CSMP Mathematics for the Intermediate Grades Part VI

Worksheets

What's In This Book?

This book contains all the worksheets you will need for *CSMP* for the Intermediate Grades, Part VI. Worksheets are labeled with the same letter and number as the lessons with which they are used. In this book, they are in the following order:

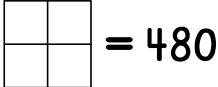
N Worksheets

N3	N16	N27
N5	N22	N30
N9	N23	N32
N11	N24	N33
N15	N26	

L Worksheets

L5	L9	L11
----	----	-----

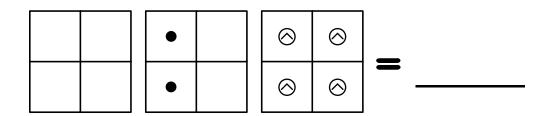
G Worksheets


G1	G10	G14
G3	G11	G15
G6	G13	G16

P Worksheets

P1	P3	P6
P2	P4	P7

Put each number on the Minicomputer using exactly one of these weighted checkers:

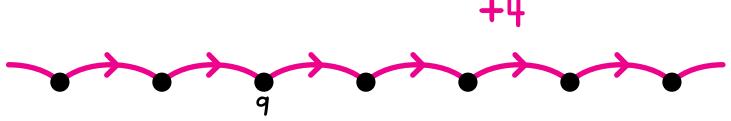


Clue 1

Paf is a prime number between 60 and 80.

Paf could be _____, ____, ____, or _____.

Clue 2



Paf can be shown here on the Minicomputer by moving exactly one checker to another square.

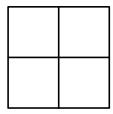
Paf could be _____, ___, or ____.

Clue 3

Paf is on a +4 arrow road with 9.

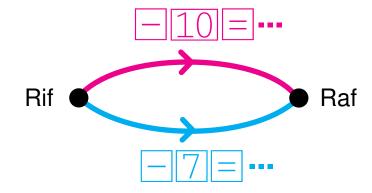
Who is Paf? _____

Rif and Raf are secret whole numbers.


Clue 1

Rif is a prime number between 100 and 120.

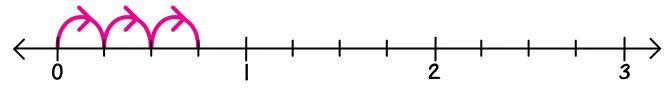
Rif could be _____, ____, ____, or _____.


Clue 2

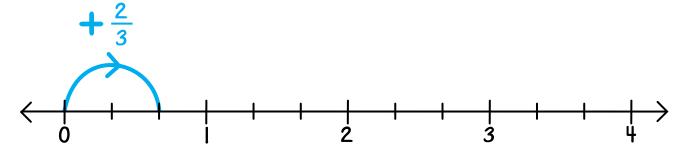
Raf can be put on the ones board of the Minicomputer using just a 3-checker and a 7-checker.

Raf could be _____

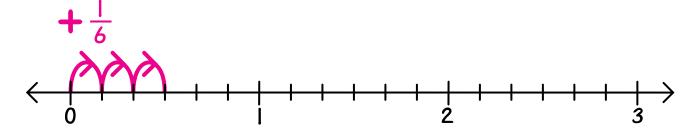
Clue 3



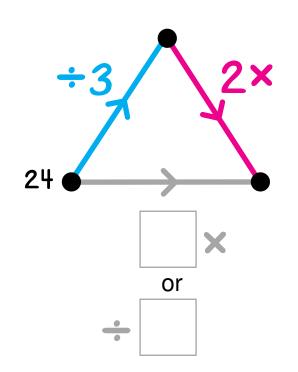
Who is Rif? _____

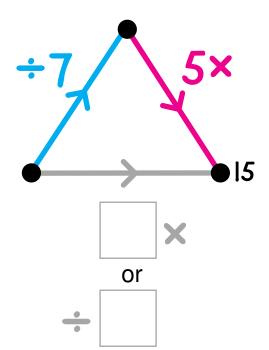

Who is Raf? _____

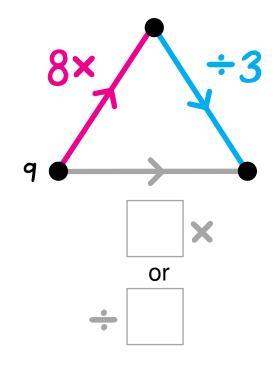
Draw arrows on each number line to help do the calculation.

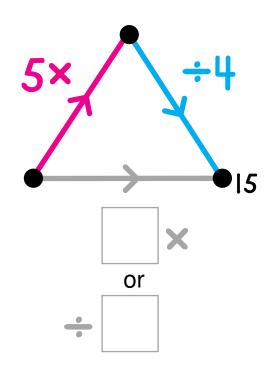


$$4 \div \frac{2}{3} =$$

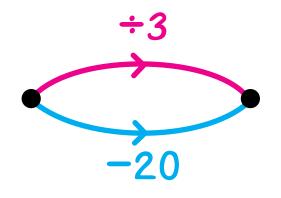


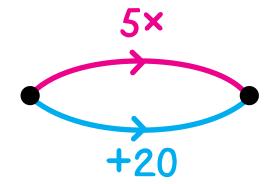

$$\left|\frac{1}{2} \div \frac{1}{6}\right| = \underline{\hspace{1cm}}$$

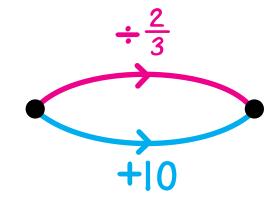


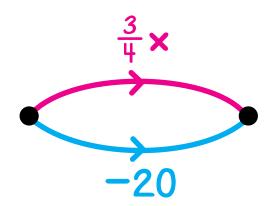

**

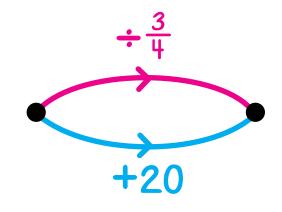
Label the dots and fill in the boxes for the arrows.

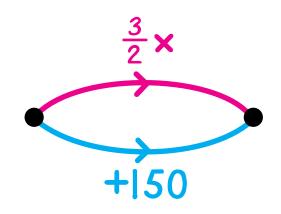









Label the dots.



Name_____

N9

*

One number in each number sentence is missing a decimal point. Put a decimal point in this number to make the calculation correct.

$$1.26 \times 26.98 = 339948$$

$$17.35 \times 0.5 = 8675$$

$$9.84 \times 6.95 = 68388$$

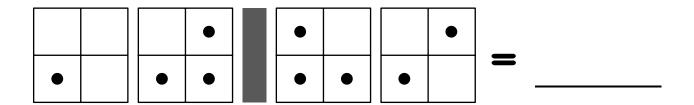
$$4274 \times 2.29 = 97.8746$$

$$19.638 \times 7207 = 1415.31066$$

$$9175 \times 7.6 = 69.73$$

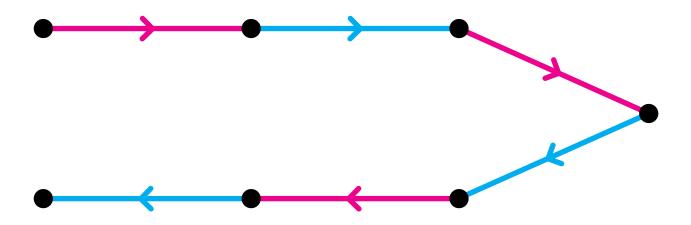
**

Write a decimal name for each fraction.

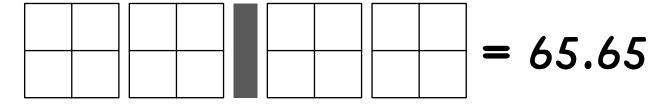

Example:
$$\frac{23}{10} = 23 \div 10 = 2.3$$

$$\frac{9}{10}$$
 =

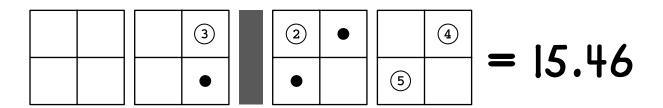
$$\frac{85}{10}$$
 =


Multiply. Show your work in the space provided.

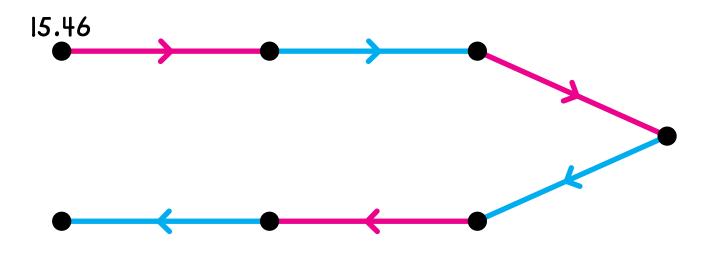
What number is on the Minicomputer?



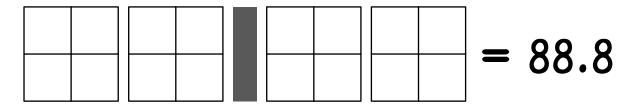
Move one checker at a time until 65.65 is on the Minicomputer. Record your moves with arrows. You may not need to use all the arrows.


Goal: 65.65

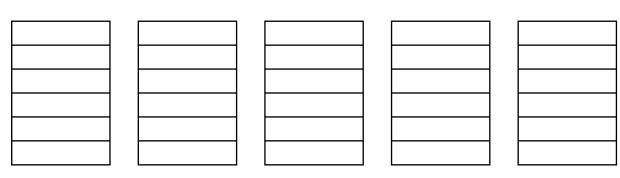
Show your final configuration of checkers for 65.65 on the Minicomputer.



