\qquad Date \qquad Hour \qquad Spengler－－Eikmeier

Volume Lab

Purpose：You will be able to use a graduated cylinder and metric ruler to accurately measure the volume of liquids and solid objects．You will be able to calculate the volume of regular solid objects．

Materials： 100 ml graduated cylinder 10 ml graduated cylinder Metric ruler Miscellaneous objects from the lab cart as needed

Procedure A：Measuring Liquids

1．Notice the bent water surface in the diagrams below．It is

100 ml beaker
600 ml beaker called a MENISCUS．When reading liquid volume in a graduated cylinder，always measure from the BOTTOM of the Meniscus．See Diagram 1.
2．Study the scale on the side of one of the 100 ml graduated cylinders shown below．What volume of water will fit between two of the small lines on the cylinder？ \qquad ml
3．Read and record the volumes in each 100 ml cylinder A－E．

A． \qquad ml

B． \qquad ml

C． \qquad ml

D． \qquad ml

E． \qquad ml

4．Examine the scale on the side of the 10 ml graduate shown to the left．What volume of water would fit between two consecutive lines on this cylinder？ \qquad ml
5. Read and record the volume of the liquid in each of the cylinders E-J

G. \qquad ml ml
\qquad
 H. \qquad ml
I. \qquad ml
J. \qquad ml

Checkpoint
6. Have your instructor check your answers for \# 1-5.
7. Using a 600 ml beaker, fill it with water to the 100 ml marking. Pour this water into your 100 ml graduated cylinder. Does the water come exactly to the 100 ml mark?

Which is better to measure accurately with, a graduated cylinder or a beaker?
8. Next, place 10 ml of water into your 100 ml graduate. Pour this water into your 10 ml graduate. Does the water come exactly to the 10 ml mark?
\qquad Which graduate is more accurate, the 10 ml graduate or the 100 ml graduate? \qquad
9. Get a test tube from the lab cart. Using the 10 ml graduate, how much water does it hold? \qquad .
10. How many drips from a medicine dropper does it take to make 1 milliliter? Do three trials and calculate an average.

	Trial One	Trial Two	Trial Three	Average
\# of Drips				

11. Fill your 100 ml graduate to the 50 ml level. Drop a small rock from the lab cart into the cylinder. What is the volume of the rock?
Procedure B: Measuring Solids

12. The cube in Diagram 2 measures 1 cm on each side. Remember, the formula for volume $=$ Length \times Width \times Height or $V=L \times W \times H$. The volume of this cube, then is $1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 1 \mathrm{~cm}=1 \mathrm{~cm}^{3} . \mathrm{Acm}^{3}$ is a "centimeter cubed" and can also be called a "cc". A centimeter cubed (cm³) equals 1 ml
13. Using a metric ruler, determine the volumes of each object in the table below.

Object	Length (cm)	Width (cm)	Height (cm)	Volume (cm ${ }^{3}$)
Metal cube				
Aluminum bar				
Block "A"				
Block "B"				

14. Practice. Determine the volume of the items shown below:

A. \qquad ml
B. \qquad ml C.
C. $\quad \mathrm{ml}$
(Volume of just the rock)
D. \qquad ml
(Volume of just the rock)
戠

E. \qquad ml
F. \qquad ml \qquad ml

Down:

1. This is a measurement of how much space an object occupies.
2. This equipment is usefuil in grabbing very small volumes of liquid.
3. This is the basic metric (Sl) unit of volume.
4. This is the "medical" way of referring to a ml .
5. This system uses tsp, TB, Fl. Oz., cups, pints quarts gallons, barrels. pecks, and bushels to measure volume.
B. A cube measuring 1 cm on each side occupies this volume.
6. One dimension needed to measure the volume of a rectangular solid.
