
Scientific computing using virtual high-performance
computing: a case study using the Amazon Elastic

Computing Cloud

Scott Hazelhurst
School of Electrical and Information Engineering
University of the Witwatersrand, Johannesburg

Private Bag 3, 2050 Wits, South Africa
Scott.Hazelhurst@wits.ac.za

ABSTRACT
High-performance computing systems are important in sci-
entific computing. Clusters of computer systems — which
range greatly in size — are a common architecture for high-
performance computing. Small, dedicated clusters are af-
fordable and cost-effective, but may not be powerful enough
for real applications. Larger dedicated systems are expen-
sive in absolute terms and may be inefficient because many
individual groups may not be able to provide sustained work-
load for the cluster. Shared systems are cost-effective, but
then availability and access become a problem.

An alternative model is that of a virtual cluster, as exem-
plified by Amazon’s Elastic Computing Cloud (EC2). This
provides customers with storage and CPU power on an on-
demand basis, and allows a researcher to dynamically build
their own, dedicated cluster of computers when they need
it. Used by commercial web services deployers, this technol-
ogy can be used in scientific computing applications. This
paper presents a case study of the use of EC2 for scientific
computing. The case study concludes that EC2 provides a
feasible, cost-effective model in many application areas.

Categories and Subject Descriptors
C2.4 [Computer communication systems]: Distributed
Systems; D4.0 [Operating systems]: Distributed systems;
J.0 [Computer applications]: General

General Terms
Algorithms, Performance, Measurement

Keywords
High-performance computing, clusters, virtualisation, Ama-
zon Elastic Computing Cloud

c©ACM, (2008). This is the author’s version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribu-
tion. The definitive version was published in The Proceedings of the
South African Institute of Computer Scientists and Infor-
mation Technologists (SAICSIT) Conference, 978-1-60558-
286-3, (2008) http://doi.acm.org/10.1145/nnnnnn.nnnnnn

1. INTRODUCTION
Many scientific and other applications require high-perfor-
mance computing — a catch-all phrase to describe applica-
tions characterised by large data sets requiring significant
computing resources. Such applications may require hun-
dreds to hundreds of thousands of CPU-hours, and so to be
practical have to be parallelised.

A popular architecture for parallelisation is a cluster of com-
modity computers, connected by a fast network. This en-
compasses a range of systems. At the low-end are low-power
or mid-range computers connected by ethernet (100 MB or
1GB rates), perhaps with no special-purpose switch. At the
higher-end, the individual CPUs are more powerful, with
a high-performance and very expensive interconnect. As
an example, the iQudu cluster of the South African Centre
for High Performance Computing (CHPC), consists of 160
nodes. Each node has 16G of RAM and contains two CPUs,
dual-core AMD Opterons 2218s (so there are 640 cores in
total in the system). The cluster is connected both with
gigabit ethernet and an Infiniband system.

Clusters thus range in performance, and of course price. For
researchers wishing to use a cluster there are a range of
options:

• A small dedicated cluster. This system is often afford-
able by a group or individual researcher, and is rea-
sonably cost-effective. The computers in the system
may have other uses – for example personal worksta-
tions or teaching equipment – but are under the direct
control of the group who can get dedicated access to
them. However, for some scientific applications small
clusters are insufficient in size.

• Large, dedicated clusters. These are desirable, but ab-
solute cost becomes prohibitive. Auxiliary costs such
as air-conditioning, power protection and security be-
come much more significant. Moreover, especially in
research environments, these type of systems may not
be cost-effective as few groups have applications that
require sustained very large-scale application use.

• Large, shared clusters such as the iQudu cluster at
the CHPC (www.chpc.ac.za) or the C4 cluster hosted
at the African Advanced Institute for Information &

Communication Technology (also known as the Mer-
aka Institute, www.meraka.org.za). Since these facil-
ities are shared, high-performance systems are afford-
able and are cost-effective as several groups sharing
the facility can ensure relatively high utilisation. The
disadvantage from a researcher’s perspective is that
access to the equipment is mediated by technical and
social constraints. Usually, these systems can only be
accessed through a job-scheduling system such as Os-
car or LoadLeveler, which is not ideal for many re-
search applications. The equipment is shared (Sod’s
law implies that at the point you need to run a big
job, another group does too, as demonstrated a few
days before this paper was due, where the experiments
for this paper clashed with those of another researcher
submitting a paper for the same conference). Finally,
access is sometimes regulated by having to write re-
search proposals, which is a time cost and may not be
successful.

Another possibility is a virtual cluster. Essentially, this is
the renting of CPUs when needed from a supplier — not
the physical CPUs, but time on CPUs, accessed remotely
through the internet. This paper explores the use of one
such technology, Amazon’s Elastic Computing Cloud (EC2),
as an example of how this could be used for scientific com-
puting. In summary, the paper argues that this technology
is a useful complement to dedicated individual clusters and
large shared systems.

The basic approach of EC2 is that the user stores their data
within the Amazon system, paying relatively low rates for
data storage. When a user has a job to run, they can pay
for as many computing nodes as needed, which are charged
at an hourly rate. While nodes are being rented, the user
has complete control of the system, having root access to
the nodes. These nodes can thus be configured as the user
desires with whatever packages and system software needed.
In particular, the nodes are networked, so can communicate
with each other. This allows the user, for example, to run a
version of MPI [10] on the nodes and so run a job in parallel.

