagsets.newcsv;
 parent = tagsets.csv;
 define event table;
 finish:
 put NL;
 end;
 define event row;
 finish:
 put NL;
 end ;
 end;
 run;

ods tagsets.newcsv body='c:\test.csv' ;
proc print data=sashelp.class label; run;
ods tagsets.newcsv close;

REDUCING FILE SIZE

There are a few techniques that can be employed to reduce the
size of Excel files and reduce the time it takes for the files to
load. The first method involves creating a CSS style sheet with
the ODS HTML destination. This allows you to separate the
formatting instructions from the data and the need for each
record to have formatting instructions. If you specify the
STYLESHEET= option with a file, an external CSS file is
generated. Excel 97 ignores this CSS style sheet.

The second method of reducing the size of the .XLS files
created is to use one of the HTML tagsets of the ODS Markup
destination. All of the HTML tagsets of the ODS Markup
destination follow the HTML 4.0 standard which separates the
formatting instructions from the data. All of the HTML tagsets
except CHTML allow formatting with the use of a CSS style
sheet. The CHTML tagset does not allow the use of a CSS file.
These HTML tagsets all have minimal formatting such as the
borders without the use of the CSS file.

The final method for reducing the size of the Excel file is to use
the Minimal style. The Minimal style is one of the default styles
shipped with SAS. The Minimal style has very few formatting
instructions which reduces the size of the file. Referenced are
the statistics of the 5 variable, 19 observation
SASHELP.CLASS data set. This was done in Version 8.2. As
the observations grew, PHTML became more efficient than its
HTMLCSS counterpart. Not listed, the CSV destination was the
smallest of all at 1K.

8.2 Benchmark

HTML HTML/

CSS

PHTML

HTMLCSS

CHTML MINIMAL

 21K 5k 5k 4k 5k

CELL FORMATING
One of the most problematic areas that you will face when
creating Excel files from ODS is with cell formatting. The
problems are the same whether using the CSV or the HTML
destinations. The problem occurs because Excel uses a
General format to import cell values. The General format reads
the cell values as they are typed, however, there are some
common problems that you should be aware of.

• Both numeric and character variables will lose leading and
trailing zeroes when creating .XLS or .CSV files with the
ODS HTML and CSV destinations. You will not realize the
problem until the leading or trailing zeroes are omitted from
an account number, an ID, or a zip code.

• Numbers with lengths greater than 11 characters are
displayed in scientific notation.

• Unformatted dates in SAS will be totally different in Excel
because their beginning date starts with January 1, 1900
by default.

NUMBER FORMATS

Importing the cells as text using the Text format for the cell
values allow the cell values to come over without any
interpretation and does not strip the leading or trailing zeroes.
Using the mso-number-format:\@ style property allows the
cell values to be imported using the Text format for Excel 2000
and above. For Excel 97, the style property is vnd.ms-
excel.numberformat:@ . Below are examples of applying the
Text format and the more common number

formats.

/* Apply text format to all cells */

data one;
 input acc_no zipcode;
 cards;
 0111 023560
 0333 023334
;
run;

ods html file=‘temp.xls’ headtext=“<style>
 td {mso-number-format:\@}</style>”;
proc print data=one;

 run;
ods html close;

/* Text format applied to a single column */

ods html file=‘temp.xls’ headtext= “<style>
.zero {mso-number-format:\@}</style>”;
 proc print data=one;
 var acct_no / style={htmlclass=”zero”};
 var zipcode;
 run;
ods html close;

/* Excel 97 solution */

ods html file='temp.xls';
 proc print data=one;
 var acct_no / style={htmlstyle="vnd.ms-
 excel.numberformat:@"};
 var zipcode;
 run;
ods html close;

COMMON NUMBER FORMATS
mso-number-format:0 NO Decimals

mso-number-format:"0\.000" 3 Decimals

mso-number-format:"\#\,\#\#0\.000" Comma w\3 dec

mso-number-format:"mm\/dd\/yy" Date7

mso-number-format:"mmmm\\ d\\\,\\ yyyy" Date9

mso-number-format:"m\/d\/yy\\ h\:mm\\ AM\/PM" D -T AMPM

mso-number-format:"Medium Date" 01-mar-98

mso-number-format:"d\\-mmm\\-yyyy" 01-mar-1998

mso-number-format:"Short Time" 5:16

mso-number-format:"Medium Time" 5:16 am

mso-number-format:"Long Time" 5:16:21:00

mso-number-format:Percent; Percent

Government ApplicationsNESUG 16

mso-number-format:0% No percent

mso-number-format:"0\.E+00"; Fractions

mso-number-format:"\@" Text

CELL FORMATING IN THE CSV DESTINATION

To prevent losing the leading zeroes when using the CSV
destination, an “=” can be added in front of the character
strings. This allows the fields to be read using the text format.
This solution also works with the HTML destination. The CSV
tagset can also be modified to add the “=” before the data
values. To modify a specific field, add the “=” in front of the data
value within the data step.