N11	**
N11	*



Move one checker at a time until 88.8 is on the Minicomputer. Record your moves with arrows. You may not need to use all the arrows.


Goal: 88.8

Show your final configuration of checkers for 88.8 on the Minicomputer.

Shade $3\frac{1}{6}$ rectangles.

Find pairs of numbers whose sum is $3\frac{1}{6}$.

	-	3 1/6
0.5		
$\frac{2\frac{5}{6}}{1\frac{1}{2}}$		
$l\frac{1}{2}$		
	<u>2</u> 3	

Write at least five equivalent fractions for $\frac{4}{5}$.

Write at least five equivalent fractions for $\frac{3}{4}$.

Complete the calculations.

$$\frac{4}{5} + \frac{3}{4} =$$

$$\frac{4}{5} \times \frac{3}{4} =$$

$$\frac{4}{5} - \frac{3}{4} =$$

$$\frac{4}{5} \div \frac{3}{4} =$$

Draw as many red arrows as possible. Use your calculations from N15**.

is less than

$$\frac{4}{5} + \frac{3}{4}$$

$$\frac{4}{5} \times \frac{3}{4}$$

$$\frac{4}{5} - \frac{3}{4}$$

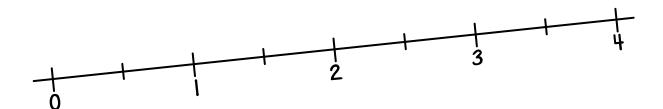
$$\frac{4}{5} \div \frac{3}{4}$$

Circle the least number and draw a box around the greatest number.

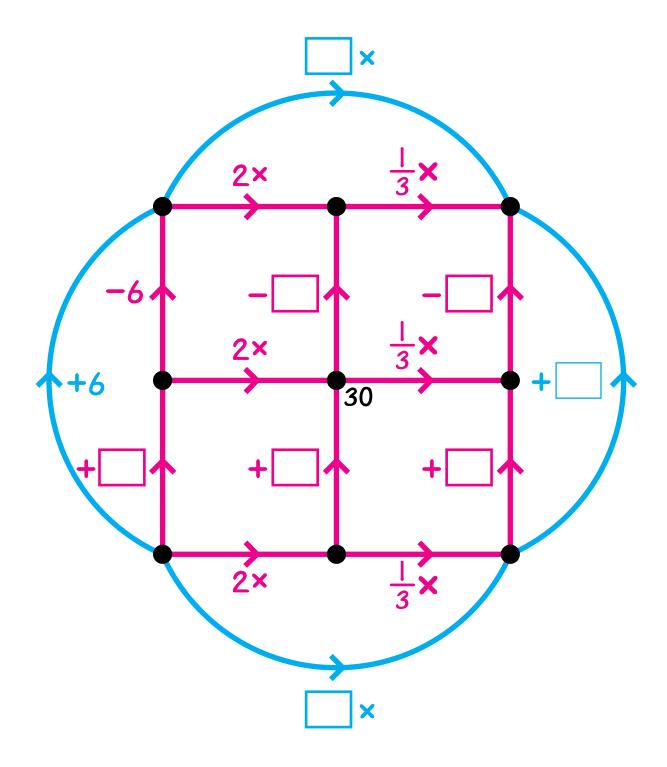
Name_____

N15 ***

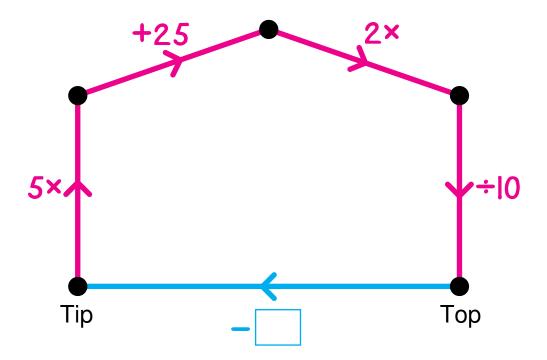
Complete the calculations. Show your work.


$$\frac{5}{3} + \frac{3}{2} =$$

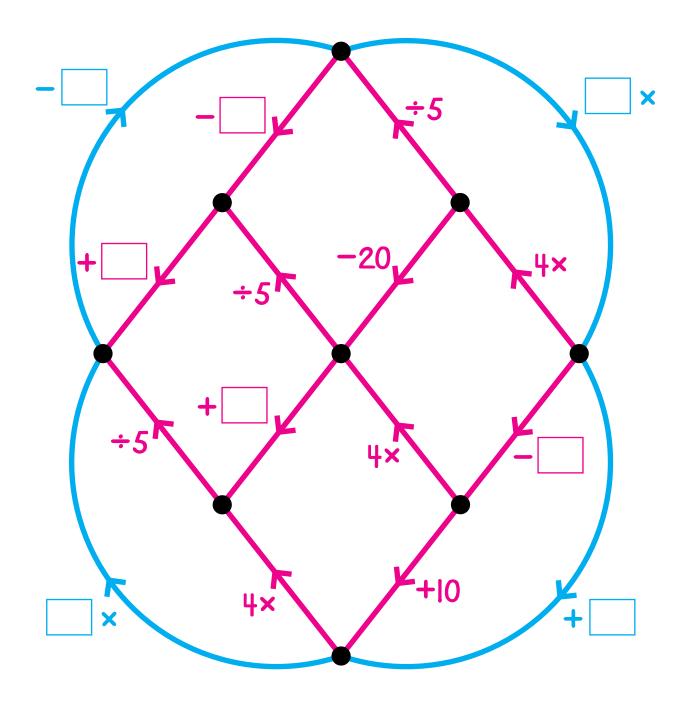
$$\frac{5}{3} - \frac{3}{2} =$$


$$\frac{5}{3} \times \frac{3}{2} =$$

$$\frac{5}{3} \div \frac{3}{2} =$$


For each number above, draw and label a dot to show its approximate location on this number line.

Label the dots and fill in the boxes for the arrows.



Fill in the box for the arrow and complete the table.

Tip	Тор
3	
	15
3	
0.4	
	5.2

Fill in the boxes for the arrows.

*

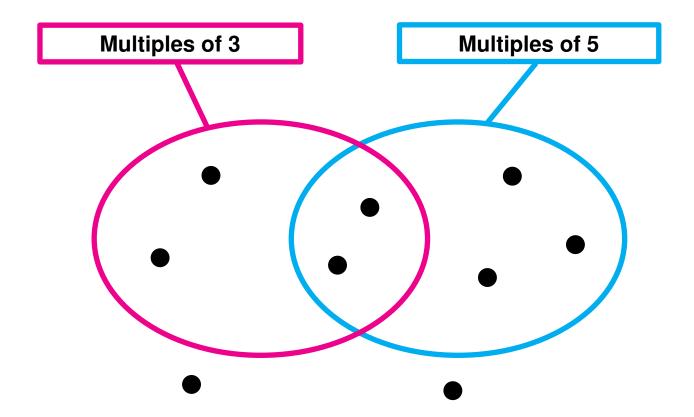
Put these numbers in the string picture.

5×7

3³

125

9


3×5

 5^2

2³

2×7

 $3^3 \times 5^2$

Name.	

Write 70 as a product of prime numbers (prime factorization). Then list several multiples and all the positive divisors of 70. Write each number in the lists as a product of primes.

Prime Factorization

70 = ____

Multiples of 70

Positive Divisors of 70

Draw all of the possible red and blue arrows between these dots.

is a multiple of

is a positive divisor of

$$2^4 \times 3^2 \times 5$$

$$2 \times 3^2$$

$$2^5 \times 3^3 \times 7$$

$$2^4 \times 3^2$$

$$\bullet$$
 3² × 5²

Locate these numbers in the string picture.

$$2^2 \times 5$$

$$2^4 \times 5$$

$$2^4 \times 5$$
 2×5^6

$$2 \times 3 \times 5$$

$$2^2 \times 5^2$$

$$2^6 \times 5$$

$$2^2 \times 5^3$$

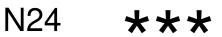
2⁴

Positive divisors of 2³ x 5⁴

Positive divisors of 2⁵ x 5²

Some problems on an Egyptian papyrus involved sharing loaves of bread among ten people. For each problem, write the solution as a unit fraction or as a sum of different unit fractions. Two problems are done for you.

	Number of people	Solution
2	10	$\frac{2}{10} = \frac{1}{5}$
3	10	$\frac{3}{10} = \frac{2}{10} + \frac{1}{10} = \frac{1}{5} + \frac{1}{10}$
4	10	"
5	10	<u>5</u> −
6	10	<u>6</u> −
7	10	7 =
8	10	<u>8</u> −
9	10	9 -


Name.	

Put each number on the abacus and fill in the boxes.

5	ino aba	0.0	Q		··
Decimal Writing		3	1		Base Three Writing
34					
		4	1		Base Four Writing
					2013
		5	1		Base Five Writing
100					
		6	1		Base Six Writing
					100
		7	1		Base Seven Writing
$135\frac{1}{7}$					

Name_				_	N24	**
Put each	number or	n the al	oacus	and f	ill in the bo	xes.
Decimal Writing			8	1		Base Ei Writin
						2063
			9	1		Base N Writin
1515 =						
			10	1		Base T Writin
						391.2
			11	1		Base Ele Writin
1343 II						
			12	1		Base Tw Writin
						391.2

Fill in the boxes showing the base for each calculation.