The attraction of the technology is that if the user does not
run any jobs, the only cost is for data storage. When a
job or jobs run, as many CPUs as useful can be deployed.
This changes the mind-set of the researcher: the cost of
the job is determined by the total computation time. If
an algorithm parallelises effectively on n CPUs, a problem
using that algorithm costs roughly as much to solve using n
CPUs in one hour as using one CPU in n hours. m separate
jobs cost as much to run sequentially as concurrently.

Contrast this with a dedicated cluster, where there is a
trade-off to be made between getting a big cluster, in which
many CPUs will be idle for most of the time and a small
cluster which will be cost-effective, but which will take a
long time to solve large jobs.

Structure of paper. This case study uses the criteria of
performance, cost and cost-effectiveness, learning curve, and
ease of use access to evaluate the EC2. The core of the paper
is a quantitative comparison between virtual EC2 clusters

and two “real” clusters at the CHPC and Meraka. It also
contains a personal and subjective account informed by the
experience of running real jobs in different environments.
The rest of the paper is structured as follows. Section 2 gives
an overview of the relevant Amazon Web Services. Section 3
briefly describes the application used for testing. Section 4
then presents the case study. Finally, Section 5 discusses
and concludes.

2. AMAZON WEB SERVICES
This section gives a brief overview of the Amazon Web Ser-
vices, focussing on those services relevant to the case study.
Due to space limitations, it is a very restricted description
and key features have been omitted (e.g. security). For
more details see [1] and the Amazon Web Services site http:
//www.amazonaws.com. Weiss [11] gives a good overview of
Cloud Computing.

Although there is extensive reference to S3 and EC2 in the
scientific literature there have been relatively few published
studies. The papers of Palankar [9] and Garfinkel [5] eval-
uate the data storage and access features of the Amazon
Web Services for scientific computing. Choi et al. present
a scientific collaborative lab system built on S3/EC2[4] fo-
cussing on workflow rather than performance issues. This
paper focuses on the computing resources of EC2.

2.1 Amazon’s Simple Storage Service
Though not the focus of the work, the cornerstone of the
Amazon Web Services is Amazon’s Simple Storage Service
(S3). It provides users the ability to store large amounts
of data reliably and with high availability. Data is read
and written using protocols such as SOAP, REST and Bit-
Torrent, and is also accessible via normal web browsers. For
example, a web page describing some of the technical details
related to this paper can be found at http://s3.amazonaws.
com/witsbioinf/saicsit2008.html.

The storage model is a simple two-level hierarchy. Users
may create buckets, and place data objects in the buckets.
Strings are used as keys for both buckets and objects, and so
they are easily incorporated in URLs. In the above example,
the bucket with key witsbioinf contains an object with key
saicsit2008.html). As slashes can be part of object keys, an
arbitrary depth hierarchy can be simulated.

Each user account can have up to 100 buckets. An unlimited
number of objects of up to 5GB each can be placed in each
bucket.

Users are charged 15 US cents per Gigabyte per month.
There is also a cost for transferring data to and from S3
(but not between S3 and EC2 or within EC2).

2.2 Elastic Computing Cloud
The Elastic Computing Cloud (EC2) is physically a large
number of computers on which Amazon provides time to
paying customers. EC2 is physically based in different loca-
tions in the United States. A significant part of the devel-
opment of EC2 was done by Amazon’s South African office.

EC2 is based on Xen virtualisation technology [2]. This al-
lows one physical computer to be shared by several virtual

computers, each of which hosts different operating systems.
Each virtual OS has its own root, and lives in its own sepa-
rate universe. In principle, Xen virtualisation can allow any
sort of operating system be hosted.

EC2 provides users virtual hosts based on Linux operating
systems. A range of 32-bit and 64-bit kernels supporting the
common Linux varieties such as Ubuntu and Fedora Core are
available. Amazon has made available a number of Amazon
Machine Images (AMIs) which can be hosted on their com-
puters. Users can launch instances of these AMIs over the
internet and interact with them. Users may take an AMI
that has already been provided and add their own system
and application software on the AMI, as well as remove some
of the packages installed on the AMI. These new machine
images can be packaged as an AMI which can be either pri-
vate to the user or publicly available. These AMIs can in
turn be launched or repackaged.

This research used two AMIs as bases: ami-75789d1c, an
Ubuntu 8.04 AMI packaged by Eric Hammond; ami-3e836657,
a Fedora Core 6 AMI packaged by Marcin Kowalski (as well
as their 64-bit equivalents). These were modified these by
installing newer versions of gcc and MPI, essential appli-
cations such as emacs, the scientific software used for this
case study, some sample data and a generic user account.
The 32-bit AMI used in this research is publicly available as
witsbioinf/wcd45-i386-public, ami-33b5515a.

Users may launch EC2 instances – virtual computers. As
of June 2008, there are 5 different instances types available,
with different features. Amazon bases these instances on an
idealised notion of an EC2 compute unit, as a unit of CPU
performance. This is ‘the equivalent CPU capacity of a 1.0-
1.2 GHz 2007 Opteron or 2007 Xeon processor’1. Thus,
a user is abstracted from an underlying physical machine,
and each time they use a particular EC2 type may actually
use a different type of physical machine, which they may
or may not be sharing with other users. Amazon therefore
attempts to standardise the service available, though the use
of ‘equivalent’ as a descriptor is probably too strong. The
five different types of instances are given in Table 1. The
variations are the number of (virtual) cores, the amount of
RAM, whether it is a 32-bit or 64-bit architecture, how much
storage is available, I/O performance, and price, which is
charged on an hourly basis.

