
 Department of Systems Engineering and Engineering Management, Stevens Institute of Technology

© 2005 Stevens Institute of Technology, ISBN 0-615-12843-2

PROCEEDINGS CSER 2005, March 23-25, Hoboken, NJ, USA

Systems Engineering Experience with UML on a
Complex System

Laurence Doyle
 ITT Industries

100 Kingsland Rd. Clifton, NJ
ldoyle1@stevens.edu

Michael Pennotti, Ph.D.
Stevens Institute of Technology

Castle Point Station, Hoboken, NJ
mpennott@stevens.edu

Abstract

Experience using UML for systems
engineering on a complex system is described.
The system was an experimental situation
awareness system for small military units such
as a hostage rescue mission. This experience
provides insight into the use of process-
oriented and object-oriented models. Real
projects that experiment with methodology are
an important source of information that cannot
be duplicated on a contrived problem.

Most of the functional requirements in this
system involved software but there was also
unique hardware. Use case specifications were
derived directly from a very high level
specification from the customer without any
intervening artifact. Subsystem interaction
diagrams were developed from the use case
specifications. The use of UML as a systems
design tool had the advantage that it greatly
facilitated the transition into software
development.

While this approach was largely
successful, there were some cases when the
object-oriented model did not fit the problem.
In addition to their role in task automation,
models provide a mental representation that
helps us solve engineering problems. Object-
oriented and process-oriented models provide
two different representations. Because this
project attempted to apply an object-oriented
model so broadly, it was a de facto experiment
in the use of such models. An examination of
the cases where a process-oriented model fit

better than an object-oriented model provides
insight into the differences between these two
views. The experience on this project supports
idea that each view is a better cognitive fit to a
different set of problems.

Introduction

The project described in this paper
employed an object-oriented UML model for
a large part of the systems engineering as well
as the software development. This project
began in 1999 and predated much of the
recent work to integrate systems and software
engineering models. The experience on this
project is none the less relevant to the question
of how to best use object-oriented and
process-oriented models in systems
engineering.

Software and systems engineering have
been pursuing divergent methodologies for
modelling and design. While object-oriented
models are now the dominant approach to
software engineering, systems engineering has
used process-oriented, sometimes called
functional or structured, models. Process-
oriented and object-oriented models have
much in common. They both develop
requirements from use cases. When
augmented by sufficient behavioural
modelling, both can lead to executable models
of the system. Both provide representations
used when architecting a system.

It is increasingly common for much, if not
most, of the functional requirements of a

198

system to be implemented in software. The
different models cause significant problems
such as inefficient communication, inability to
share data, difficulty in tracing requirements,
and duplicate work. In addition to their use in
automated tools, these models provide mental
representations or understanding a system,
solving problems and creating new systems.

Systems engineering has historically used
models with a process-oriented view such as
functional flow and IDEF0 diagrams. More
recently, (Douglas 00), (Lykins00), and
(Cantor 01) have described adaptations of
object-oriented methods to systems
engineering. However, the use of object-
oriented models for systems engineering is a
recent development and there is relatively
little practical experience.

Because the project described here
attempted to apply object-oriented beyond the
traditional boundaries of software engineering,
the project was a de facto experiment in the
use of such models. Real projects that
experiment with methodology are an
important source of information than cannot
be duplicated on a contrived problem. In this
project, an integrated UML model included
most of the functional requirements of the
system. This was largely successful. However,
there were some key exceptions that provide
some insight into the nature of models. In
these cases, the object-oriented representation
of the system did not seem to fit the problem.

Previous Work

Improved integration of systems and
software engineering is subject of much
ongoing work. The Software Productivity
Consortium has developed the Integrated
Systems and Software Engineering Process
(ISSEP), “a process model that provides a
high-level abstraction of the complex process
for engineering software-intensive systems”.
Based on ISSEP, (Lykins 02) describes a
project called Object-Oriented System
Engineering Process (OOSEP) to extend UML
for systems engineering. INCOSE and OMG

are currently developing and extension of
UML for systems engineering called SysML.

When UML was initially considering for
systems engineering, several issues were
raised. While issues specifically related to
UML have been addressed in UML 2.0 and
SysML, some issues suggested cognitive
problems with the object-oriented models in
the systems engineering context:
• (Skipper 02) states that object-oriented

diagrams are hard to understand by non-
software engineers

• (Steiner 02) states there is no standard
mechanism for requirements analysis,
allocation, and traceability.

• (Cocks 99) and (Steiner02) state that there
is no standard approach to modelling the
problem domain separate from solution
domain.