proc template;
 define tagset Tagsets.test;
 parent=tagsets.csv;
 define event data;
 put "," / if !cmp(COLSTART , "1");
 put '=' """" / if cmp(TYPE ,”string");
 put VALUE;
 put """" / if cmp(TYPE , "string");
 end;
end;
run;

ods markup file=”c:\temp.csv”
tagset=tagsets.test;
 proc print data=one; run;
ods markup close;

ROW HEIGHT AND COLUMN WIDTH
When the row height and column width are set with a style in
ODS, they are ignored by Microsoft Excel. A special MSO CSS
style property has to be set before Excel will recognize the row
height and column width set. If numbers have widths greater
than the column width, the number will be displayed as ####.
For character values, they will appear truncated if the cell to its
right is not empty. When applying the height or the width, the
special MSO style property mso-height-source:userset and
the mso-width-source:userset have to be set before
specifying a width or a height. The example below applies the
width to a single column by defining the class with the
HEADTEXT= ODS HTML option.

ods html file='temp.xls' headtext=
'<style> .test {mso-width-source:
userset;width:200pt}</style>';
 proc print data=sashelp.class;
 var age / style(column)={htmlclass="test"};
 var sex height weight;
 run;
 ods html close;

BORDERS, ALIGNMENT AND PATTERNS

Generating customized borders can be done by using PROC
TEMPLATE, procedures that support the STYLE= option, or
with CSS style sheets. This section will demonstrate how to
generate customized borders for a table. The first thing that is
done is to turn off the borders at the table level so that the
borders can be customized for individual cells. To do this, use
the CSS style property Border. The Border style property has 3
separate values: weight, style, and color. The border style
property can be used with the style attribute HTMLSTYLE= to
control the borders on an individual level.

The border style property will control the overall border,
however, the border-left, border-right, border-top and

border-bottom style properties control the various parts of the
border. The mso-pattern style property can be used to specify
the various patterns or the various shades of gray. The
alignment is controlled with the JUST= attribute or the text-
align style property. The text orientation can be modified by
using the layout-flow style property which takes the value of
vertical and horizontal and the mso-rotate style property which
allows the rotation based on degrees. The mso-text-control:
shrinktofit style attribute and value is used to force the value to
fit in the cell by reducing the size. Other style attributes that
affect how the text is rendered are the white-space style
property with the values wrap, to wrap the text on the blank
spaces and normal which is the default. The last style property
that I will mention is the text-indent. This allows the indentation
of the cell values. Below is an example that shows how this is
done.

ods html file='temp.xls';
title;
proc report data=sashelp.class(obs=5) nowd
style(report)={rules=none }
style(column)={background=white
 htmlstyle='border:none'}
style(header)={htmlstyle="mso-rotate:45;
 height:50pt; border:none"
 background=_undef_};
col name age sex height weight;
compute after;
 name="Total";
endcomp;
rbreak after / summarize
style={font_weight=bold htmlstyle="border-
 bottom:5px double red;border-
 left:none;border-right:none;border-
 top:5px dashed red"};
run;
ods html close;

Figure 1. Customized Borders

PAGE SETUP
Page setup options can be set with a combination of style
properties and XML. In the page set up, we have the ability to

Government ApplicationsNESUG 16

modify all of the various items within the page set up such as
the margins of the page, the margins of the header and footer,
the page orientation, the DPI (data per inch) of the output, the
paper size, the first page number and every other item. Many of
these items can be set using the CSS style properties and the
Microsoft Office specific style properties. The remainder can be
set using XML.

MARGINS AND PAGE ORIENTATION

Margins can be set for the page to include the top, bottom, left
and right margins. The margins can also be specified for the
headers and footers and the justification of the page vertically
and horizontally. Other items that can be specified such as the
paper size, the page orientation, and headers and footers all can
be set using the CSS @Page rule.