Calculation

Base

$$|5 + |2 = 30|$$

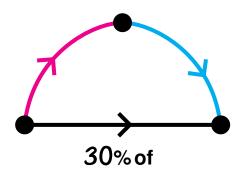
$$2 \times 2 = 10$$

$$22 + 20 = 112$$

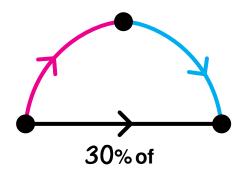
$$6 \times 8 = 48$$

$$100 + 10 = 110$$

$$3 \times 24 = 132$$


Name_____

N26 **★**


Complete.

$$10\% \text{ of } 84 =$$

You may use the arrow pictures to help solve these problems.

All 90 students in sixth grade at Hopkins School voted for their favorite movie. Space Cadets won with 30% of the votes. How many students voted for Space Cadets?

Sheila received 90 votes for student body president which is 30% of the total votes. How many students voted?

Lou has \$54.50 and wants to buy an anniversary present for his parents. He considers a silver tray costing \$48. However, Lou must remember that there is a 15% combined luxury and sales tax. How much tax is there on the \$48 silver tray?

Does Lou have enough money to buy the silver tray? _______

If yes, how much change will he receive? ______

If no, how much more money does he need? ______

Lou also considers a large gardenia plant costing \$50. There is only a $7\frac{1}{2}\%$ sales tax on the plant.

How much tax is there on the gardenia plant? _____

Does Lou have enough money to buy the gardenia plant? _______

If yes, how much change will he receive? ______

If no, how much more money does he need? ______

A

Spring Sale!
25% off all
winter wear.
Additional 10%
off on items
originally priced
\$50 or more.

B

Spring Sale! $\frac{1}{3} \text{ off}$ all winter clothing.
Make room

for Spring!

C

Spring Sale!
30% off
every winter
clothing item
in stock.

Three nearby stores are having winter clearance sales. Some items are available at all three stores; some only at two of the three stores. Fill in this table to show where to pay the least amount for individual items.

Item	Original Price	Available at	Best Discounted Price (at which store)	7½% Sales Tax	Best Total Cost
Sweater	\$44.40	A, B, & C			
Boots	\$39.75	A & C			
Coat	\$78	A, B, & C			
Jacket	\$62	A & B			
Suit	\$210.90	B & C			

Vame	

N26 ***	N26	*	*	*	*	
---------	-----	---	---	---	---	--

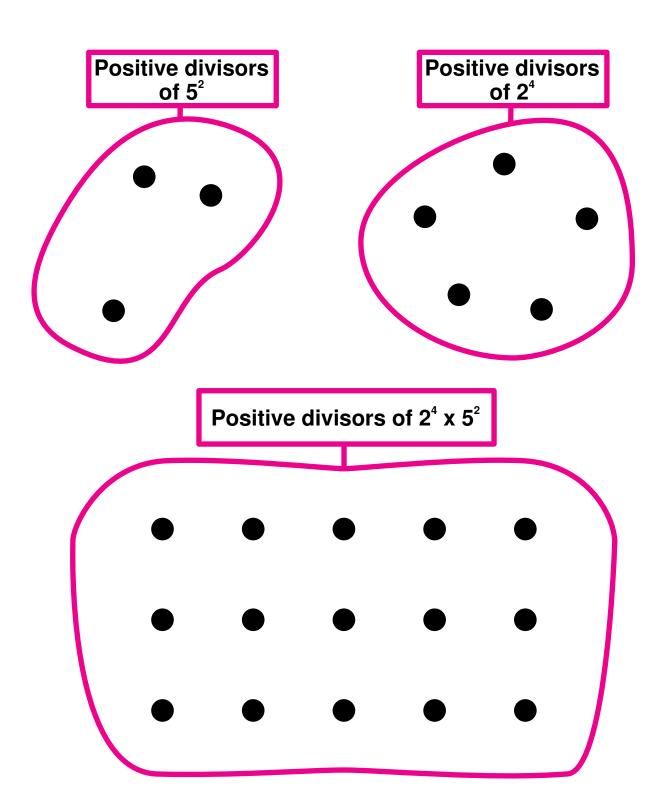
TIRE SALE!

All prices reduced 15%

- Ms. Thomas saved \$12 by buying two tires at the tire sale.
 What was the original price of the two tires?
 How much did Ms. Thomas pay for the tires?
- 2. You can buy a set of luggage for \$160 cash. If you buy it on the the installment plan, you must make 12 monthly payments of \$15.25 each. What is the total cost to buy the luggage on the installment plan? ______
 What percent over the cash price is the installment plan price? ______
- 3. Drew prepares a contest box with tickets like these:

SORRY, TRY AGAIN

WINNER

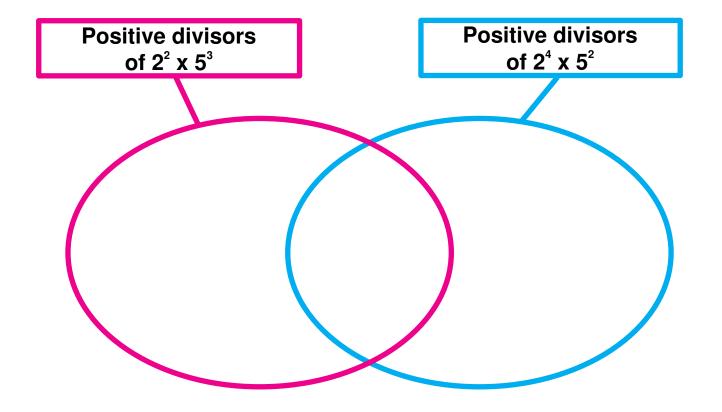

He puts 500 tickets in the box of which 1% are winner tickets.

Now Drew wants to take out some of the sorry, tickets so that 2% of the tickets will be winner tickets. How many sorry, tickets should he remove?

- 4. Suppose a customer buys an item from Store **C** (see Worksheet N26***). Would the total cost be different if the store:
 - discounted the original price first and then added sales tax, or
 - added sales tax to the original price and then discounted that amount?

*

Label the dots.

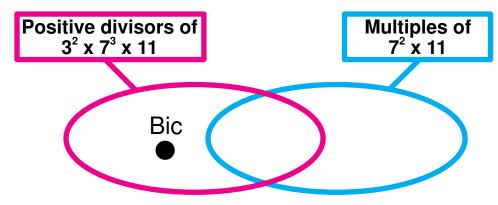

Name_____

N27

**

Put these numbers in the string picture.

1	2	$2^2 \times 5^2$
5	5 ³	2×5^3
2 ³	5 ⁴	$2^3 \times 5$
2 ⁵	2×7	$2^3 \times 5^3$



Name____

Bic is a secret number.

Clue 1

Bic could be _____

(Hint: There are between 15 and 20 possibilities for Bic.)

Clue 2

Bic could be _____, ____, or _____.

Clue 3

$$Bic \prod (5 \times 7^3) = 7^2$$

Who is Bic? _____

Name_____

N30

*

Complete.

 64	32	16	8	4	2	1	$\frac{1}{2}$	
								= 15

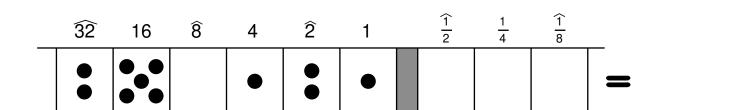
 64	32	16	8	4	2	1	$\frac{\widehat{1}}{2}$	
	•			•	•			=

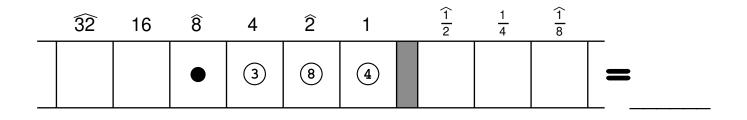
64	$\widehat{32}$	16	8	4	2	1	$\frac{1}{2}$	
								$=$ $\widehat{15}$

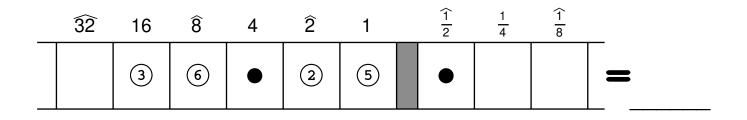
 64	32	16	8	4	2	1	$\frac{\widehat{1}}{2}$	
•	•				•			=

64 32 1	16 8	4 2	1 2	
				27 ½

 64	32	16	8	4	2	1	$\frac{\widehat{1}}{2}$	
	•		•		•			=

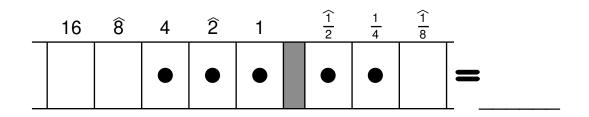

Name_____


N30


**

Complete.

 32	16	8	4	2	1	1 2	1/4	1 8


 32	16	8	4	2	1	$\frac{\widehat{1}}{2}$	<u>1</u>	$\frac{\widehat{1}}{8}$	
•	3	7	12	7	6				=

N30 ***

Complete using at most one checker on a board.

	1024	512	256	128	64	32	16	8	4	2	1	
_												= 400

	1 024	512	256	128	64	32	16	8	4	2	1	
_												= 1000

N30 ****

Find a Base $\widehat{2}$ name for $\frac{1}{5}$.