• (Oliver 02) explains how the concept of
inheritance violates physical reality
These issues seem to be deeper than just

the constructs of UML. While UML 2.0 and
SysML now provide the functional models,
we are still faced with the question of whether
to use an object-oriented or functional model
in any given situation. A major consideration
in this is cognitive fit. Cognitive fit exists
when the problem representation and the
problem itself match. Research by (Vessey
91), (Sinha 92) and others supports the idea
that problem solving is enhanced when there
is good cognitive fit between the problem and
the representation of the problem.

Some researchers have performed
controlled experiments to evaluate the object-
oriented and process-oriented views of
software. (Argawal 99) performed an
experiment to evaluate cognitive fit in
requirements modelling in both process and
object oriented methodologies. Cognitive fit
exists when the problem representation and
the problem itself match. “As cognitive-fit
theory predicted, superior performance was
observed when the process-oriented tool was
applied to the process-oriented task. For the
object-oriented task, however, the
performance effects of cognitive fit require

PROCEEDINGS CSER 2005, March 23-25, Hoboken, NJ, USA 199

further investigation since there was no
difference in subject performance across the
two tools.” (Morris 96) evaluated both object-
oriented and process-oriented methods as
perceived by both experts and novices. They
did not find that object-oriented methods
improved either subjective mental workload or
time to completion. But they did find that
novices were more satisfied with their work.
(Davey 94) evaluated the impressions of
moderately experienced procedural
programmers who were learning object-
oriented programming. They found that
almost all the test subjects preferred the
object-oriented view. (Argawal 96)
performed an empirical study of people's
comprehension of both object-oriented and
process-oriented (i.e. structured) models of a
system. They found that for most complex
questions, the process-oriented model was
easier to understand. But they also found that,
when addressing a particular question, the
model that had the better cognitive fit to the
question was better. (Corritore 00) found that
object-oriented programmers looked at fewer
files in order to modify a program.

The researchers cited above studied teams
of students performing tasks such as
requirements analysis and design using both
object-oriented and process-oriented methods.
None of the studies provided unequivocal
support for either view over the other. Most of
the researchers noted difficulties with their
experiments and expressed the need for the
controlled studies to be augmented with
experience from actual projects. The
experience recounted here is intended to serve
that purpose.

(Doyle 04) investigated cognitive fit in
object-oriented and process-oriented systems
engineering models by closely examining the
low level structures. The two models reverse
what is in the foreground and background as
shown in the models of a function at the top
and bottom of Figure 1.

In the process-oriented diagram at the top

of Figure 1, the function, like the vase, is the
foreground. In the object-oriented diagram at
the bottom of Figure 1, the function, like the
space between the faces, is where the two
foreground objects interact. In reversing
foreground and background, these two views

also reverse what is persistent and transient,
and what is concrete and abstract.

Figure 1. Object and Process Oriented
models reverse foreground and

background.
Cognitive science research cited by (Doyle

04) has established a close connection
between analogies as mental representations
and our effectiveness at problem solving.
Mental representations are based on a
particular metaphor. Metaphors provide good
cognitive fit when three conditions are
present:
• The analogy provides implied constraints

that are true for the actual problem.

PROCEEDINGS CSER 2005, March 23-25, Hoboken, NJ, USA 200

• There is a consistent mapping between the
metaphor and the problem

• The metaphor provides a way to chunk the
problem into segments compatible with our
short term memory.
(Lewis 94) performed research supporting

the first two conditions. (Simon 73) studied
the relationship of short-term memory and
problem solving by studying chess players. He
found that expert players look at the board in
“chunks” of five to seven possibilities. For
each chunk, they would carve out five to
seven additional chunks. This mental process
has become known as “chunking”.
(Wiedenbeck 93) reached similar conclusions
in a study of how expert and novice
programmers understand programs.

(Doyle 04) noticed that metaphors used by
various authors are different depending upon
whether they were writing about object-
oriented or process-oriented models. When
writing about process-oriented models,
authors tended to use artifact metaphors.
When writing about object-oriented models,
authors tended to use natural kind metaphors.
(Pinker 97), (Gelman 84) and others found
that different metaphors provide a different set
of implied constraints. By examining how
these implied constraints relate to systems and
software engineering problems, (Doyle 04)
concludes that object oriented methods are a
better cognitive fit for the problems of
robustness to change, reuse, and the
comprehensibility of components. Process-
oriented methods provide a better cognitive fit
for the problems of comprehensibility of the
overall system, requirements flow down, and
an implementation independent view of the
system.