The margins for the page can be set using the style property
Margin. The margins for the headers and footers can be
specified using the Microsoft Office specific mso-header-
margin and mso-footer-margin style properties. The
alignment of the table horizontally and vertically on the page can
be set using the mso-horizontal-page-align and the mso-
vertical-page-align style properties. The paper size can be
modified with the size style property with the appropriate paper
size. This can also be set with XML which is shown in a later
example. The page orientation can be modified with the mso-
page-orientation style property, however, for Office 2000 at
least, this has to be augmented with the XML <ValidPrinter> tag
within the Print element .

ods html file='temp.xls' headtext=
'<style> @page{margin:1.0in .75in 1.0in
 75in;
 mso-header-margin:.5in;
 mso-footer-margin:.5in;
 mso-horizontal-page-align:center;
 mso-vertical-page-align:center;
 mso-page-numbers-start:1;}
</style>';
 proc print data=sashelp.class;
 run;
ods html close;

HEADERS AND FOOTERS

Headers and footers can also be defined within the @Page rule
using the MSO style properties mso-header-data and mso-
footer-data. This allows you to specify customized headers for
the printed output. The headers and footers can be a generic
page number, to the more sophisticated page X of Y, date time,
a signature, very customized headers and footers with text on
the left, right, top and bottom that include a variety of the fore-
mentioned. The below example uses the Page X of Y header at
the top of the page and some customized text at the left, center
and right at the bottom of the page. &P is the current page
number, &N is the total number of pages. In the footer &L, left
justifies the text following and &C and &R center and right
justify, respectively. The font name, style and size all can also
be modified for the headers and footers as well. Also the CRLF
character can be specified using the \000A to split text over
multiple lines.

Header and Footer codes

&P &N &T &D &F &B &I

Page # Pages Time Date File Bold Italic

ods htmlcss file='temp.xls'
stylesheet=”temp.css” headtext=

'<style> @Page {mso-header-data:”Page &P of
&N”; mso-footer-data:"&Lleft text &Cpage
&P&R&D&T"};
</style>';
 proc print data=sashelp.class;
 run;
ods htmlcss close;

USING XML TO MODIFY EXCEL APPLICATIONS

XML can be used to modify Excel applications created with
ODS. With the use of XML and the CSS style properties,
virtually every part of the Excel file can be modified from ODS.
The XML included is added between the <head> and </head>
tags of the HTML file. The various XML elements control the
different actions or options within Excel. A complete list of all of
the XML elements and style properties that can be used to
modify your Excel applications can be found at the URL located
in the references at the end of the paper. The ODS MARKUP
destination is used in the below examples to supply the XML.
The reason the Markup destination was chosen was because
of its flexibility. With the Markup destination, you have the ability
to control the flow of the HTML generated. With the doc event,
the Microsoft Office and the Excel namespace are added to the
opening <HTML> tag. The XML is added to the event
doc_head which is structured by adding new line characters
at the end of each statement. Unlike the HEADTEXT= option
which has a 256 character limit, adding the values to this event
has no physical limit. The data step can also be used to
append the header. We will just touch on the power that XML
plays in modifying your Excel applications.

With the use of XML, we can perform such functions as
generating multiple worksheets per workbook, naming
worksheets within the workbook, activating and selecting cells,
hiding worksheets, supply worksheet options, add formulas,
name formulas, modify the resolution of the printed output,
selecting the number of copies to print, scaling the printed
output, generating backups, splitting windows, modify the
window size, data validation, sorting, conditional formatting, set
filters, supply and remove gridlines, protect cells, supply or
remove scroll bars, generate charts, define macros, and so on.
I will show some examples of using XML to modify your Excel
applications.

The first example demonstrates generating multiple worksheets
for a workbook. Within the Worksheet element, I have named 3
separate worksheets named Claims, Approved, and Paid by
specifying the names in the Name tag. Within the
WorksheetSource tag, the URL is specified for the sheet. In
this example, the HTML files were generated in a prior step.
This creates a workbook with the name temp and 3 worksheets:
Claim, Approved, and Paid. The ActiveSheet tag is used to
select the active worksheet.

 proc template;
 define tagset tagsets.test;
 parent=tagsets.phtml;
 define event doc;
 start:
 put '<html xmlns:o="urn:schemas-
 microsoft-com:office: office"' NL;
 put 'xmlns:x="urn:schemas-
 microsoft-com:office:excel"' NL;
 finish:
 put "</html>" NL;
 end;
define event doc_head;
 start:
 put "<head>" NL;
 put '<meta name="Excel Workbook