 1	$\frac{\widehat{1}}{2}$	<u>1</u>	$\frac{\widehat{1}}{8}$	<u>1</u> 16	$\frac{\widehat{1}}{32}$	<u>1</u> 64	<u>1</u> 128	<u>1</u> 256	<u>1</u> 512	1 1 024	

$$\frac{1}{5}$$
 = Base $\widehat{2}$

$$a * b = (a \div b) - 1$$

or
 $a * b = (a - b) \div b$

Complete.

$$| *6 = 0$$

$$\frac{2}{3} * \frac{2}{7} =$$

$$\frac{1}{5} * \frac{1}{4} = \square$$

$$a * b = (a \div b) - 1$$

or
 $a * b = (a - b) \div b$

Complete this table.

$$\square * \bigwedge = 6$$

35	
	3
7	
	10
3.5	
	<u>2</u> 7

$$a * b = (a \div b) - l$$

or
 $a * b = (a - b) \div b$

Complete.

$$\frac{3}{2} * \frac{1}{2} = \square$$

$$\frac{5}{4} * \frac{2}{3} =$$

$$\frac{2}{3} * \frac{5}{9} =$$

$$\frac{2}{5} * \square = 1$$

$$\frac{3}{5} * \square = \frac{4}{5}$$

N32 ****

$$a * b = (a \div b) + \frac{1}{2}$$

Complete.

$$\frac{2}{3} * \frac{1}{6} =$$

$$\frac{3}{8} * \frac{3}{5} =$$

$$\frac{2}{7} * \frac{3}{7} =$$

$$\frac{6}{5} * \boxed{ } = 2$$

N33

Put each number on the Minicomputer by adding exactly one of these weighted checkers:

(2)

(3)

(4)

(5)

6

(7)

(8)

= 324.8

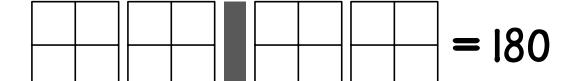
9

6

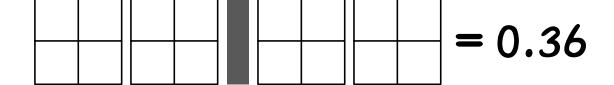
= 4.92

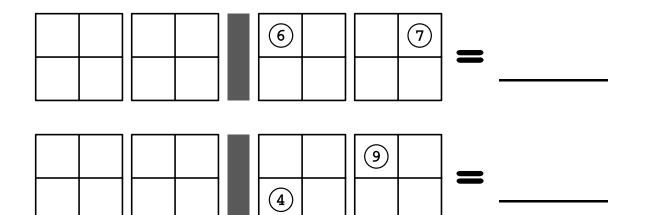
= 280.64

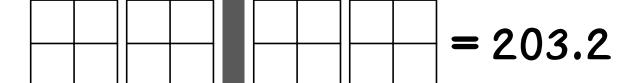
- I


= 6.24

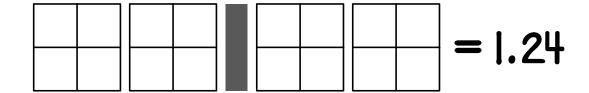
Put each number on the Minicomputer using exactly one of these checkers:


- 2
- 3
- 4
- 5
- 6
- 7
- (8)
- 9



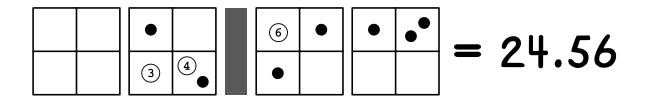


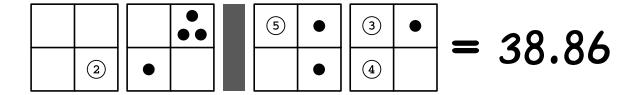
Complete.



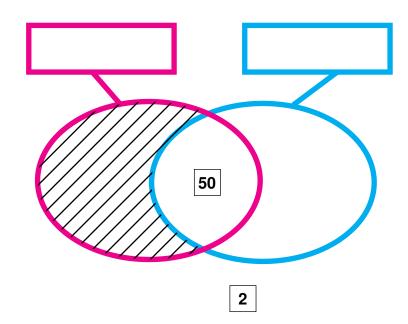
Put each number on the Minicomputer using exactly two of these weighted checkers:

- (2)
- (3)
- $\overline{(4)}$
- 5
- 6
- 7
- (8)
- (9)

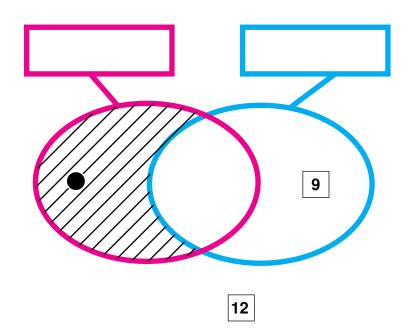



In each case the goal can be reached by moving exactly one checker from the square it is on to another square. Show a move that puts the goal on the Minicomputer.

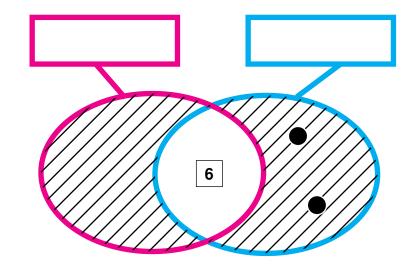
Goal: 60


Goal: 20

Goal: 62.62

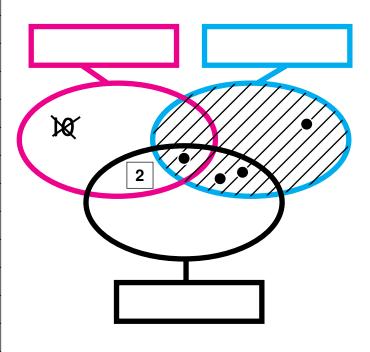

Use the clues in the picture to cross out labels the strings cannot have. The two strings have different labels. Label the strings.

RED	BLUE
MULTIPLES OF 2	MULTIPLES OF 2
MULTIPLES OF 3	MULTIPLES OF 3
MULTIPLES OF 4	MULTIPLES OF 4
MULTIPLES OF 5	MULTIPLES OF 5
MULTIPLES OF 10	MULTIPLES OF 10
ODD NUMBERS	ODD NUMBERS
POSITIVE PRIME NUMBERS	POSITIVE PRIME NUMBERS
GREATER THAN 50	GREATER THAN 50
LESS THAN 50	LESS THAN 50
GREATER THAN	GREATER THAN
LESS THAN	LESSTHAN 10
POSITIVE DIVISORS OF 12	POSITIVE DIVISORS OF 12
POSITIVE DIVISORS OF 18	POSITIVE DIVISORS OF 18
POSITIVE DIVISORS OF 20	POSITIVE DIVISORS OF 20
POSITIVE DIVISORS OF 24	POSITIVE DIVISORS OF 24
POSITIVE DIVISORS OF 27	POSITIVE DIVISORS OF 27


Use the clues in the picture to cross out labels the strings cannot have. Then label the strings.

RED	BLUE
MULTIPLES OF 2	MULTIPLES OF 2
MULTIPLES OF 3	MULTIPLES OF 3
MULTIPLES OF 4	MULTIPLES OF 4
MULTIPLES OF 5	MULTIPLES OF 5
MULTIPLES OF 10	MULTIPLES OF 10
ODD NUMBERS	ODD NUMBERS
POSITIVE	POSITIVE
PRIME NUMBERS	PRIME NUMBERS
GREATER THAN 50	GREATER THAN 50
LESS THAN 50	LESS THAN 50
GREATER THAN 10	GREATER THAN 10
LESS THAN 10	LESSTHAN 10
POSITIVE	POSITIVE
DIVISORS OF 12	DIVISORS OF 12
POSITIVE	POSITIVE
DIVISORS OF 18	DIVISORS OF 18
POSITIVE	POSITIVE
DIVISORS OF 20	DIVISORS OF 20
POSITIVE	POSITIVE
DIVISORS OF 24	DIVISORS OF 24
POSITIVE	POSITIVE
DIVISORS OF 27	DIVISORS OF 27

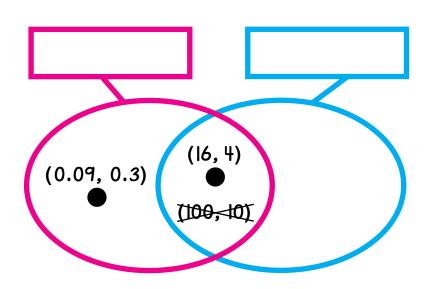
Use the clues in the picture to cross out labels the strings cannot have. Then label the strings.


RED	BLUE
MULTIPLES OF 2	MULTIPLES OF 2
MULTIPLES OF 3	MULTIPLES OF 3
MULTIPLES OF 4	MULTIPLES OF 4
MULTIPLES OF 5	MULTIPLES OF 5
MULTIPLES OF 10	MULTIPLES OF 10
ODD NUMBERS	ODD NUMBERS
POSITIVE	POSITIVE
PRIME NUMBERS	PRIME NUMBERS
GREATER THAN	GREATER THAN
50	50
LESS THAN	LESS THAN
50	50
GREATER THAN 10	GREATER THAN 10
LESS THAN	LESSTHAN
10	<u>10</u>
POSITIVE	POSITIVE
DIVISORS OF 12	DIVISORS OF 12
POSITIVE	POSITIVE
DIVISORS OF 18	DIVISORS OF 18
POSITIVE	POSITIVE
DIVISORS OF 20	DIVISORS OF 20
POSITIVE	POSITIVE
DIVISORS OF 24	DIVISORS OF 24
POSITIVE	POSITIVE
DIVISORS OF 27	DIVISORS OF 27

L9 ******

Use the clues in the picture to cross out labels the strings cannot have. Then label the strings.