System Description

The system addressed in this paper was an
experimental situation awareness and
communications system for small military
units such as a hostage rescue mission. For
demonstration purposes, approximately fifty
man-pack units were built. Each unit included

multi-sensor geo-location, push-to-talk voice
and a heads-up display showing friendly and
unfriendly positions superimposed on aerial
photographs. A self-organizing peer-to-peer
radio network provided communications for
both voice and data. The radio also performed
ranging to support indoor navigation where
GPS is not available. This system was
developed over a three-year period and
culminated with a successful field
demonstration. The physical architecture of an
individual unit is shown in Figure 2.

Figure 2. Physical Architecture of an
individual unit.

A simplified UML use case diagram for
the software is shown in Figure 2. Although
the actual system included many additional
use cases, those shown are sufficient for this
discussion.

Figure 3. Use case diagram

Note that the navigation sensors and radio
links are considered to be outside the system
in this view. Although these are actually part
of the system in the larger sense, no attempt
was made to represent these components
within the UML model. Since these
subsystems had their own specifications, they
were considered to be outside the system for
the purposes of the UML model. Most, but not
all, of the functional requirements were

PROCEEDINGS CSER 2005, March 23-25, Hoboken, NJ, USA 201

implemented in software. Non-functional
requirements and specifications for the
hardware were treated separately.

Object-Oriented Systems
Engineering

At the beginning of the project, some of
the systems engineers, in addition to the
software team, received training in Rational's
object-oriented process. This process
encompasses the complete development
process including requirements specification,
requirements analysis, systems design,
software design, coding and test. This paper
focuses on the first three of these activities
that are generally considered to fall under the
purview of systems engineering.

The requirements were specified in the
form of use case specifications that were
derived directly from a very high level
specification from the customer. This differs
from the more conventional approach
described by Buede (2000) where use cases
are a means of discovering requirements.
Here, the use case specifications are the
requirements.

Figure 4. Detailed Use Cases for
“Communicate by Voice”

The top level use cases were broken down
into simpler uses cases such as those shown in
Figure 4. It is important to note that this is not
a functional decomposition. The top level use
cases are merely packages of related use cases
that help organize requirements. The use case
specifications contained preconditions, main
flow, alternate flows and post conditions as

described by (Booch 99). Ultimately, over one
hundred use cases were specified.

These use case specifications were then
used to develop system level UML interaction
diagrams that showed the interaction of inter-
connected subsystems as shown in Figure 5.

Figure 5. Subsystem Interactions
From these interaction diagrams, lower

level sets of use cases were derived for each
subsystem. Use case diagrams were then
developed for each subsystem where other
subsystems are shown as actors as shown in
Figure 6.

Figure 6. Subsystem use cases

Although this process was developed
independently, it closely follows the “System
of subordinate systems” architectural pattern
described in (Ericsson 01).

The key advantage to this approach is that
the work products form this system design
flowed seamlessly into the software
development process. The benefits of this are
described in (Douglas 00) and (Cantor 01).

While this approach was largely
successful, there were some times when the
object-oriented methodology associated with
UML did not work well. The following three
examples will be described in detail:
1. Getting Started. The object-oriented view

proved difficult when initially organizing
the project and developing an overall
concept for how the system works.

PROCEEDINGS CSER 2005, March 23-25, Hoboken, NJ, USA 202

2. Specifying and implementing the Power-
On use case. The implementation was
closely tied to certain features of the
operating system and hardware interfaces.

3. Specifying and implementing the Update
Software use case. In this case, the extent
to which functions should be automated
was not clear.
In each of these cases, an object-oriented

approach was first attempted. As such, these
cases were real world experiments in the use
of models. Looking at these cases points out
why both object and process oriented views of
a system are needed. The same people who
were successful applying object-oriented
analysis, design and programming for most of
the system found a process-oriented approach
more appropriate in these circumstances.

Getting Started

Using only the object-oriented
representations in UML 1.2, we found it
impossible to get started. Although the use
case diagrams were good at showing what the
system does, they provide no insight how it
does it. People seemed to need a single view
that explained approximately how the system
worked in terms of a few comprehensible
chunks. The functional decomposition in the
IDEF0 diagram in Figure 7 provides this view.

The ability to organize a system into
comprehensible chunks was also important for
project management. The decomposition
provided a basis for creating a team structure
and managing the project. Because the
decomposition is based on abstract functions,
this provided a basis for organizing the project
while many trade-offs were unresolved.