Frameset">';

Government ApplicationsNESUG 16

 finish:
 put "<!--[if gte mso 9]><xml>" NL;
 put "<x:ExcelWorkbook>" NL;
 put " <x:ExcelWorksheets>" NL;
 put " <x:ExcelWorksheet>" NL;
 put " <x:Name>Claims</x:Name>" NL;
 put " <x:WorksheetSource
 HRef='c:\T1.html'/>" NL;
 put " </x:ExcelWorksheet>" NL;
 put " <x:ExcelWorksheet>" NL;
 put " <x:Name>Approved</x:Name>" NL;
 put " <x:WorksheetSource
 HRef='c:\T2.html'/>" NL;
 put " </x:ExcelWorksheet>" NL;
 put " <x:ExcelWorksheet> " NL;
 put " <x:Name>Paid</x:Name>" NL;
 put " <x:WorksheetSource
 HRef='C:\T3.html'/>" NL;
 put " </x:ExcelWorksheet>" NL;
 put " </x:ExcelWorksheets>" NL;
 put "<x:WindowHeight>5000
 </x:WindowHeight>" NL;
 put " <x:WindowWidth>10380
 </x:WindowWidth>" NL;
 put "<x:WindowTopX>480</x:WindowTopX>" NL;
 put "<x:WindowTopY>45</x:WindowTopY>" NL;
 put "<x:ActiveSheet>3</x:ActiveSheet>" NL;
 put "</x:ExcelWorkbook>" NL;
 put "</xml><![endif]-->" NL;
 put "</head>" NL;
 end;
 end;
run;

ods markup file="c:\temp.xls"

tagset=tagsets.test;;
data _null _;
 file print;
 put "testing";
 run;
ods markup close;

Figure2. Multiple Worksheets in a Workbook

The example below uses XML to validate data that is passed to
Excel. For the cell B4, the value has to be a whole number and
has to be less than 0. The Type and Qualifier tags within the
DataValidation element determine this. When the field B4 is
selected, the input title will be displayed along with the input

message. If you attempt to change this value and the data is
not validated, the error message is displayed along with the
error title. In the below example, the cell B4 is selected
automatically when the .XLS file is opened. This is done by
adding the Activerow and Activecol tags within the
WorksheetOptions element. Warning, the active row and active
column is 1 less than it needs to be to select the cell correctly.
We could have easily checked an entire range rather than a
single cell using the RangeSelection tag with the appropriate
ranges.

proc template;
define tagset tagsets.test;
 parent=tagsets.htmlcss;
 define event doc;
 start:

 put '<html xmlns:o="urn:schemas-
 microsoft-com:office:office"' NL;
 put ' xmlns:x="urn:schemas-microsoft-
 com:office:excel" ' NL;
 finish:
 put "</html>" NL;
 end;
 define event doc_head;
 start:
 put "<head>" NL;
 put VALUE NL;

 put "<style>" NL ;
 put "<!--" NL;
 trigger alignstyle;
 put "-->" NL;
 put "</style>" NL;
 finish:

 put '<!--[if gte mso 9]><xml>' NL;
 put '<x:ExcelWorkbook>' NL;
 put ' <x:ExcelWorksheets>' NL;
 put ' <x:ExcelWorksheet>' NL;
 put ' <x:Name>testing1</x:Name>' NL;
 put ' <x:WorksheetOptions>' NL;

 put ' <x:Selected/>' NL;
 put ' <x:DoNotDisplayGridlines/>' NL;

 put ' <x:Panes>' NL;
 put ' <x:Pane>' NL;

 put ' <x:Number>3</x:Number>' NL;
 put ' <x:ActiveRow>3
 </x:ActiveRow>' NL;
 put ' <x:ActiveCol>1
 </x:ActiveCol>' NL;
 put ' </x:Pane>' NL;

 put ' </x:Panes>' NL;
 put ' </x:WorksheetOptions>' NL;
 put ' <x:DataValidation>' NL;
 put ' <x:Range>B4</x:Range>' NL;
 put ' <x:Type>Whole</x:Type>' NL;

 put ' <x:Qualifier>Less
 </x:Qualifier>' NL;
 put ' <x:Value>0</x:Value>' NL;