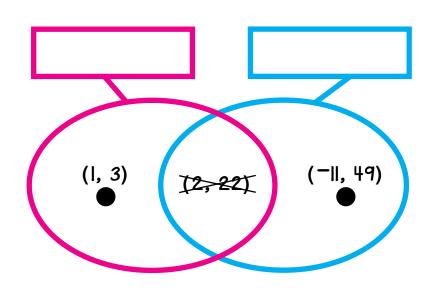
RED	BLUE	BLACK
MULTIPLES OF 2	MULTIPLES OF 2	MULTIPLES OF 2
MULTIPLES OF 3	MULTIPLES OF 3	MULTIPLES OF 3
MULTIPLES OF 4	MULTIPLES OF 4	MULTIPLES OF 4
MULTIPLES OF 5	MULTIPLES OF 5	MULTIPLES OF 5
MULTIPLES OF 10	MULTIPLES OF 10	MULTIPLES OF 10
ODD NUMBERS	ODD NUMBERS	ODD NUMBERS
POSITIVE PRIME NUMBERS	POSITIVE PRIME NUMBERS	POSITIVE PRIME NUMBERS
GREATER THAN 50	GREATER THAN 50	GREATER THAN 50
LESS THAN 50	LESS THAN 50	LESS THAN 50
GREATER THAN	GREATER THAN	GREATER THAN
LESS THAN	LESSTHAN 10	LESS THAN
POSITIVE DIVISORS OF 12	POSITIVE DIVISORS OF 12	POSITIVE DIVISORS OF 12
POSITIVE DIVISORS OF 18	POSITIVE DIVISORS OF 18	POSITIVE DIVISORS OF 18
POSITIVE DIVISORS OF 20	POSITIVE DIVISORS OF 20	POSITIVE DIVISORS OF 20
POSITIVE DIVISORS OF 24	POSITIVE DIVISORS OF 24	POSITIVE DIVISORS OF 24
POSITIVE DIVISORS OF 27	POSITIVE DIVISORS OF 27	POSITIVE DIVISORS OF 27



Hint: How many numbers belong in the blue string?

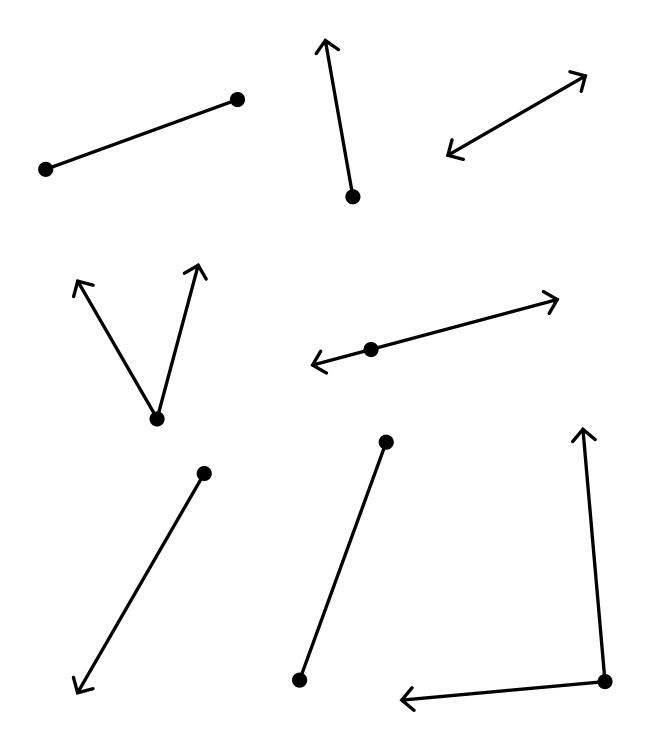
Use the clues in the picture to cross out labels the strings cannot have. Then label the strings.

The Relations Game

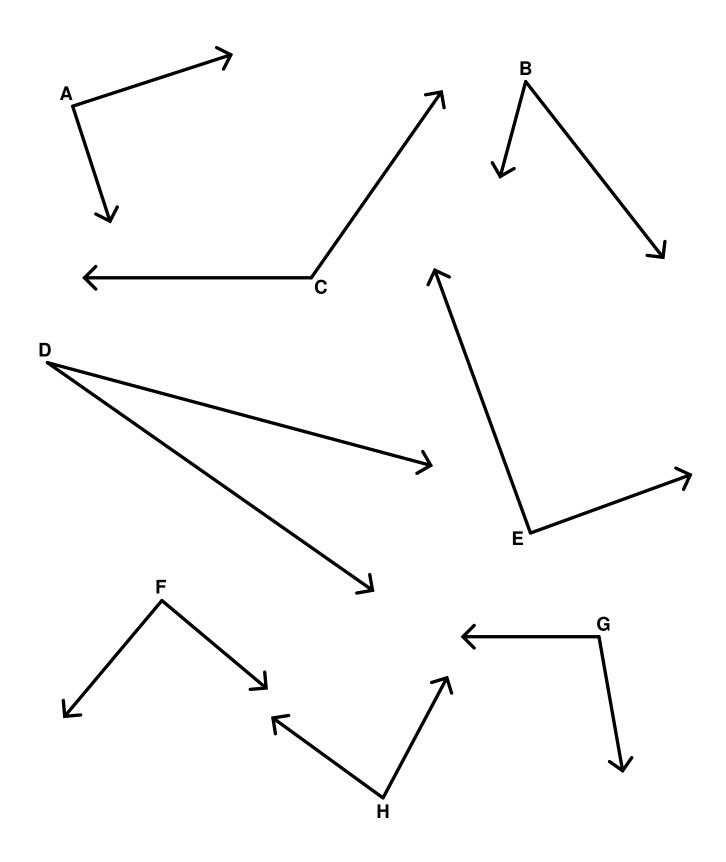

	Red	Blue
is less than		
is greater than		
is at least 20 less than		
is at least 20 greater than		
is a multiple of		
is a positive divisor of		
is the square of		
x10		
÷10		
x2		
÷2		
$x\frac{2}{3}$		
$\div \frac{2}{3}$		
+2=		
-2=		
+3=		
-3=		
+4=		
-4=		
+5=		
—5=		

Use the clues in the picture to cross out labels the strings cannot have. Then label the strings.

The Relations Game

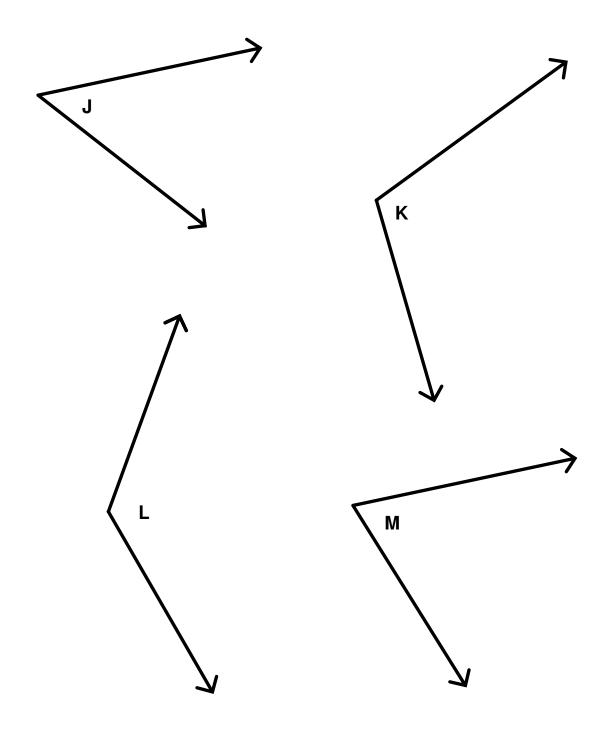

1110 11010110110	<i>-</i>	•
	Red	Blue
is less than		
is greater than		
is at least 20 less than		
is at least 20 greater than		
is a multiple of		
is a positive divisor of		
is the square of		
x10		
÷10		
x2		
÷2		
$x\frac{2}{3}$		
$\div \frac{2}{3}$		
+2=		
-2=		
+3=		
-3 =		
+4=		
-4=		
+5=		
- 5=		

G1(a)

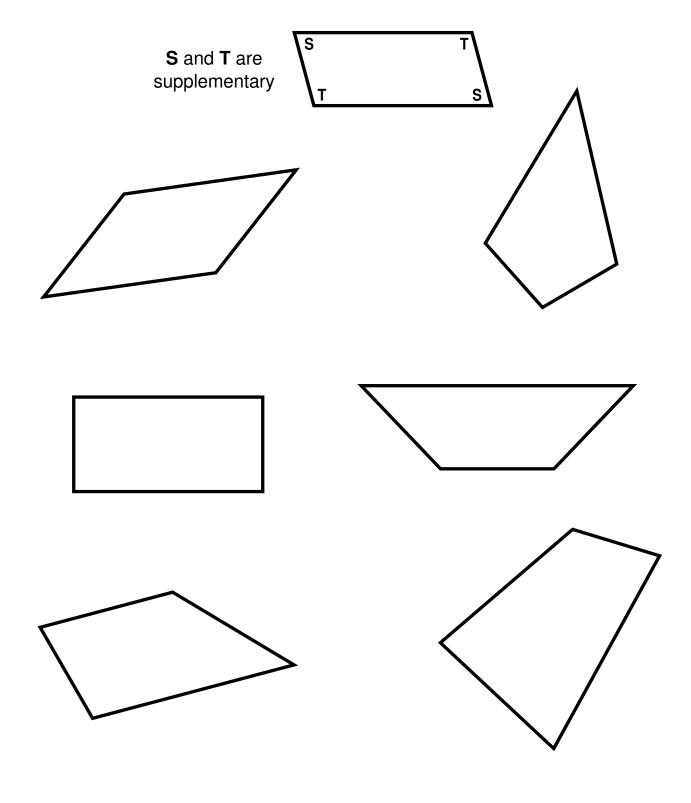

Identify each of the following:

Line, Line Segment, Ray, Angle, Vertex

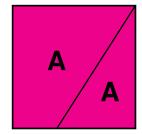
G1(b)

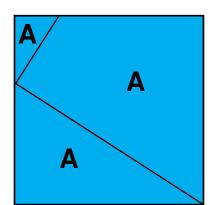

Which of these angles are right angles?