Because functions are named according to
their purpose, there is no need to learn a new
vocabulary when trying to understand the
system in a process-oriented model. In object-
oriented development, creating the
architectural classes can be viewed as
populating the model with the major phyla of
pseudo-natural objects in an artificial world.
Early in the development, we experienced the

same phenomena observed by (Holmboe 04)
where the team was linguistically challenged
as it struggled to adjust to the new vocabulary.
It was initially unnatural to begin talking
about unfamiliar objects as though they were
naturally part of the landscape. Although the
team eventually got past this, it presented
difficulty early in the system design.

Data flow diagrams for the main functions
of the system were developed such as Figure
7. This view of the system shows both what
the system does and, to some extent, how it
does it. Hardware/software trade-offs were
required for each of the functions shown in
Figure 7. Because this view is independent of
any particular implementation, it allows
separate teams to perform tradeoffs to
determine the boundaries of the system.

Figure 7. System Functional
Decomposition

Although this type of diagram was not part
of the UML, the development process was
unable to get started until this view of the
system had been developed.

Power-on Initialization

Most of the requirements for initializing
the system after applying power are stated in
terms of concrete outputs required in a
particular sequence. For example, "The
processor shall set the SDRAM row and
column configuration bits." This use case was
initially modelled with a UML activity
diagram. But while an activity diagram is
usually followed up by an interaction diagram,

PROCEEDINGS CSER 2005, March 23-25, Hoboken, NJ, USA 203

this problem is so strictly procedural that
introducing object-oriented notation simply
added confusion.

In contrast, the view shown in Figure 8
clearly shows how a series of functions
provides the required outputs.

Figure 8. Functional Decomposition of
Power On Initialization

In addition, the hardware and operating
environment dictates the implementation. The
functional decomposition shown in Figure 8
clearly shows how requirements have been
allocated to the various phases of the system
power-up sequence. Because the requirement
of this process is to produce a series of
outputs, the definition of objects provides no
benefit. The representation in Figure 8 clearly
attaches requirements to elements of the
solution. Although Figure 8 shows functions
that are entirely implemented in software, an
object-oriented view seemed inappropriate.

Reprogramming

Because this was an experimental
demonstration system, there was a
requirement to perform rapid software updates
in the field. A functional decomposition
derived from the “Update Software” use case
is shown in Figure 9.

Figure 9. Functional Decomposition of
Updating Software

This representation shows an
implementation independent view of the
problem. Each of the functions could be
accomplished by many means. Software
updates could be distributed over the air or by
someone running around with a USB Zip
drive. Since the success of this project
depended on being able to update 50 units
very rapidly, considerable ingenuity went into
the ultimate solution. A representation that
shows this as the interaction of objects
imposes too many constraints on the solution.
An implementation independent view
promotes novelty. This functional view lead to
a novel solution that involved software,
physical infrastructure and operational
procedures.

Conclusions

 In retrospect, we were somewhat naïve to
attempt to model the entire system in a single,
unified model using only the elements
available in UML 1.2, the version available at
the time. While an object-oriented view was
successful for most of the system, it was a
poor fit in particular cases. Three such cases
were presented here. Because UML 2.0 and
SysML expand the choice of model elements,
it may be possible to expand the scope of the
model in the future. But we will still have to
choose which view to use when. Initially
considering the experience on this project
supports the idea that no single view is the
best cognitive fit to all problems.

PROCEEDINGS CSER 2005, March 23-25, Hoboken, NJ, USA 204

References

Agarwal, R., De, P., Sinha, A. P.,
Comprehending Object and Process
Models: An Empirical Study, IEEE
Transactions on Software Engineering,
July/August 1999, Vol. 25, No. 4, Pages
541-556

Agarwal, R., Sinha, A.P. and Tanniru, Mohan
R., Cognitive Fit in Requirements
Modeling: A Study of Object and Process
Methodologies, Journal of Management
Information Systems Vol. 13 No. 2, Fall
1996 pp. 137 – 162

Booch G., Jacobson I., Rumbaugh J., The
Unified Modeling Language User Guide,,
Addison-Weslry, Reading, Ma, 1999

Buede, D. M., The Engineering Design of
Systems: Models and Methods, John Wiley
and Sons, New York, NY, 2000

Cantor, M., RUP SE: The Rational Unified
Process for Systems Engineering, The
Rational Edge, November, 2001

Cantor, M., Applying UML to System
Engineering: Some Lessons Learned,
INCOSE 2002 Panel: UML for Systems
Engineering, INCOSE, 2002

Cantor, M., "Thoughts on Functional
Decomposition", The Rational Edge,
April, 2003