 put ' <x:InputTitle>Tip
 </x:InputTitle>' NL
 put ' <x:InputMessage>Verify number
 </x:InputMessage>' NL;

 put ' <x:ErrorMessage>incorrect
 number </x:ErrorMessage>' NL;
 put ' <x:ErrorTitle>stop
 </x:ErrorTitle>' NL;

 put ' </x:DataValidation>' NL;
 put ' </x:ExcelWorksheet>' NL;

 put ' </x:ExcelWorksheets>' NL;
 put '</x:ExcelWorkbook>' NL;

 put "</xml><![endif]-->" NL;
 put "</head>" NL;
 end;
 end;

run;

ods markup file="c:\test1.xls"
tagset=tagsets.test stylesheet='c:\temp.css';
proc print data=sashelp.class(obs=5);

Government ApplicationsNESUG 16

 var age sex height weight;
 run;
ods markup close;

 Figure 3. Data validation

The example below writes information to the Summary tab of
the document properties. Values that can be supplied are the
title, subject, author, manager, company, category, keywords,
comments, and hyperlink base. The values can all be supplied
with the below like named tags within the DocumentProperties
element. The title will get its value from the <title> HTML tag if
it’s present, therefore we add the Title= ODS HTML sub-option
to supply a value to this tag. Otherwise, the value defaults to
“SAS Output”. If the title tag were not present, then it would use
the value specified within the Title XML tag. The hyperlink base
specifies the defaults for all unqualified files. To populate this
value use the <BASE > HTML tag with the HREF= attribute and
the appropriate location of where Excel should look for these
files.

proc template;
 define tagset tagsets.test;

parent=tagsets.htmlcss;
 define event doc;
 start:
 put '<html xmlns:o="urn:schemas-
 microsoft-com:office:office"' NL;
 finish:
 put "</html>" NL;
 end;
 define event doc_head;
 start:
 put "<head>" NL;
 put VALUE NL;
 put "<style>" NL;
 put "<!--" NL;
 trigger alignstyle;
 put "-->" NL;
 put "</style>" NL;
 finish:
 put "<!--[if gte mso 9]><xml>" NL;
 put "<o:DocumentProperties>" NL;
 put "<o:Title>Sugi 28</o:Title>" NL;
 put "<o:Author>B.Smith</o:Author>" NL;
 put "<o:Subject>Demo</o:Subject>" NL;
 put "<o:Company>SAS</o:Company>" NL;
 put "<o:Manager>J.Bloe</o:Manager>" NL;
 put "<o:Category>A</o:Category>" NL;

 put "<o:Keywords>Test</o:Keywords>" NL;
 put "<o:Description>Monthly Report
 </o:Description>" NL;
 put "</o:DocumentProperties>" NL;
 put "</xml><![endif]--> " NL;
 put "</head>" NL;
 end;
end;
run;

ods markup
file="c:\temp.xls"(title="sugi28")
tagset=tagsets.test
stylesheet='c:\temp.css'
headtext='<base href="c:\sugi28">';
 proc print data=sashelp.class;
 run;
ods markup close;

Figure 4. Summary Tab of the Document Properties

This example is a continuation of the page set up options that
can be specified within ODS. The example shows how to set
the remaining options for a worksheet within page set up.
Within the Print element, we specify that the output is printed in
black and white, draft quality, legal paper size, scaled to 85%,
gridlines are printed, row and column headers are printed, and
that the horizontal resolution is 300 DPI. I don't think we would
want this along with draft quality, but wanted to show that this
can be used. The column headers on row 3 are repeated for
each page. This is done by adding the value Print_Titles in the
Name tag within the ExcelName element. The page orientation
is also landscape because the mso-page-orientation
:landscape style is specified in conjunction with the
ValidPrintInfo XML tag of the Print element. To print only a
specified area, the Print_Area value can be added to the Name
node within the ExcelName element. The PaperSizeIndex tag is
used to control the paper size. This is specified within the Print
element and can have the following values.