Once an instance is launched, the user is given a DNS ad-
dress, which can be accessed using ssh. The user has root
control and may run their own software. As an example, to
solve a large job, the user may launch 30 instances which
can communicate with the user and each other using MPI
or other protocols.

The secondary storage associated with each instance exists
only while the instance is active. The user may reboot the
instance and keep the secondary storage, but once the in-
stance is terminated2, the secondary storage terminates too.

1Taken from the Amazon web page: http://www.amazon.
com/Instances-EC2-AWS/b?ie=UTF8&node=370375011.
2An instance may be terminated at the user’s request, or
if it crashes. No SLA is given, but the anecdotal evidence
is that the instances are highly reliable and may run for

The Amazon Elastic Block Store (EBS) is a persistent stor-
age medium for instances. An EBS is provided as a raw,
block device, which the user may format with an appropri-
ate file system. (The EBS was released after this paper was
reviewed and a few days before the final copy-edited version
of the paper was due and so has not been evaluated for ei-
ther cost-effectiveness or performance. The absence of such
a service was noted as a limitation, and the service needs
proper evaluation).

Note that there is no charge for transferring data back and
forth between S3 and EC2 nor between EC2 instances within
the same availability zones.

2.3 Other services
Amazon provides other services, which while are useful for
some scientific applications, were not used in this case study.
These two most important are the SimpleDB and the Simple
Queue Service.

The SimpleDB is a simple database service that allows users
to store structured data and to perform queries on the data.
This service provides many of the facilities of modern re-
lational databases, and provides a web services interface to
the system.

The Simple Queue Service provides a reliable, scalable queue-
ing service between EC2 instances. This allows multiple
computers to send messages to each other reliably through
a web services interface.

3. THE WCD EST CLUSTERING SYSTEM
This paper uses one scientific application as a case study.
It is an example of an application with very large compu-
tational needs, and representative of applications with high
CPU needs, demanding on L2 cache. It scales reasonably
well using MPI. With respect to input data size it has a
linear amount of communication for a quadratic amount of
work. The I/O demands are very modest. RAM needs for
real data sets are typically in the 500MB to 1GB range.

Using one application as a case study is limiting and fur-
ther experimentation is needed to explore the effectiveness
of EC2 for other kinds of programs. However, focussing on
one program allows us to explore the effectiveness in detail.

The application is a bioinformatics application called wcd,
which clusters expressed sequence tags (ESTs). ESTs are
short fragments of DNA, and their processing is an impor-
tant application. As of June 2008, there were 53 million
ESTs from over 1500 different species in the dbEST database
[3] hosted at the NCBI (http://www.ncbi.nlm.nih.gov/
dbEST/). Typically ESTs are between 300 and 500 char-
acters in length. Since the clustering of ESTs is quadratic
in number and size of ESTs, processing is computationally
challenging.

The goal of clustering is to group those fragments that are
related and overlap. These groups or clusters can be used to
study the transcriptome – i.e. to help us understand the be-

months or longer. In all the experimentation reported here,
no instance crashed.

Type #cores EC2 power RAM 32/64 Storage I/O Price
m1.small 1 1 1.7 GB 32 160GB M 10
m1.large 2 2 7.5 GB 64 850GB H 40
m1.xlarge 4 2 15 GB 64 1690GB H 80
c1.medium 2 2.5 1.7 GB 32 350GB M 20
c1.xlarge 8 2.5 7GB 64 1690GB H 80

Table 1: Specification of EC2 Instances. Type: the type of EC2 unit. #cores: the number of virtual cores.
EC2 power: the rating of each virtual core. RAM: size of RAM in Gigabytes. 32/64: number of bits in the
architecture. Storage: size of “hard disk” in Gigabytes. I/O: performance of I/O system — M is moderate,
H is high. Price: in US cents per hour.

haviour of genes in cells. These clusters can also be given as
input to assemblers, which put together the relatively small
ESTs into longer contigs and so determine the underlying
gene or genetic sequence. For a fuller description of ESTs
and their use, see the survey of Nagaraj et al. [8].

The wcd EST clustering system implements sensitive mea-
sures of sequence similarity which allows good quality clus-
tering. Parallelism is supported in two modes: a pthreads
implementation for shared memory machines, and an MPI
mode for distributed machines (such as a Linux cluster)
and/or shared memory machines. A full description of wcd is
beyond this paper – see [6, 7] for discussion of the underlying
algorithms and biological efficacy.

For the experiments conducted here, we used the following
data sets

• A686904 contains 686904 Arabidopsis thaliana ESTs,
in total 285M of nucleotide data;

• A032, a subset of A686904 with approximately 32M of
data;

• Public Cotton: a set of 30k cotton ESTs with 18M of
data.

The data sets used in this paper are described in [7] in more
detail and are available from http://www.bioinf.wits.ac.

za/~scott/wcdsupp.html. A686904 is a relatively modest
data set. For example, there are over 1 million Triticum
aestivum ESTs (spring wheat) and over 8 million human
ESTs.