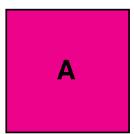
Name		
Name		


G3

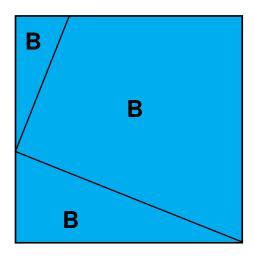
Draw as many different four-sided shapes as you can using these four angles. An angle congruent to each of **J**, **K**, **L**, and **M**, must be part of each shape. Label the angles of your shapes.




G6


For each quadrilateral, check all pairs of angles and indicate the supplementary pairs. One is done for you.

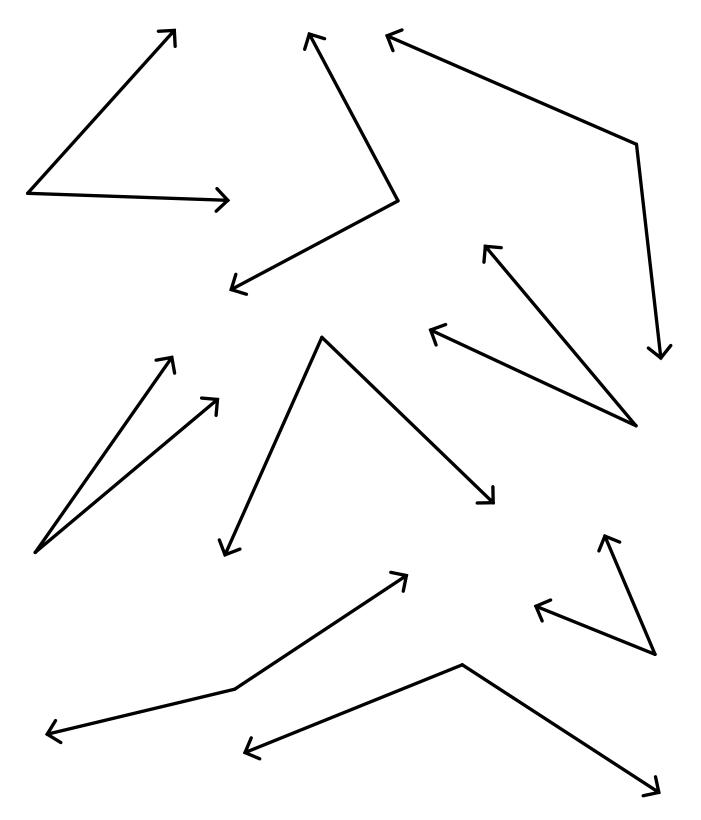
G10(a)



A

B /B

В


В

G10(b)

l

G11(a)

Use a protractor to measure these angles.

Name		
Name		

G11(b)

Use a straightedge and a protractor to construct angles with the given measures.

30º

45º

85°

II5º

60⁰

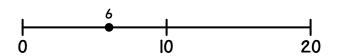
167º

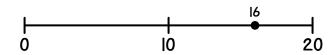
22°

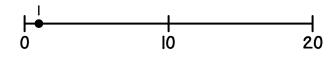
90º

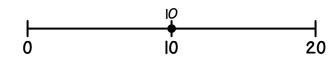
75^º

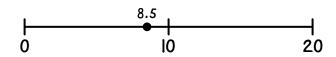
Name	G13(a)
A	В
c	D
E	,

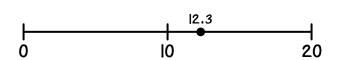

Use each pair of segments to draw as many triangles as you can. In a triangle, use each segment of the pair at least once. Mark each triangle with the letter of the pair of segments used to construct it.

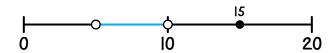

Name	G13(b)
A	B
c	D

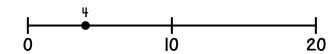

Use each set of segments to draw as many triangles as you can. Each segment must be used in a triangle. Mark each triangle with the letter of the set of segments used to construct it.

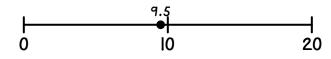


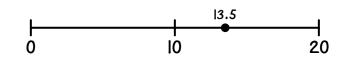

In each picture, one breaking point is given. Find, if possible, a second breaking point that gives a triangle.

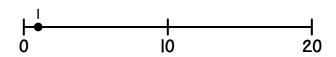


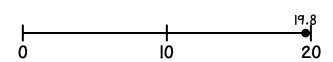


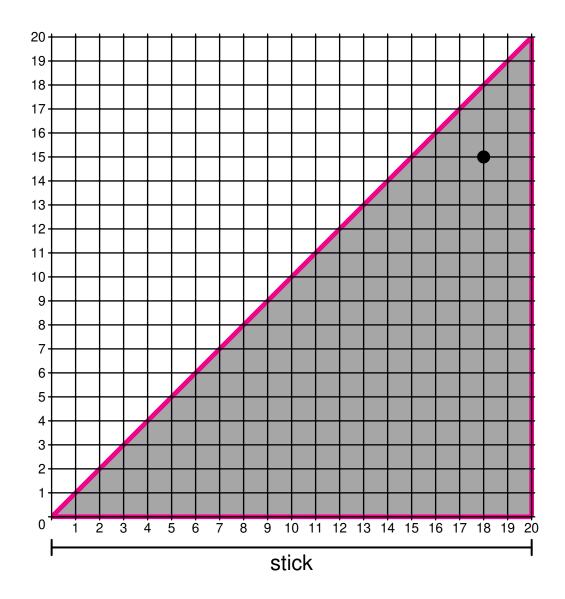


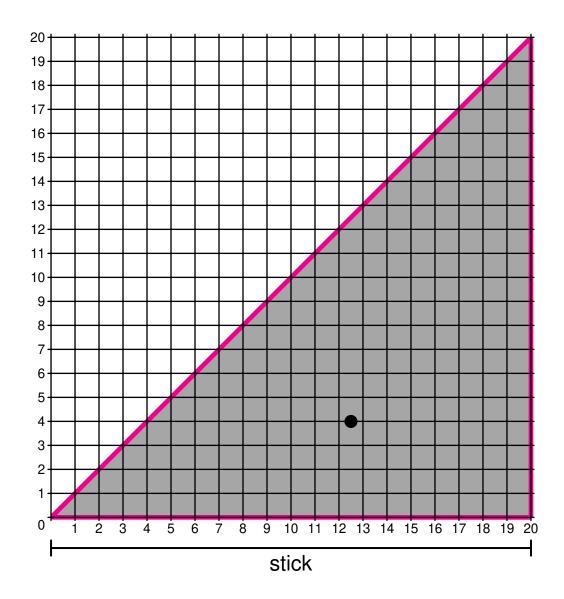


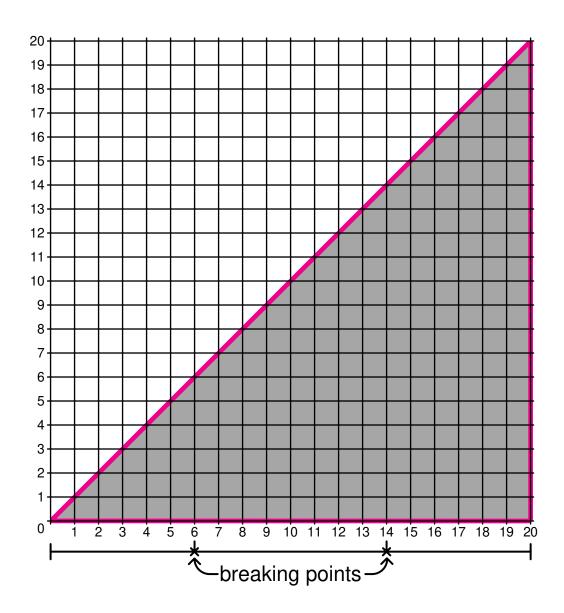


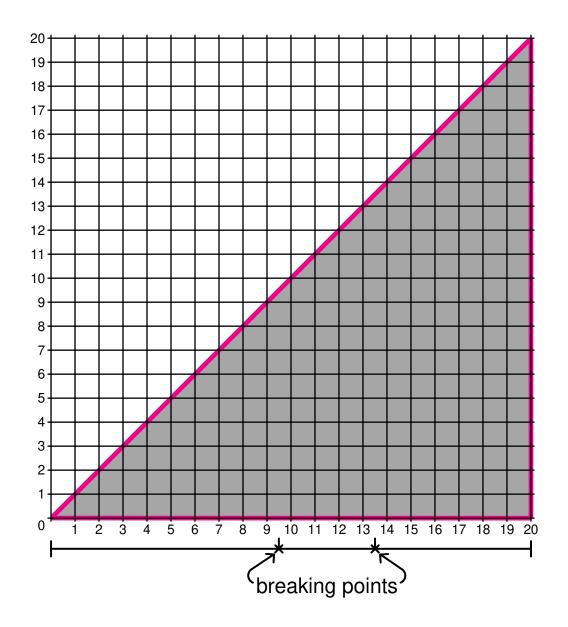

In each picture, one breaking point is given. Color blue all possible second points that give a triangle. An example is done for you.