Government ApplicationsNESUG 16

Paper Size values

Legal Executive A4 A5 B5 No.10 A2. DL C6

5 7 9 11 13 15 17 19 21

proc template;
 define tagset tagsets.test;

parent=tagsets.htmlcss;
 define event doc;
 start:
 put '<html xmlns:o="urn:schemas-
 microsoft-com:office:
 office"' NL;
 put 'xmlns:x="urn:schemas-microsoft-
 com:office:excel">' NL;
finish:
 put "</html>" NL;
end;
define event doc_head;
 start:
 put "<head>" NL;
 put VALUE NL;
 put "<style>" NL;
 put "<!--" NL;
 trigger alignstyle;
 put "-->" NL;
 put "</style>" NL;
 finish:
 put "<!--[if gte mso 9]><xml>" NL;
 put "<x:ExcelWorkbook>" NL;
 put "<x:ExcelWorksheets>" NL;
 put " <x:ExcelWorksheet>" NL;
 put " <x:Name>Sheet1</x:Name>" NL;
 put " <x:WorksheetOptions>" NL;
 put " <x:DisplayPageBreak/>" NL;
 put " <x:Print>" NL;
 put " <x:BlackAndWhite/>" NL;
 put " <x:DraftQuality/>" NL;
 put " <x:ValidPrinterInfo/>" NL;
 put " <x:PaperSizeIndex>5
 </x:PaperSizeIndex>" NL;
 put " <x:Scale>85</x:Scale>" NL;
 put " <x:HorizontalResolution>300
 </x:HorizontalResolution>" NL;
 put " <x:Gridlines/>" NL;
 put " <x:RowColHeadings/>" NL;
 put " </x:Print>" NL;
 put " </x:WorksheetOptions>" NL;
 put " </x:ExcelWorksheet>" NL;
 put " </x:ExcelWorksheets>" NL;
 put "</x:ExcelWorkbook>" NL;
 put "<x:ExcelName>" NL;
 put "<x:Name>Print_Titles</x:Name>" NL;
 put "<x:SheetIndex>1
 </x:SheetIndex>" NL;
 put "<x:Formula>=Sheet1!$3:$3
 </x:Formula>" NL;
 put "</x:ExcelName>" NL;
 put "</xml><![endif]-->" NL;
 put "</head>" NL;
 end;
end;

run;

ods markup file="c:\temp.xls"
tagset=tagsets.test
stylesheet='c:\temp.css'
headtext="<style> @page {mso-page-
orientation:landscape} </style>" ;
 proc print data=sashelp.class;
 title;

 run;
ods markup close;

Figure 6. Page Setup and Sheet options

Window options can be specified for the Excel file using the
WorksheetOptions element. The below example changes all of
the window options. The gridlines are removed, zeroes are not
displayed, the column headers are not displayed, and the outline
is not specified. The Workbook element is responsible for
removing the horizontal and vertical scroll bars, and hiding the
workbook tabs.

proc template;
 define tagset tagsets.test;
 parent=tagsets.htmlcss;
 define event doc;
 start:
 put '<html xmlns:o="urn:schemas-
 microsoft-com:office:office"' NL;
 put 'xmlns:x="urn:schemas-microsoft-
 com:office:excel">' NL;
 finish:
 put "</html>" NL;
 end;
 define event doc_head;
 start:
 put "<head>" NL;
 put VALUE NL;
 put "<style>" NL ;
 put "<!--" NL;
 trigger alignstyle;
 put "-->" NL;
 put "</style>" NL;
 finish:

 put "<!--[if gte mso 9]><xml>" NL;
 put "<x:ExcelWorkbook>" NL;
 put " <x:ExcelWorksheets>" NL;
 put " <x:ExcelWorksheet>" NL;
 put " <x:Name>Sheet1</x:Name>" NL;
 put " <x:WorksheetOptions>" NL;
 put " <x:DisplayPageBreak/>" NL;
 put " <x:Selected/>" NL;
 put " <x:DoNotDisplayGridlines/>" NL;
 put " <x:DoNotDisplayZeros/>" NL;
 put " <x:DoNotDisplayHeadings/>" NL;
 put " <x:DoNotDisplayOutline/>" NL;
 put " </x:ExcelWorksheet>" NL;

Government ApplicationsNESUG 16

 put " </x:ExcelWorksheets>" NL;
 put " <x:HideHorizontalScrollBar/>" NL;
 put "<x:HideVerticalScrollBar/>" NL;
 put "<x:HideWorkbookTabs/>" NL;
 put "<x:DisplayFormulas/>" NL;
 put " </x:ExcelWorkbook>" NL;
 put "</xml><![endif]-->" NL;
 put "</head>" NL;
 end;
end;
run;

ods markup file="c:\temp.xls"
tagset=tagsets.test
stylesheet='c:\temp.css';
proc print data=sashelp.class;
run;
ods markup close;

