
Microsoft Excel VBA Fact Sheet: Building an Excel Add-In

© Martin Green www.fontstuff.com 1

Building an Excel Add-In

About Add-Ins

An Excel Add-In is a file (usually with an .xla or .xll extension) that Excel can load when it starts

up. The file contains code (VBA in the case of an .xla Add-In) that adds additional functionality to
Excel, usually in the form of new functions or macros.

Add-Ins provide an excellent way of increasing the power of Excel and they are the ideal vehicle for

distributing your custom functions. Excel is shipped with a variety of Add-Ins ready for you to load
and start using (e.g. the Analysis Toolpak) and many other third-party Add-Ins are available.

To make use of an Add-In you first have to tell Excel to load it when the program starts. Go to

Tools > Add-Ins to open the Add-Ins dialog (Fig. 1). This shows a list of available Add-Ins stored

in the default locations. If your Add-Ins are located elsewhere (such as on a network location or in

your My Documents folder) you can search for them by clicking the dialog's Browse button.

Fig. 1 Visit the Add-Ins dialog to view and load available Add-Ins.

Once selected, an Add-In loads each time Excel is started. If you no longer require the Add-In visit

the Add-Ins dialog again and deselect it. It will be unloaded when you click the OK button.

Creating an Add-In

An Excel Add-In can contain both custom functions (UDFs) and macros. These are created in an

Excel workbook the usual way. You might wish to add some additional features such as toolbar or

menu items that are created when the finished Add-In loads and removed then it unloads. When

the workbook is ready it is saved as an Add-In. This file can then be distributed and loaded so that
people can benefit from the increased functionality brought by your functions and macros.

Preparing the Source Workbook

Create your macros or custom functions in one or more modules in the usual way. Don't bother

adding anything to the workbook's worksheets because in Add-In form these will not ever be seen.

If your work takes a while to complete you can save it as a regular Excel workbook file (*.xls) and
convert it to an Add-In when you finish.

Write and test your macro or function code. Then add descriptions to each of your custom

functions. To do this, in Excel go to Tools > Macro > Macros to open the macro dialog box. In

the Macro Name textbox enter the name of a custom function. Excel will recognise the name of

the function and the Options button will become enabled (if this does not happen you might have

misspelled the name). Click the Options button to open the Macro Options dialog and enter a brief

description of the function. Click OK to close the Macro Options dialog. You will see your

Microsoft Excel VBA Fact Sheet: Building an Excel Add-In

© Martin Green www.fontstuff.com 2

description now appears in the Description area of the Macro dialog box (Fig. 2). Click Cancel to

complete the process.

Fig. 2 Use the Macro dialog to add a description to each custom function.

Users will be able to access the custom functions in the usual way using Excel's Insert Function tool

where they will find the functions in the User Defined section. But if you have included any macros

in your Add-In it is a good idea to provide additional toolbar or menu items to allow them to easily
run them.

Adding Toolbar and Menu Items for Add-In Macros

Suppose you have included a simple macro to insert the current time into the active cell. The
macro code looks like this…

Sub InsertTime()

 ActiveCell.Value = Format(Now, "hh:nn:ss")

End Sub

You can also create an item for the right-click (context) menu of the worksheet so that when the

user right-clicks on a cell they can run the macro by choosing the menu item. This requires two

code procedures to be written, one to add the menu item to the worksheet context menu when the
Add-In is loaded and another to remove it when the Add-In unloads.

The code to create the new menu item should be placed in the Workbook_Open procedure which is
located in the ThisWorkbook code module. The code should look something like this…

Private Sub Workbook_Open()
 Dim NewControl As CommandBarControl

' Assign shortcut to insert time on SHIFT+CTRL+T

 Application.OnKey "+^{T}", "basMacros.InsertTime"

' Remove existing shortcut if present

 On Error Resume Next

Application.CommandBars("Cell").Controls("Insert Time").Delete

 On Error GoTo 0

' Add item to shortcut menu on open

 Set NewControl = Application.CommandBars("Cell").Controls.Add

 With NewControl

 .Caption = "Insert Time"

 .OnAction = "basMacros.InsertTime"

 .BeginGroup = False

End With

End Sub

Microsoft Excel VBA Fact Sheet: Building an Excel Add-In

© Martin Green www.fontstuff.com 3

The above procedure includes a routine to remove the menu item if it is already present (if, for

example, Excel did not close properly last time). It adds the text "Insert Time" to the existing

context menu of the worksheet and also sets the keyboard shortcut [Shift]+Control]+T to

activate the macro. Note that the macro is referred to by its full address including the name of the

module in which it resides (basMacros.InsertTime). This is to avoid a conflict if there is already

another macro with the same name on the user's computer. The user can now easily run the macro
by right-clicking on any cell (Fig. 3).

