2-8 Proving Angle Relationships	Name
Geometry	Period

2.11 Angle Addition Postulate	
D is in the interior of $\angle ABC$ if and only if $m \angle ABD + m \angle DBC = m \angle ABC$.	

1) Given: $m \angle XYZ = 122$ and $m \angle 2 = 86$ Prove: $m \angle WYZ = 36$

STATEMENTS	REASONS
1.	1.
2.	2.
3.	3.
4.	4.

2.3 Supplement Theorem	
If two angles form a linear pair, then they are	
If two angles form a mear pair, men mey are	
supplementary angles.	
2.4 Complement Theorem	
If the non common sides of two adjacent angles	
form a right angle, then the angles re	
complementary angles	
I I I I I I I I I I I I I I I I I I I	
2.5 Properties of Angle Congruence	
2.0 Hopernes of Hingle Congruence	
Reflexive Property of Congruence	
$\angle 1 \cong \angle 1$	
Symmetric Property of Congruence	
If $\angle 1 \cong \angle 2$, then $\angle 2 \cong \angle 1$	
Transitive Property of Congruence	
If $1 \approx 1/2$ and $1/2 \approx 1/3$ then $1/2 \approx 1/3$	
$\prod \angle 1 = \angle 2 \text{and} \angle 2 = \angle 3, \text{inen} \angle 1 = \angle 3.$	

2.6 Congruent Supplements Theorem	
Angles supplementary to the same angle or to congruent angles are congruent.	
2.7 Congruent Complements Theorem	
Angles complementary to the same angle or to congruent angles are congruent.	

2) Prove that $\angle 2$ and $\angle 3$ in the given picture are congruent. Given: $\angle 1$ and $\angle 3$ are supplementary. Prove: $\angle 2 \cong \angle 3$

STATEMENTS	REASONS
1.	1.
2.	2.
3.	3.
4.	4.

3) Prove that if \overline{DB} bisects $\angle CDE$ and $\angle 1 \cong \angle 4$, then $\angle 2 \cong \angle 4$.

Given: \overline{DB} bisects $\angle CDE$ $\angle 1 \cong \angle 4$ Prove: $\angle 2 \cong \angle 4$

STATEMENTS	REASONS
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.
6.	6.
7.	7.

2.9	
Perpendicular lines intersect to form four right angles.	
2.10	
All right angles are congruent.	
2.11	
Perpendicular lines form congruent adjacent angles.	
2.12	
If two angles are congruent and supplementary then each angle is a right angle.	
2.13	
If two congruent angles form a linear pair then they are right angles.	