Figure 7. Window Options with View Tab

The Excel files can be sorted based on the field names in the
output. The sort is done for the Excel output only. The data set
is not sorted for this example. In order for Excel to treat the
output as a database, the column headers are specified in row
1. The Sort element is specified within the ExcelWorksheet
element. In the below example, the Name and Sex fields are in
descending order with the Age field appearing in ascending
order. A null title statement is specified so that the headers
begin in row 1.

proc template;
 define tagset tagsets.test;
 parent=tagsets.htmlcss;
 define event doc;
 start:
 put '<html xmlns:o="urn:schemas-
 microsoft-com:office:office"' NL;
 put 'xmlns:x="urn:schemas-microsoft-
 com:office:excel">' NL;
 finish:
 put "</html>" NL;
 end;

 define event doc_head;
 start:
 put "<head>" NL;
 put VALUE NL;
 put "<style>" NL;
 put "<!--" NL;
 trigger alignstyle;
 put "-->" NL
 put "</style>" NL;
 finish:
 put '<!--[if gte mso 9]><xml>' NL;
 put ' <x:ExcelWorkbook>' NL;
 put ' <x:ExcelWorksheets>' NL;
 put ' <x:ExcelWorksheet>' NL;
 put ' <x:Name>Sheet1</x:Name>' NL;
 put ' <x:Sorting>' NL;
 put ' <x:Sort>name</x:Sort>' NL;
 put ' <x:Descending/>' NL;
 put ' <x:Sort>sex</x:Sort>' NL;
 put ' <x:Descending/>' NL;
 put ' <x:Sort>age</x:Sort>' NL;
 put ' </x:Sorting>' NL;
 put ' </x:ExcelWorksheet>' NL;
 put ' </x:ExcelWorkbook>' NL;
 put ' </xml><![endif]-->' NL;
 put '</head>' NL;
 end;
 end;
run;

ods markup file="c:\temp.xls"
tagset=tagsets.test stylesheet='c:\temp.css';
proc print data=sashelp.class;
run;
ods markup close;

Figure 8. Sorting Columns

USING EXCEL MACROS WITH ODS
A macro is a program that contains a list of instructions.
Macros in Excel can be used to automate various tasks that are
commonly used. Visual Basic for Applications (VBA) is the
programming language used to drive macros with the Microsoft
Office products. VBA is now the standard programming
language within Microsoft Office products as well as the
ADOBE products. The use of macro in Excel is a very powerful
and dynamic feature that I cannot cover sufficiently here, but will
briefly discuss this and how to implement macro with files
generated with ODS.

Government ApplicationsNESUG 16

The type of macro that will be discussed in this section will be
the command macro, or more commonly known as the “sub
procedures” for obvious reasons. You might say that this is
well, and good, but you are not interested in learning a new
programming language. The best part is that you do not have
to learn this programming language to develop great macro
code. Excel allows you to cheat by turning on the macro
recorder. This is done by going to Tools->Macro->Recorder
and turning on the macro recorder. This will place a little icon on
your worksheet. Until you turn the recorder off, it will record
every action that is taken and translate this into VBA code. As
you see, this reduces the need for you to be a real expert in the
language. However, to modify these macros, you will need to
know the basics of the language.

Unlike the old WordBasic or Excel 4.0 macro language, VBA
6.0 allows you to access almost every feature within the Excel
application. Macros can be executed by defining a keystroke for
the macro, going to: Tools->Macro and selecting Run, or run
when the workbook is opened by naming the macro auto_open.
There are various other ways to do this such as adding it to the
tool bar, or as an add-in, but I will focus on the fore-mentioned
three. Macros that are commonly used can also be placed in
the personal.xls workbook, which is referred to as the “personal
macro workbook”. The macros located in this personal.xls file
will be available to all workbooks opened. You can think of this
as an autoexec file. This is done by placing the personal.xls
workbook in the XLStart folder, which is located by default in
C:\Program Files\Microsoft Office\Office\XLSTART. After the
macros are stored in this personal.xls workbook, the workbook
is hidden so that it is not displayed. This is done by going to:
Window-> Hide. After saving this file, every workbook opened
will have access to these macros.

Excel files generated with ODS will have access to all of the
macros defined in the personal.xls workbook when the .XLS
files are opened which causes very little overhead. What we
can do with VBA is endless. I will only touch this subject and
present a few examples to show how this can be used
effectively from ODS.