Fig. 3 A new item has been added to the cell's context menu.

A second procedure is needed to remove the menu item and cancel the keyboard shortcut when

the Add-In unloads. This should be placed in the Workbook_BeforeClose procedure and should take

the form…

Private Sub Workbook_BeforeClose(Cancel As Boolean)

' Cancel keyboard shortcut assignment

 Application.OnKey "+^{T}", ""

' Remove shortcut as file closes

On Error Resume Next

Application.CommandBars("Cell").Controls("Insert Time").Delete

End Sub

Alternatively you might prefer to create a new item on Excel's Menu Bar.

Private Sub Workbook_Open()

 On Error Resume Next

Dim MenuBar As CommandBar

 Dim NewMenu As CommandBarPopup
 Dim NewMenuItem As CommandBarButton

' Create new item on Worksheet Menu Bar

Set MenuBar = Application.CommandBars("Worksheet Menu Bar")

 Set NewMenu = MenuBar.Controls.Add(Type:=msoControlPopup)

 NewMenu.Caption = "Martin's Macros"

' Add items to new menu

Set NewMenuItem = NewMenu.Controls.Add(Type:=msoControlButton)

 With NewMenuItem

 .Caption = "Insert Time"

 .FaceId = 33

 .OnAction = "basMacros.InsertTime"

 End With

Set NewMenuItem = NewMenu.Controls.Add(Type:=msoControlButton)

 With NewMenuItem

 .Caption = "Delete Empty Rows"

 .FaceId = 634

 .OnAction = "basMacros.DeleteEmptyRows"

 End With

End Sub

The procedure first creates a new menu, in this example it bears the name "Martin's Macros", then

adds menu items to it. You could use the same technique to add items to an existing menu. In

later versions of Excel menu items can also display an icon. There are many icons built in to Excel

and each is referred to by a number which is specified as the menu item's FaceId property. If you
don't want to display an icon next to the menu item simply omit the code line.

You can download a free Add-In which displays a list of available icons and their FaceId numbers
from http://skp.mvps.org/faceid.htm

Microsoft Excel VBA Fact Sheet: Building an Excel Add-In

© Martin Green www.fontstuff.com 4

You will also need to remove the menu and its contents when the Add-In unloads. The following

code in the Workbook_BeforeClose procedure will do the trick. Note that it is not necessary to
remove the individual menu items. Removing the menu automatically does that.

Private Sub Workbook_BeforeClose(Cancel As Boolean)

' Delete new menu as workbook closes

 On Error Resume Next
Application.CommandBars("Worksheet Menu Bar").Controls("Martin's Macros").Delete

End Sub

In addition to context menu items and menu bar items, VBA can be used to create new toolbars
and command buttons. Here is some typical code…

Private Sub Workbook_Open()

 On Error Resume Next

Dim NewToolbar As CommandBar

 Dim NewButton As CommandBarButton

' Create new toolbar

 Set NewToolbar = Application.CommandBars.Add("Martin's Toolbar")

 NewToolbar.Visible = True

' Add items to toolbar

 Set NewButton = NewToolbar.Controls.Add(Type:=msoControlButton)

 With NewButton

 .FaceId = 33

 .TooltipText = "Insert Time"

 .OnAction = "basMacros.InsertTime"

 End With

Set NewButton = NewToolbar.Controls.Add(Type:=msoControlButton)
 With NewButton

 .FaceId = 634

 .TooltipText = "Delete Empty Rows"

 .OnAction = "basMacros.DeleteEmptyRows"

 End With

End Sub

As before it is necessary to include a procedure to remove the toolbar as the Add-In closes…

Private Sub Workbook_BeforeClose(Cancel As Boolean)

On Error Resume Next

' Delete new toolbar as workbook closes

 Application.CommandBars("Martin's Toolbar").Delete

End Sub

If you create a combination of context menu items, new menus and toolbars you can combine the

code to create and remove them into the Workbook_Open and Workbook_BeforeClose event
procedures.