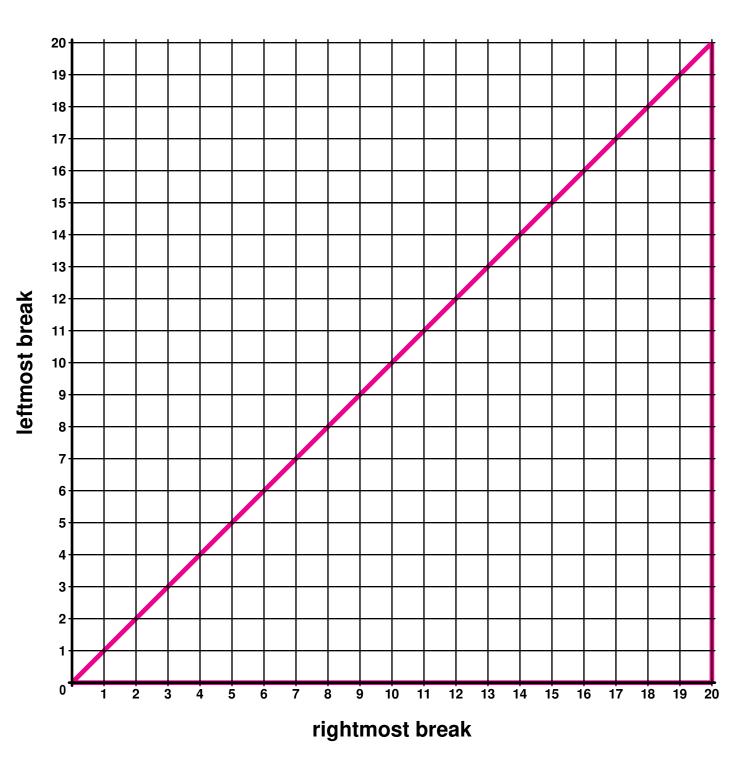




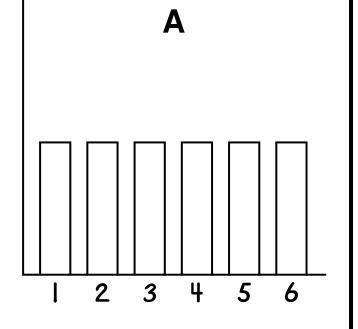


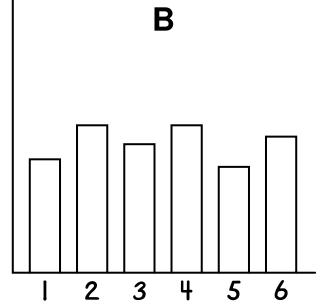

Find the breaking points on the stick that correspond to the point in the honey triangle that is marked with a dot.

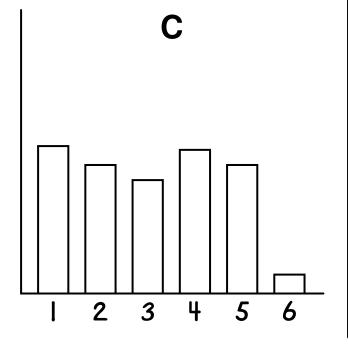

Find the breaking points on the stick that correspond to the point in the honey triangle marked with a dot.

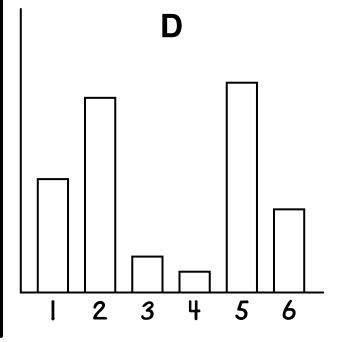

Find the point in the honey triangle that corresponds to the breaking points on the stick that are indicated.

Find the point in the honey triangle that corresponds to the breaking points on the stick that are indicated.




G16




P1(a)

Rolling a Die

. .		
Name.		

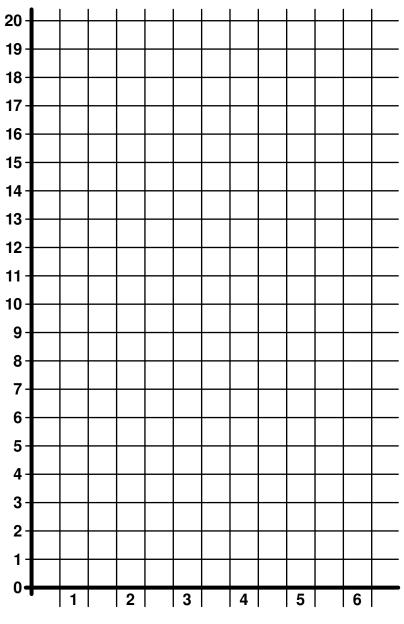
P1(b)

Record in this table the results of each simulation with the die.

Number on Die

	l	2	3	4	5	6	Number of Rolls				
1st Trial											
2nd Trial											
3rd Trial											
4th Trial											
5th Trial											
6th Trial											
T o t a l											

Name		
ivanie		


Draw a bar graph of the class data; how many trials of each length (number of rolls).

Number of Rolls

	-	<u>+</u> 1	y d	۱ د	4	א כ	ר ת	7 0	γο (ρ -	<u> </u>	11 1	3 2	<u>.</u>	1 7	1 0	16	17	<u>,</u>	10	ა ე
6																					
8 2 9																					
8																					
9																					
10																					
11																					
12																					
13																					
14																					
15																					
16																					
17																					
18																					
19																					
20																					
21																					
22																					
23																					
24																					
25																					
26																					
27																					
28																					
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31																					ſ
30																					
31																					
			I T					ı		1							I	I			Г

Name.		
inaille.		

Draw a bar graph of the number of times each number on the die occurred during your simulations.

Number on Die

Name_		
Mame		
INGILIC		

P2(a)	
-------	--

Archery Game 1

Namaa: A	D
Names: A	D

Archer **A** hits the target if **A** rolls 4 or 5 or 6.

Archer **B** hits the target if **B** rolls 4 or 5 or 6.

Archer A goes first in every game.

The first person to hit the target wins.

Simulate this archery game ten times. Record the winner of each game.

Game	Winner (A or B)
1	
2	
3	
4	
5	

Game	Winner (A or B)
6	
7	
8	
9	
10	

How	many	games	did	A	win?
11			al! al	D	

How many games did **B** win?_____

What fraction of the games did A win?_____

Name____

P2(b)

Archery Game 2

Archer **A** hits the target one-third of the time: $p(A \text{ hits}) = \frac{1}{3}$.

Archer **B** hits the target one-half of the time: $p(\mathbf{B} \text{ hits}) = \frac{1}{2}$.

Archer A always shoots first.

The first person to hit the target wins.

Use this square to determine each player's probability of winning.

A

B

Complete.

p (**A** wins) = _____

p (**B** wins) = _____

Name_		
Naiie .		

Archery Game 2

N I = A	
Mamae: M	K
Names: A	

Archer **A** hits the target if **A** rolls 5 or 6.

Archer **B** hits the target if **B** rolls 4 or 5 or 6.

Archer A goes first in every game.

The first person to hit the target wins.

Simulate this archery game ten times. Record the winner of each game.

Game	Winner (A or B)
I	
2	
3	
4	
5	

Game	Winner (A or B)
6	
7	
8	
9	
10	

How r	nanv	games	did A	win?	
_	,	9			

How many games did **B** win?_____

What fraction of the games did A win?_____

Archer **C** hits the target one-fourth of the time: $p(\mathbf{C} \text{ hits}) = \frac{1}{4}$.

Archer **D** hits the target one-third of the time: $p(\mathbf{D} \text{ hits}) = \frac{1}{3}$.

Archer C always shoots first.

The first person to hit the target wins.

Use this square to determine each player's probability of winning this archery game.

p (**C** wins) = _____ p (**D** wins) = _____

Archer **C** hits the target one-half of the time: $p(C \text{ hits}) = \frac{1}{2}$.

Archer **D** hits the target two-thirds of the time: $p(\mathbf{D} \text{ hits}) = \frac{2}{3}$.

Archer C always shoots first.

The first person to hit the target wins.

Use this square to determine each player's probability of winning this archery game.

p (**C** wins) = _____ p (**D** wins) = ____

Name.	
naille.	

Each person tosses the dime ten times and tosses the quarter ten times. Count and record the number of wins. For a win the coin must land completely inside a square of the grid.

Name	Coin	Number of tosses	Number of wins
1.	Dime	10	
2.	Dime	10	
1.	Quarter	10	
2.	Quart er	10	

Of the 20 (total) tosses of the dime, how many were wins?_____

Of the 20 (total) tosses of the quarter, how many were wins? _____

Name_____

P3(b)

Dime

Side of interior square: ____ cm

Side of grid square: ____ cm

Area of interior square: ____ cm²

Area of grid square: ____ cm²

Probability of winning = ____ ≈ ___(fraction) = ____ (decimal)

Quarter

Side of interior square: ____ cm

Side of grid square: ____ cm

Area of interior square: ____ cm²

Area of grid square: ____ cm²

Probability of winning = ____ ≈ ___(fraction)

Name_____

P4 *

Complete.

$$5.862 \, \odot \, 0.01 =$$

**

Fill in the boxes.