The results of a run of wcd is a cluster table. Since this
contains indices into the data file, the cluster tables are rel-
atively small, typically 1–2% of the input file size.

4. EXPERIMENTATION
The primary goal of the experimentation was to explore how
wcd performed computationally on the EC2 clusters. We are
interested in the power of the individual EC2 instances, and
more importantly how the parallel version of wcd scales as
the number of processes increases. Sections 4.1–4.3 explore
the computational performance of EC2 on wcd. Section 4.4
looks at network costs. Section 4.5 explores the usability of
the system.

4.1 MPI performance: Experiment 1
This experiment compared a virtual EC2 cluster with two
real clusters at the CHPC and Meraka. Figure 1 and Table 2
on the next page show the performance results of the iQudu
cluster of the CHPC, the Meraka C4 Xeon cluster and an
Amazon EC2 cluster. The time taken for different numbers
of slave processes is shown as well as the efficiency of the
run. If T (n) is the time taken to run with n slaves, then
efficiency, E(n) = T (1)/T (n)/n.

The specifications of the clusters are:

• C4: The relevant part of the cluster consists of 37
nodes, each with 4GB of RAM and two single core
3.66GHz Intel Xeon Irwindale processors.

MPICH was used, scheduled using the Sun Grid En-
gine. Gigabit ethernet is the underlying architecture.
The code was compiled using gcc 3.4.6.

• iQudu: The cluster consists of 160 nodes, each with
two dual-core AMD Opteron 2218 processors and 16GB
of RAM, using Infiniband interconnect. wcd was run
in the mode of 4 MPI processes per node. MVAPICH
was used, scheduled with LoadLeveler. The code was
compiled with gcc 3.4.3.

• EC2 cluster: This was a cluster of m1.large nodes
(2 virtual cores per node, each rated at 2EC2 units),
7.5GB of RAM per node. LAM-MPI 7.1.2 and gcc 4.2
versions were used.

In all cases, the memory used was well within the bounds
of the machines. From previous experimentation, we know
that wcd’s performance is sensitive to L2 cache size.

EC2 iQudu C4
Time E(n) Time E(n) Time E(n)
1 100072 1.00 76243 1.0 55680 1.0
3 34874 0.96 24656 1.0 18903 0.98
7 15217 0.94 10652 1.0 8178 0.97
15 7380 0.90 4938 1.0 4213 0.88
31 3702 0.87 2538 0.95 2260 0.79
47 2855 0.75 1870 0.87
63 2198 0.72 1411 0.86

Table 2: Scalability of wcd on three different clus-
ters. Times are shown in seconds.

These results shows that the EC2 cluster acquits itself well.
With 63 slaves (32 nodes, each with 2 cores), efficiency was

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 10 20 30 40 50 60 70

E
ff

ic
ie

nc
y

Number of MPI slave processes

EC2
iQudu

C4

Figure 1: Comparative performance of three clus-
ters on the A686904 data set. The x-axis is the num-
ber of slaves used, the y axis shows the efficiency of
parallelisation.

72%. For 31 slaves, the efficiency on the EC2 cluster is about
half way between the efficiency of iQudu and C4. iQudu is
an ideal environment for wcd.

4.2 MPI Performance: Experiment 2 – shared

memory
Some of the EC2 instances are multicore machines with
shared memory. Exploring the cost/benefits of using a single
computer with multiple cores compared to several computers
with single cores is important. wcd is a cache-hungry appli-
cation, and so we would expect it to suffer on a shared mem-
ory architecture compared to a distributed environment.

Figure 2 shows the results of experiments with the A032
subset of the A686094 dataset to test the performance on a
multicore system. Here we used the c1.xlarge architecture
(8 cores, 2.5 EC2 units each). To measure the performance
we used MPI to run different numbers of processes on a sin-
gle EC2 instance with 8 cores, and report the time taken and
the efficiency (see curve AX-1IMC in the figure – 1IMC=1
instance, multiple virtual cores). For comparative purposes
we ran the same experiment on three reference architectures:

1. A 2.33 GHz Intel Xeon E53453. This is a dual-processor
machine with four cores per processor, so 8 cores in to-
tal. This is the curve labelled E5345.

2. 8 c1.xlarge instances, with one process per node (even
though these have 8 virtual cores). This is the curve
labelled AX-MI1C (multiple instances, one virtual core
each).

3. 4 c1.medium instances, each with 2 virtual cores. Here
we ran 1 or 2 processes per instance. This is a 32-
bit rather than 64-bit architecture. Note the cost of
four c1.medium instances is the same as one c1.xlarge
instance. This is the curve A4CM.

3This happens to be a core compute server at Wits Bioin-
formatics, but by chance it’s also what /proc/cpuinfo calls
the c1.xlarge instance, which it may or may not be.

Num threads E5345 EC2 x.large
1 198 189
2 105 104-187
3 75 88-183
4 60 73-187
5 52 67-186
6 49 54-128
7 48 60-187
8 48 55-134

Table 3: Performance of Pthreads parallelisation – a
comparison of an EC2 c1.xlarge and the Intel Xeon
E5345. The table shows the time taken to process
the Public Cotton EST set.