Protecting Your Code

It is a good idea to protect your Add-In code from prying eyes and interfering fingers! First check

and double-check everything and test your code rigorously before distributing it. When you are

happy that everything works as it should you can add password protection.

In the Visual Basic Editor go to Tools > VBAProject Properties then click on the Protection tab.

Place a tick in the Lock Project for Viewing checkbox then enter and confirm a password. Finally

click OK. The password protection comes into effect when the file is next opened after being saved.

Once the file has been saved, any attempt to view the code will be trigger a password request (Fig.
4).

Fig. 4 The Visual Basic Editor asks for a password.

WARNING!: If you forget your password you won't be able to get at your code. Consider saving an
unprotected copy of the file in a safe place for backup purposes in case you lose the password.

Microsoft Excel VBA Fact Sheet: Building an Excel Add-In

© Martin Green www.fontstuff.com 5

Saving the Workbook as an Add-In

The workbook containing your code module now has to be saved as an Excel Add-In (*.xla) file. In

the Excel window go to File > Save to open the Save As dialog. Enter a name for your Add-In file

(the usual file naming rules apply) and use the Save as type option to change the file type to

Microsoft Excel Add-In (*.xla) (Fig. 5).

Fig. 5 Save the workbook as an Excel Add-In.

Before clicking OK check the location in which you are saving the Add-In file. You can store your

Add-In anywhere you like but, if you want it to be listed along with the built-in ones, you should

save it into the correct location. Excel versions 2000 and later will automatically take you to the
correct folder but Excel 97 does not.

Having saved the Add-In you will find that the original workbook you created is still open. You can
close this file and discard it if you wish.

Adding a Description to the Add-In

It is a good idea to add a description to the Add-In itself. This description will be displayed in the
Add-Ins dialog box when you choose an Add-In to install.

First, use the file manager to locate your Add-In file. Right-click on the file icon and choose

Properties from the context menu. In the file properties dialog click the Summary tab. Type a

description of your Add-In in the Comments text box. If you wish you can also type a name for

your Add-In in the Title text box. This is useful if you have chosen a short or cryptic name for your

*.xla file but would like to show a more descriptive name in the Add-Ins dialog. I could give my

Add-In file the filename fsExcelAddIns.xla but assign it the title Martin's Macros & Functions (Fig.
6).

Fig. 6 Add a Title and description for your Add-In.

Finally click OK to accept your changes. You Add-In is now ready for installation, and can be
distributed to other users if required.

Microsoft Excel VBA Fact Sheet: Building an Excel Add-In

© Martin Green www.fontstuff.com 6

Installing the Add-In

If Excel has not been shut down since you created your Add-In (or since one was copied to the
computer's hard disk) restart Excel to make sure that it refreshes its list of available Add-Ins.

Go to Tools > Add-Ins to open the Add-Ins dialog. If you have stored your Add-In in the default

location you will see its name displayed in the Add-Ins available window (if you have stored your

Add-In in a different folder, use the Browse button to find it). Click on your Add-In's name to see
its description at the bottom of the dialog box (Fig. 7).

Fig. 7 Installing the Add-In.

To install your Add-In place a tick in the check-box next to your Add-In's name and click OK. As

soon as the Add-In is installed its functions will be available in Excel. Find them in the User

Defined section of the Insert Function tool or simply type them into a cell as you would any built-

in function. The Add-In will remain installed until you return to the Add-Ins dialog and uninstall it
by removing the tick from the check-box.

Making Additions and Changes to an Add-In

Your Add-In file can contain as many modules and custom functions as you want. You can add

them at any time. If your Add-In is installed you will see it listed in the Project Explorer pane of

the VB editor. Locate the module containing your functions and make whatever additions and

changes you want. If your Add-In is not installed, find the Add-In file and double-click it to open it

in Excel. You will not be able to see it in the Excel window but it will appear in the VB editor's

Project Explorer. Remember to save your changes! Do this from the VB editor window with File >
Save.

A Final Word of Caution

A custom function that is located in a code module within a workbook will go wherever the

workbook goes. In other words if you open the workbook file on a different machine, or e-mail it to
someone else, the function travels with the workbook and will always be available.

If your workbook refers to a custom function contained in an Add-In, the workbook will only be

able to calculate the function when the Add-In is present. If you mail the workbook to someone
else you will have to mail them the Add-In too.