City	Population	Annual Population Growth Rate per 1000 People	Annual Net Gain
Hondo, Texas	5 000	9.8	
Harrisburg, Pennsylvania	79 697	-14.7	
Colo. Springs, Colorado	281,140	30.7	
Chicago, Illinois	2,783,726	-7.4	
Sunnyside, Oregon	6 208		54
Bogulusa, Louisiana	21 823		-301

A city with a population of 32 000 on January 1, 1994 has a population growth rate per 1000 people of 13.6 in 1994 and 12.9 in 1995. What is that city's population on:

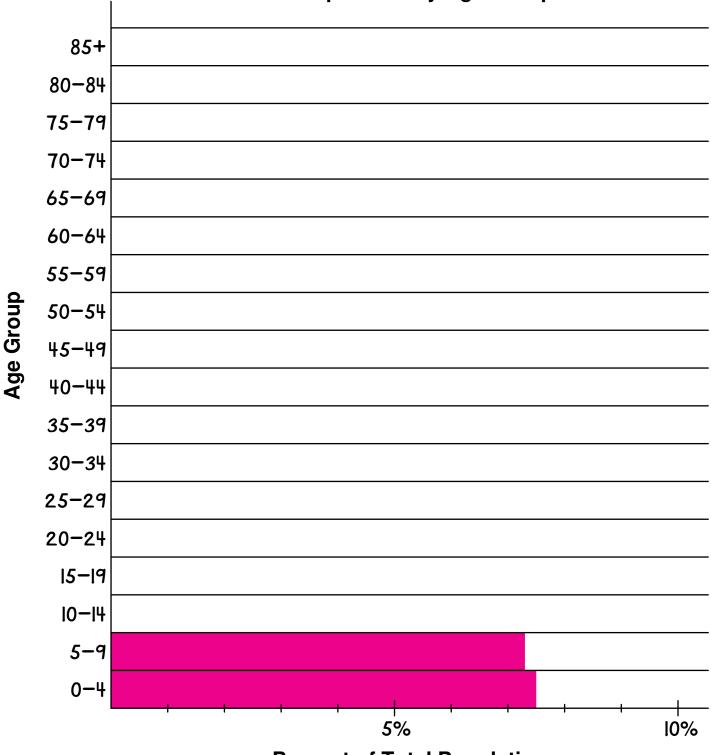
January 1, 1995? _____

January 1, 1996? _____

U.S. Population by Age Group — 1990

Percent of Total Population
7.5
7.3
6.9
7.1
7.7
8.6
8.8
8.0
7.1
5.5
4.5
4.2
4.3
4.1
3.2
2.4
1.6
1.2

1990 U.S. Population: 248,718,000


Name_____

P6

*

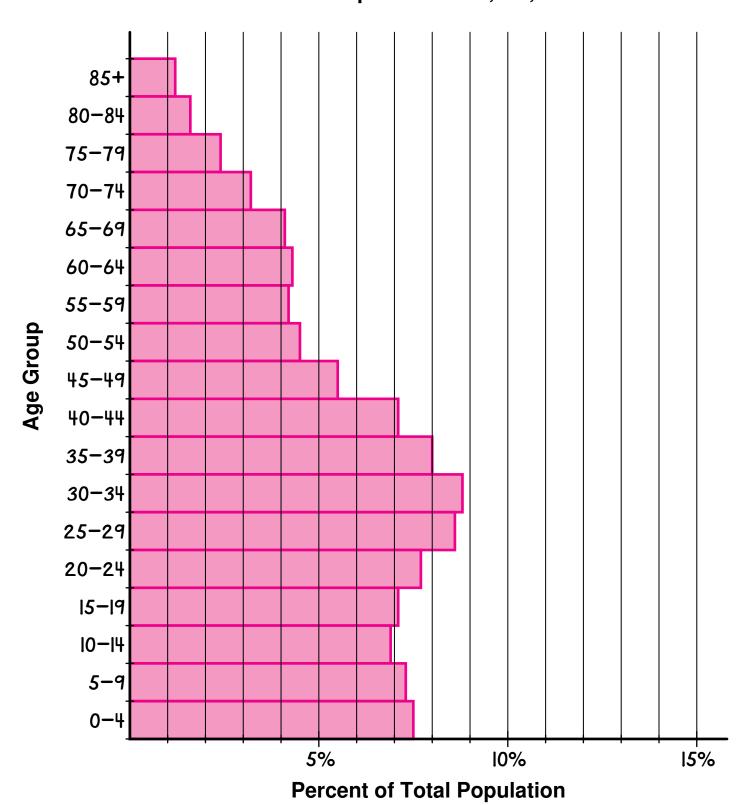
Complete the graph.

U.S. Population by Age Group

**

- 1. What percent of Americans in 1990 were 15–19 years old? ______

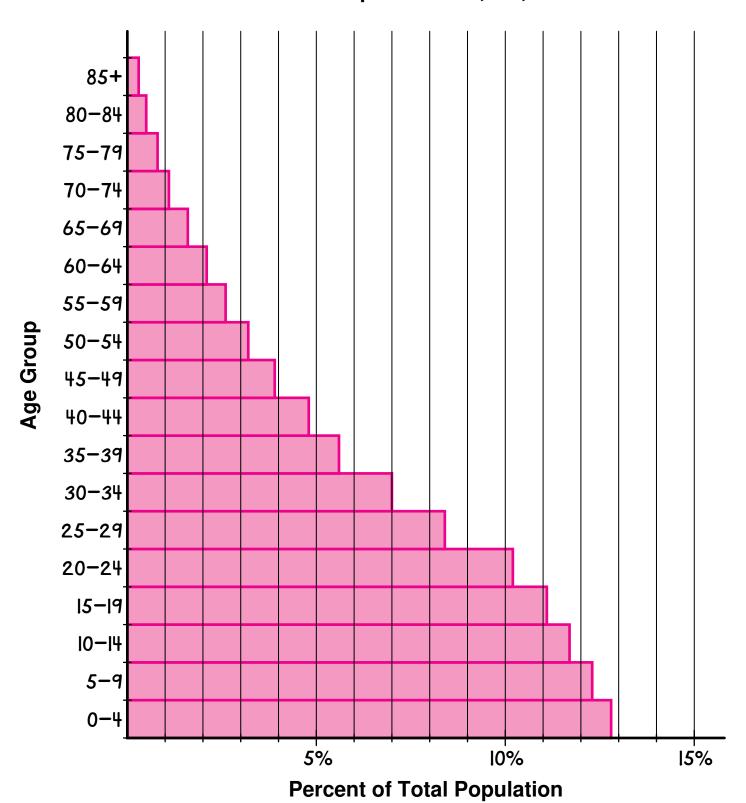
 How many Americans in 1990 were 15–19 years old? ______
- 2. What percent of Americans in 1990 were 65 years or older? ______


 How many Americans in 1990 were 65 years old or older? ______

 What percent of Americans were less than 65 years old in 1990? ______
- 4. What percent of Americans were 5–19 years old in 1990? ______
 How many Americans were 5–19 years old in 1990? _____
 In 1990, 88% of Americans 5–19 years old were in elementary or secondary schools. How many students is that? _____

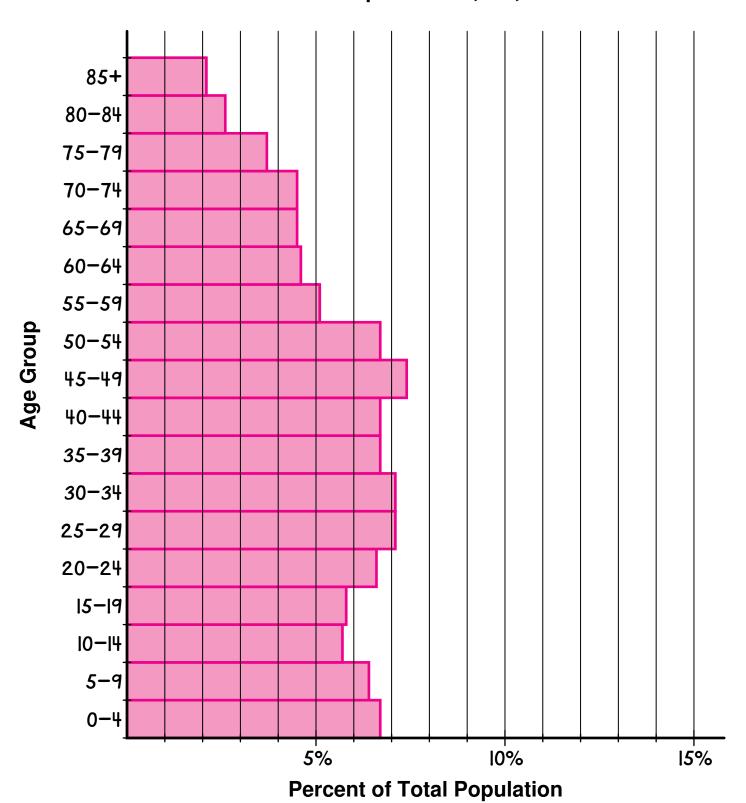
Name.		
ivallie.		

P7(a)


Population Pyramid for the United States — 1990 Total Population: 248,718,000

Name	
------	--

P7(b)


Population Pyramid for Mexico — 1990 Total Population: 85,121,000

Name

P7(c)

Population Pyramid for Sweden — 1990 Total Population: 8,559,000

*

1.	What percent of Americans are less than 20 years old? What percent of Mexicans are less than 20 years old? What percent of Swedes are less than 20 years old? Use this information to explain at least one problem that Mexico ma face that Sweden and the United States probably will not face.			
	How many Americans are less than 20 years old? How many Mexicans are less than 20 years old? How many Swedes are less than 20 years old?			
2.	What percent of Americans are 65 years old or older? What percent of Mexicans are 65 years old or older? What percent of Swedes are 65 years old or older? Use this information to describe at least one possible difference between life in Mexico and life in Sweden and in the United States.			

How many Americans are 65 years old or older? _____

How many Mexicans are 65 years old or older? _____

How many Swedes are 65 years old or older? _____

Name.		
ivallic.		

**

1. The median age of a population is the age that $\frac{1}{2}$ or 50% of the people are younger than. In class you found that the median age in the United States is about 32 years. Calculate the median age for:

Sweden ______

2. About 3.4% of all Americans live in New York City. What is the population of New York City? _____

About 23.2% of all Mexicans live in Mexico City. What is the population of Mexico City? _____

3. It is predicted that in the year 2010 the population of New York City will be 8,600,000 and that 2.9% of all Americans will live in New York City. If these predictions are true, what will the population of the United States be in the year 2010?

It is predicted that in the year 2010 the population of Mexico City will be 35,000,000 and that 29% of all Mexicans will live in Mexico City. If these predictions are true, what will the population of Mexico be in the year 2010?