An important result is not shown in the Figure: for the
E5345 and AX-MI1C, the experiments were run several times
but the difference between maximum and minimum times
was less than 2%. For AX-1IMC, as the number of cores
increased the variability increased too – for 7 slaves over 11
different runs, the average time was 162 seconds with a stan-
dard deviation of 22 and a difference of 65 from smallest to
biggest. Variability was also seen on the A4CM curve, but
not as high. For the high-variability cases, the experiments
were run at least 10 times and the average is shown.

4.3 Pthreads
To explore the use of virtual cores further, we also compared
the performance of wcd’s pthreads parallelisation, running
several threads at the same time. From previous experimen-
tation, we know that wcd’s pthreads parallelisation is not
particularly strong – depending on the architecture it works
well for 2-4 cores but not beyond that. Table 3 shows the
performance of the pthreads implementation on the Public
Cotton data set using a single c1.xlarge instance and the
Intel E5345 Xeon.

As can be seen the pthreads version scales reasonably to the
4 core mark on the E5345, with very modest improvement
to the 6 core mark. For the c1.xlarge, scaling is not as
good. Moreover, the variability was extremely high. For
example, with 4 cores over 12 runs, the range was 73s-187s,
with an average of 149 and standard deviation of 47! Varia-
tion was seen across different EC2 instances and on the same
instance. In all cases the EC2 instance was otherwise idle
(though the underlying physical machine may well have had
different loads). By contrast, variability on the E5345 was
small (2 seconds at most).

4.4 Network speed
As wcd and many scientific applications have large input
data sets, bandwidth is an important issue. Although wcd’s
output is relatively small, many applications will also pro-
duce large data sets as output. This section reports on net-
work bandwidth results. Network speed impact on interac-
tive use is explored in Section 4.5.

Network speed is particularly important for the South African
community where currently bandwidth costs are notoriously
high. It is worth mentioning that one potential advantage of
using S3 an EC2 for South African researchers or researchers

(a) Efficiency of MPI on different architectures

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7
 0

 0.2

 0.4

 0.6

 0.8

 1

E
ff

ic
ie

nc
y

Number of MPI slave processes

E5345
AX-1IMC
AX-MI1C

A4CM

(b) Absolute time

#s E5345 AX-1IMC AX-MI1C A4CM
1 630 577 577 591
2 300 280 267 294
3 202 207 184 202
4 161 176 140 159
5 145 162 113 140
6 133 163 97 123
7 123 162 86 110

Figure 2: Evaluation of multicore performance using MPI, using the A032 data set. The figure on the left
shows efficiency. The x-axis is the number of slaves, and the y axis is efficiency of parallelisation. The table
on the right shows the number of slaves versus the actual time in seconds. E5345: Performance on a single
Intel E5345 8-core machine using different numbers of cores. AX-1IMC: Performance on a single c1.xlarge
instance using different numbers of cores. AX-MI1C: Performance on multiple c1.xlarge instances using 1
process/core per instance. A4CM: Performance using four c1.medium instances.

from other high-cost bandwidth environments is that when
working with international collaborators, data can be stored
on S3 and processed using EC2. This means that South
African researchers can be actively involved with their col-
laborators without having to incur delays in networking.

In the various experiments, network speed was variable and
it was not possible to isolate what delays are due to traffic
shaping at Wits, what due to the size of our international
pipe and what is due to network contention at Amazon.
However, it seems that a good part is due to local traffic
shaping. For example, download from EC2 on a home DSL
line (Telkom Fastest DSL) was significantly faster line than
from Wits (but not upload). A full study such as that shown
in [5] is necessary to characterise network performance. The
results here are representative of performance at different
times of day (and night), and are therefore presented as
realistic samples rather than average performance.

Wits has a 32 Megabits per second international bandwidth
pipe that it rents from TENET (www.tenet.ac.za), and
there is fairly heavy local traffic shaping. At the time of
testing, the Telkom ADSL line was quoted by Telkom as
4096 kilobits per second download, and 256 kilobits per sec-
ond upload. Testing with www.speedtest.net showed these
are credible figures. The results below are quoted in Kilo-
bytes per second.

• From Wits: using scp to an EC2 instance

– 8M file: from 110KB/s to 260KB/s

• To Wits: using scp from an EC2 instance

– 100KB/s

• With a Telkom Fastest DSL line: using scp to an EC2
instance

– 8M file: 52KB/s-60KB/s

• With a Telkom Fastest DSL line: using scp from an
EC2 instance

– 8M file: 152KB/s-320KB/s

• From a Canadian site (cs.ubc.ca): to an EC2 instance

– 450KB/s for a variety of files

• Between EC2 nodes:

– From m1.small to m1.small: 17MB/s

– From m1.small to c1.xlarge: 30MB/s

– From c1.xlarge to c1.xlarge: 49MB/s

• EC2/S3 transfers – between 10MB/s and 20MB/s –
approximately 14M for large files.

• Downloading large EST data sets using ftp from dbEST
at NCBI ftp.ncbi.nlm.nih.gov:

– From Wits 123 KB/s

– From an EC2 instance 5MB/s (40 times faster)

Garfinkel [5] carried out a thorough evaluation of network
performance, focussing on HTTP PUTs and GETs. His
findings with respect to EC2-S3 communication is broadly
in line with what is reported here. Data rates of reads from

S3 ranged from 212KB/s for a site in the Netherlands to
412KB/s from Harvard, to 651KB/s from MIT. Write rates
ranged from 383KB for the Dutch site to 620KB for Harvard
to 2200KB/s for MIT.