Cocks, D., "The Suitability of Using Objects
for Modeling at the Systems Level",
Proceedings of the Ninth Annual
International Symposium of the
International Council on Systems
Engineering, pages 1047-1054, INCOSE,
1999

Corritore, C., Wiedenbek, S., “Direction and
Scope of Comprehension-Related
Activities by Procedural and Object-
Oriented Programmers: An Empirical
Study”, IEEE Workshop on Program
Comprehension, 2000

Davey, B.; Tatnall, A.,"Introducing object
environments: cognitive difficulties ",
Software Education Conference, 1994.
Proceedings. , 22-25 Nov 1994, Page(s):
128 -133

Douglass, B., “The UML For Systems
Engineering”, www.ilogix.com, 2000

Ericsson, M., Developing Large-Scale
Systems with the Rational Unified
Process,
http://www3.software.ibm.com/ibmdl/pub/
software/rational/web/whitepapers/2003/si
s.pdf, Rational White Paper, 2000

Fowler, M., UML Distilled, Addison-Wesley,
Reading, Ma, 1999

Gelman, S.A., “The development of induction
within natural kind and artifact categories”
Cognitive Psychology, Vol 20, pp 65-95,
1988

Hoffman, H., From function driven Systems
Engineering to object oriented Software
Engineering, I-Logix white paper, 2000

Keleman, D., Function, goals and intention:
children's teleological reasoning about
objects, Tends in Cognitive Sciences, Vol.
3, No. 12, Dec 1999

Lewis, M., “A method for selecting optimal
analogies”, IEEE International Conference
on Systems, Man, and Cybernetics, 1994,
Volume: 3 , 2-5 Oct. 1994, Pages:2743 -
2748 vol. 3

Lykins, H., Friedenthal, S., Meilich A.,
Adapting UML for an Object Oriented
Systems Engineering, INCOSE
Cheasepeake Chapter 2001 Meeting,
October, 2001

Morris, M.G.; Speier, C.; Hoffer, J.A., "The
impact of experience on individual
performance and workload differences
using object-oriented and process-oriented
systems analysis techniques", System
Sciences, 1996., Proceedings of the
Twenty-Ninth Hawaii International
Conference on Man-machine interfaces,
Volume: 2 , 3-6 Jan 1996, Page(s): 232 -
241 vol.2

Pinker, S., How the Mind Works, W. W.
Norton & Co. , New York, 1997

Sinha, A. P. and Vessy, I., Cognitive Fit: An
Empirical Study of Recursion and
Iteration, IEEE Transactions on Software
Engineering, May 1992, pp 368-397 2001.

PROCEEDINGS CSER 2005, March 23-25, Hoboken, NJ, USA 205

Skipper, J.F., Assessing the Suitability of
UML for Capturing and Communicating
Systems Engineering Design Models,
www.vitechcorp.com

Vessey, I., Gallata, D., “Cognitive Fit: An
Empirical Study of Information
Acquisition”, Information Systems
Research, V2, N1, 1991, pp. 63-84

Wiedenbeck, S., Fix, V., and Scholtz, J.,
"Characteristics of the mental
representations of novice and expert
programmers: an empirical study",
International Journal of Man-machine
Studies, vol. 39, pp. 793-812, 1993.

Biography

Laurence Doyle is a staff scientist at ITT
Industries. He holds an MS in computer
science from Stevens Institute of Technology
and a BS in computer science from Pratt
Institute. He has been a lead programmer and
software architect on aircraft, satellite, signal
intelligence and military communications
systems for 35 years. He has lead software
development teams using both object-oriented
and structured methods. He holds five patents
and has published articles on satellite
navigation, software methods, and real-time
scheduling. He is currently a PhD candidate in
systems engineering from Stevens Institute of
Technology.

Dr. Michael Pennotti is Industry Professor
of Systems Engineering and Director of the
SDOE Program at Stevens Institute of
Technology. A systems engineering leader for
thirty-five years, he was Director of Advanced
ASW Concepts at Bell Laboratories, Human
Resources VP for Lucent Technologies’
Enterprise Networks Group, and VP Quality at
Avaya. He joined Stevens in 2001. He is a
member of INCOSE, and a senior member of
IEEE and the American Society for Quality.
He holds PhD. and MS degrees in Electrical
Engineering from the Polytechnic Institute of
New York, a BEE from Manhattan College,
and is a graduate of the AEA/Stanford

Executive Institute for the management of
high-technology companies.

PROCEEDINGS CSER 2005, March 23-25, Hoboken, NJ, USA 206