 SAMPLE SYNTAX

/* Displays user created form */

Sub myform()
 userform2.show
End Sub

 /* Changes window options */
Sub options()
 With ActiveWindow
 .DisplayGridlines = False
 .DisplayHeadings = False
 .DisplayOutline = False
 .DisplayZeros = False
 .DisplayHorizontalScrollBar = False
 .DisplayVerticalScrollBar = False
 .DisplayWorkbookTabs = False
 End With
 With Application
 .DisplayFormulaBar = False
 .DisplayStatusBar = False
 .DisplayCommentIndicator = 0
 End With
 End Sub

While the personal.xls file is hidden, the macros in this file
cannot be edited without un-hiding the workbook. To edit the
macros in the personal.xls file without un-hiding this wiorkbook,
the XML element ExcelName can be specified with the name of

how we want to address the macros in current workbook. The
Formula tag specifies how the macros are addressed. In the
Formula tag, the personal.xls workbook is specified with the “ !”
preceding the name of the macro. Keystrokes can also be
specified for the macro specifying the Keystroke tag. The
macros in the personal.xls file can be run when a new workbook
is opened without any intervention. When the name of the
macro in the current workbook is named auto_open, the macro
in the personal macro workbook that we point to is executed
automatically when a new workbook is opened. The reserved
macro name auto_close can be specified to execute macros
when the current workbook is closed. The name auto_activate
can be specified to run when the workbook is activated. We are
not limited to running macros stored in the personal.xls file. We
can point to macros located in any workbook as long as the
location and the name of the workbook are fully qualified in the
formula tag with quotes. Only the path and the name of the
workbook are quoted.

Below is an example of running a macro when the workbook is
opened using XML with the Markup destination to define a
macro with the name auto_open. Because we use this reserved
name for the macro, the workbook will attempt to execute this
macro when the workbook is opened. The current workbook is
pointing to a macro in the personal.xls file by the name myform.
When this workbook is opened, the workbook will bring up a
form which I defined in the personal.xls file as userform2. The
form contains buttons that allow the selection of the various
corporate styles.

proc template;
 define tagset tagsets.test;
 parent=tagsets.phtml;
 define event doc;
 start:
 put '<html xmlns:o="urn:schemas-
 microsoft-com:office: office"' NL;
 put 'xmlns:x="urn:schemas-microsoft-
 com:office:excel"' NL;
 finish:
 put "</html>" NL;
 end;
 define event doc_head;
 start:
 put "<head>" NL;
 put VALUE NL;

 put "<style>" NL;
 put "<!--" NL;
 trigger alignstyle;

 put "-->" NL;
 put "</style>" NL;
 finish:
 put "<!--[if gte mso 9]><xml>" nL;
 put " <x:ExcelName>" NL;
 put " <x:Name>auto_open</x:Name>" NL;
 put " <x:Macro>Command</x:/Macro>" NL;
 put " <x:Formula>=personal.xls!myform
 </x:Formula>" NL;
 put "</x:ExcelName>" NL;
 put "</xml><![endif]-->" NL;
 put "</head>" NL;

 end;
 end;
run;

ods markup file="c:\temp.xls"
tagset=tagsets.test;
proc print data=sashelp.class;
title;

Government ApplicationsNESUG 16

run;
ods markup close;

Figure 9. Macro Executed when Workbook Opened

CONCLUSION
As you can see, generating files that can be read with Excel is
very easy when using ODS. When you need more than what
you are getting from the defaults, you can use some of the
techniques mentioned in this document to fully customize your
Excel output. Also mentioned were common issues that you
should be aware of when generating Excel files from ODS.

REFERENCES
“Microsoft Office HTML and XML Reference”

http://msdn.microsoft.com/library/default.asp?url=/li

brary/en-us/dnoffxml/html/ofxml2k.asp

Parker, Chevell. “Tips for Creating Excel files with ODS”.

http://www.sas.com/rnd/base/topics/templateFAQ/Ex

cel1.pdf

“ODS FAQs” http://www.sas.com/rnd/base/index-

faq.html

“Using ODS to Export Output in a Markup Language”

http://www.sas.com/rnd/base/topics/odsmarkup/

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the author at:

Chevell Parker

SAS

SAS Campus Drive

Cary, NC 27513

Email: Chevell.Parker@SAS.com

SAS and all other SAS Institute Inc. product or service names
are registered trademarks or trademarks of SAS Institute Inc. in
the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their
respective companies.

Government ApplicationsNESUG 16