Garfinkel believed that the limits on bandwidth was not
caused by limitations of bandwidth at the host sites – the im-
plication being that limits were either at Amazon or due to
problems in peering arrangements. However it is clear from
the results reported here that as of mid-2008 international
bandwidth from South African universities is a limitation.
(I repeated the transfers from another South African univer-
sity at which I have an account and found the Wits transfer
times were significantly better. From the figures available
at the tenet.ac.za site, Wits seems to have good internet
connectivity by South African standards.)

The following measurements for the transfer of very large
files put these transfer rates into context:

• scp transfer from Wits to Meraka: ∼50KB/s

• scp transfer from Wits to CHPC: ∼45KB/s

• scp transfer rates between different subnets at Wits:
11MB/s

• scp transfer rates between different computers on my
own subnet: 47MB/s

Currently, transfer rates to S3/EC2 are competitive with
transfer rates to central South African facilities such as CHPC
and Meraka. This can be expected to change shortly: Wits is
already on the new South African Research Network (SAN-
REN) and we are able to transfer data from mirror.ac.za

at a rate exceed 5MB/s, and most South African research
institutions should be on SANREN by the end of 2008. In-
ternational bandwidth for academic institutions is expected
to improve significantly in 2009 with the launch of SEA-
COM.

Transfer rates between EC2 instances are competitive with
transfer rates between computers on my own subnet at Wits,
but are more variable.

4.5 Usability
The usability of a system is crucial, even in applications
where users can be expected to have high levels of exper-
tise. EC2 is not primarily designed for scientific applica-
tions, which makes an evaluation important. The results
here are anecdotal as they report my subjective experiences
in learning to use S3 and EC2, and then carrying out the
experiments, so is written as a personal account.

4.5.1 Learning to use S3 and EC2
In the last 18 months I had learned to use the two different
job schedulers at CHPC and Meraka and so can compare
the experiences. Undoubtedly, learning to use S3 and EC2
to the level of making your images is more difficult than
learning to use a job scheduler.

In comparison, it was much more difficult to learn to use
MPI in the first place, so anyone who has the capacity to

learn MPI can learn to use EC2 without problem. The doc-
umentation is good and there are user forums.

4.5.2 Remote access
Using EC2, Meraka or CHPC all require remote access. The
problem of data transfer was discussed in Section 4.4, but
network latencies also affect interaction with remote com-
puters — long delays making remote working very painful.
I had no problems with remote interaction, for example is-
suing shell commands and editing files using emacs. It was
not as fast as working on my own machine, but it was not
an unpleasant experience. It certainly was not worse than
using the Meraka C4 or CHPC clusters.

One benefit of the fact that the computers are based in
North America is that access from those computers to re-
mote resources is much easier. For example, using Fedora
and Ubuntu utilities like yum and apt-get to install new
packages is much faster than what I am used to. The band-
width reported earlier detailing costs of downloading large
data sets from NCBI is worth emphasising here: taking 1
minute rather than 40 minutes to download large files makes
productivity much higher and scientific work more fun.

4.5.3 Ease of use
Once the system is configured, EC2 is on the whole much
easier to use than remote shared clusters. The instances do
not have to be shared and the machines can be configured
as desired as the user has root permissions.

Debugging and developing locally is clearly the best due to
short latencies, and the availability of GUI tools. I found
developing code and then testing using a job scheduler on
a remote, shared cluster particularly difficult since you are
separated from the running program. The type of informa-
tion you can get from the system is less and the debug-run
cycle is longer. EC2 is definitely superior to remote, shared
clusters for testing purposes.

An advantage of EC2 from an experimenter’s view is that
you can run as many instances as needed, which requires a
psychological shift. If you are running several experiments
and repeating them, rather than running them sequentially,
you can launch additional instances and run them at the
same time. And it costs roughly the same to run n jobs one
after another than to run n jobs at the same time. This
makes experimenting much easier and saves time.

Amazon provides a range of command-line utilities for bundl-
ing and controlling EC2 images and instances, and has sam-
ple scripts for communicating with S3. There are a number
of tools and software packages that have been developed by
third party developers to aid the use of Amazon Web Ser-
vices. Some are free and others require payment. Two which
I found useful are two Firefox add-ons that allow control of
EC2 and S3 using a GUI rather than the command line.
Elastic Fox (see Figure 3) allows a user to control AMIs,
both public and private. A user can launch new instances,
and terminate and monitor existing ones. S3Fox (see Fig-
ure 4) provides a simple GUI which allows users to transfer
data between their desktop and S3, to create buckets, delete
files and set permissions.

Figure 3: Screenshot of Elastic Fox: Elastic Fox pro-
vides a GUI which allows uses to register, deregister
and launch new instances.

Amazon provides good usage reports so users can track their
usage and monitor their costs.

Although I found using EC2 easier than using a shared clus-
ter with a job scheduler there are some disadvantages. The
biggest problem experienced in the experiments was the fact
that the “hard disks” associated with EC2 instances did not
have an existence beyond the instance’s life-time. For user
data, this meant copying back and forth between S3 and
EC2. This was easy to do in a script and there are open
source tools like jets3t that help this. For system software,
it is more difficult since changes may mean rebundling and
registering the new AMI which I found took between 4 and
15 minutes depending on the size of the image and the power
of the EC2 instance. It is possible to put some of the system
hierarchy on S3 (e.g. the /usr/local or /opt hierarchy) and
then put a script called from rc.local which will automat-
ically fetch and install the software from S3. This takes a
little work to get right once, but the fast interconnect be-
tween S3 and EC2 means that provided the software is not
too big, it is efficient and free to do. The Elastic Block
Service released by Amazon after experimentation was done
may address this problem.

Some of the other issues I found were:

• System administration becomes the user’s responsibil-
ity. Both CHPC and Meraka’s clusters have competent
and responsive system administrators. So, the benefit
of being able to do your own system administration
when you want is substantial, but it comes at a real
cost as it may mean undesired work.

• Shared clusters come not only with hardware but with
commercial software that might otherwise not be af-
fordable, such as specialised compilers and libraries.
This is not a major factor for me, but others might
experience this.

• A job scheduler is useful in some circumstances (of

Figure 4: Screenshot of S3 Fox: This shows my local
files in the window on the left and the files on S3 in
the window on the right. The user can move files
between places, change permissions etc.

course, job schedulers such as Oscar can be imple-
mented on EC2 AMIs). Perhaps the most serious in-
cident I experienced was wanting to launch a job on
32 EC2 machines late on a Friday afternoon that I
expected to take 3 hours to complete. On a shared
cluster there would be no problem — I could come in
on Monday morning to see my results. However, pay-
ing US$24 an hour (32×0.8) would lead to a big bill on
Monday morning. This meant I either had to kill my
job, or make sure I could check my status later that
night and terminate the instances.

• I had a little difficulty in using tools like S3Fox and
Amazon’s sample Python scripts for transferring data
to and from S3 from behind the Wits firewall.

4.6 Cost
The cost-effectiveness of the EC2 and S3 depends on overall
usage patterns, and there is a trade-off between cost and
compute power.

Comparison with using shared clusters. For scientists there
is commonly no direct cost for the use of large shared clus-
ters such as C4 and iQudu. However, there may be indirect
costs. Access is often restricted and dependant on compet-
itive research proposals. The time taken to write proposals
must be taken into account, and there is no guarantee of
access at all.

The relative performance of a high-performance shared clus-
ter and EC2 depends on the nature of the application. For
very highly scalable applications (e.g over 60 processes), sys-
tems like iQudu will provide better performance than EC2.
However, EC2 appears to perform better than commodity
systems. Furthermore EC2 has the advantage that it is much
more extensible. As an example if we have an application
that has moderate parallelisation (e.g. 16 processes) which
has to be run several times on many different data sets, then

far better performance can be expected from EC2 than most
high-performance centres.

Comparison with dedicated clusters. A direct compari-
son is difficult because for most researchers costs such as
space, power and insurance are free or subsidised by the
host institution. It is also difficult to quantify costs such
as air-conditioning and UPS which should be taken into ac-
count. The calculations below exclude these extra costs and
so favour the use of dedicated clusters.

As a comparison, the E5345 used in the experimentation
above (an Intel E5345 2.33GHz Xeon – dual processor, 4
cores per processor – with 4GB of RAM) cost me roughly
US$2700. The results above show that for applications with
1-2 processes at a time, its performance is roughly within
10% of that of the c1.medium instance which costs US$0.20
per instance-hour. US$2700 is about 13500 instance hours,
just over 1.5 instance-years. Thus if a server machine like
this has a life-time of 3 years, the break-even mark for a
machine is about 10-50% utilisation, depending on number
of cores used. If a machine is used more, it is more cost-
effective to have your own; if less, rent from Amazon.

This will obviously vary from application to application. In
these experiments, for example, the c1.xlarge did not per-
form as well as the E5345 when multiple processes were run
on one instance. In this type of application, with a lower
utilisation it would be more cost-effective to have a dedi-
cated machine.

Practical issues. Payment for the use of Amazon Web Ser-
vices is through a credit card. Practically this means using a
personal credit card and getting a refund from a host institu-
tion. This was not been a problem in the research. But how
could postgraduate students use the system? Given that it
is easy to spend US$1000 of compute time in a weekend,
questions of financial control must be addressed.

Bill for this research. The total bill for the work done on S3
and EC2 for this research was approximately US$180, about
98% of which was for the use of EC2 compute resources.
This includes the costs of learning the system (fairly small)
and running many experiments on large data sets, on differ-
ent instances and replicating for accuracy.

The cost of clustering the A686904 data set is approximately
US$10-$13 (less than R100 rand).

5. CONCLUSION
The launch of Amazon’s Web Services, in particular the Sim-
ple Storage Service and Elastic Computing Cloud provides
the scientific community with another possible platform for
high-performance computing needs.

The work of Palankar et al. [9] shows the strength and
shortcomings of the technology as a means of storing large
amounts of data reliably on S3. Once on S3 the data can be
processed by different EC2 instances.

This paper has shown the viability of EC2 for highly scalable
applications, with good speed-up achieved for up to 63 pro-
cessors. This scalability compared well with existing shared

facilities.

The advantage and disadvantage of the model is that it
makes the price of computing explicit. It makes entry and
scaling-up fairly easy and cheap. It does away with the need
for backups, UPS, air-conditioning and power. You pay for
what you get when you use it. If you do not need compute
time, you do not need to pay.

The advantage over shared resources is researchers are guar-
anteed access time when they needed; there is no competi-
tion for access and nor a gate-keeping process for access.
Users have root access to the machines. Shared resources
such as CHPC iQudu and Meraka C4 are, however, cheaper
– no direct costs – once you do have access and come with
system administration and other support. Of course, from
the funder of the shared facility, cost-effectiveness compared
to EC2 will depend on the load of the cluster.

An important criterion to emphasise is how much human
time it takes to solve a particular problem. In my experi-
ence – from a relatively resource-poor environment – it is
worth paying a premium to complete various experiments
in shorter elapsed time. Time is probably more a limit than
money for me. Experiments that drag on over weeks are
more likely to be interrupted by other tasks like teaching
and administration and also make it harder to remain com-
petitive in research. For me EC2 offers a big benefit for this
type of situation.

Compared to smaller, dedicated clusters, the main disad-
vantages are communication delays in transferring data and
lack of GUI tools. Whether EC2 is cost-effective compared
to a dedicated cluster depends on the utilisation levels of
the machines in the cluster. Where clusters are idle for the
majority of the time, the EC2 is an attractive solution.

There are some disadvantages besides the communication
costs. The performance of multiple virtual cores on an
instance appeared very variable for the single application
tested in this research. The lack of persistent storage for in-
stances, except through backup to S3, was noted as a draw-
back. The recently released Elastic Block Service addresses
this need but was not evaluated as it was released a few days
before the camera ready version of this paper was due.

One practical problem with using EC2 for extensive research
will be funding. Funders understand the need to provide
money for powerful computers to research groups; whether
they will feel comfortable with providing similar magnitude
of funds to pay Amazon bills of PIs credit cards remains to
be seen.

There is still the opportunity – indeed need – for sharing.
For example, for bioinformatics research, EC2 offers the po-
tential for doing many searches in parallel. However, this re-
quires large amounts of data to be stored in S3. The cost of
storing the major bioinformatics databases that Wits Bioin-
formatics mirrors would approximately be R20000 per an-
num. Ideally this is something that could be shared between
many users.

My view is that services such as EC2 and S3 will not replace

either dedicated clusters, or large shared super-computing
facilities. Local, dedicated clusters are needed for small-
scale experimenting, for learning and teaching. The absolute
costs of small clusters are often small enough that even if
EC2 is theoretically cheaper, the benefits of having your
own cluster outweigh this (though recent power crises locally
have moved the balance in the EC2 direction). Large, shared
facilities can support high utilisation levels and are probably
an effective way of funding researchers. They can also meet
applications which have very high I/O demands and low-cost
communication needs.

However, these type of web services complement both types
of clusters. For many scientific research applications, EC2/S3
will provide a much more cost-effective path that leads to
solutions in faster time.

6. ACKNOWLEDGEMENTS
This research was supported by grants from the National
Bioinformatics Network, the National Research Foundation
(GUN2069114), and the Wits University Research Commit-
tee. The Centre for High Performance Computing and Mer-
aka provided generous access to their equipment. Anony-
mous referees made useful suggestions. Thanks to James
Greenfield, Marcin Kowalksi and Greg Kempe for help and
useful comments on the paper (but the the views and opin-
ions expressed, and any errors are solely those of the the
author).

7. REFERENCES
[1] Amazon. Amazon Elastic Compute Cloud developer

guide. http://s3.amazonaws.com/awsdocs/EC2/
2008-02-01/ec2-dg-2008-02-01.pdf, Feb. 2008. API
version 2008-02-01.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. In
SOSP ’03: Proceedings of the Nineteenth ACM
Symposium on Operating systems principles, pages
164–177, New York, NY, USA, 2003. ACM.

[3] M. Boguski, T. Lowe, and C. Tolstoshev.
dbEST–database for expressed sequence tags. Nature
Genetics, 4(4):332–3, Aug. 1993.

[4] J. Y. Choi, Y. Yang, S. Kim, and D. Gannon.
V-lab-protein: Virtual collaborative lab for protein
sequence analysis. In Proceedings of the IEEE
Workshop on High-Throughput Data Analysis for
Proteomics and Genomics, Nov. 2007.

[5] S. Garfinkel. An evaluation of Amazon’s grid
computing services: EC2, S3 and SQS. Technical
report, Harvard University, 2008. Technical Report
TR-08-07.

[6] S. Hazelhurst. Algorithms for clustering EST
sequences: the wcd tool. South African Computer
Journal, 40:51–62, June 2008.

[7] S. Hazelhurst, W. Hide, Z. Lipták, R. Nogueira, and
R. Starfield. An overview of the wcd EST clustering
tool. Bioinformatics, 24(13):1542–1546, July 2008.
doi:10.1093/bioinformatics/btn203.

[8] S. Nagaraj, R. Gasser, and S. Ranganathan. A
hitchhiker’s guide to expressed sequence tag (EST)
analysis. Briefings in Bioinformatics, 8(1):6–21, 2007.

[9] M. Palankar, A. Iamnitchi, M. Ripeanu, and
S. Garfinkel. Amazon S3 for science grids: a viable
solution? In Proceedings of the Data-Aware Distributed
Computing Workshop (DADC), Boston, June 2008.

[10] M. Quinn. Parallel Programming in C with MPI and
OpenMP. McGraw-Hill, 2003.

[11] A. Weiss. Computing in the clouds. netWorker,
11(4):16–25, 2007.

