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Rats: a normal hierarchical model

This example is taken from section 6 of Gelfand et al (1990), and concerns 30 young rats whose
weights were measured weekly for five weeks. Part of the data is shown below, where Yij is the

weight of the ith rat measured at age xj.

A plot of the 30 growth curves suggests some evidence of downward curvature.

The model is essentially a random effects linear growth curve

Yij ~ Normal(αi + β i(xj - xbar), τc)

αi ~ Normal(αc, τα)

β i ~ Normal(βc, τβ)

where xbar = 22, and τ represents the precision (1/variance) of a normal distribution. We note the

absence of a parameter representing correlation between α i and β i unlike in Gelfand et al 1990.

However, see the Birats example in Volume 2 which does explicitly model the covariance
between αi and β i. For now, we standardise the xj's around their mean to reduce dependence

between αi and β i in their likelihood: in fact for the full balanced data, complete independence is

achieved. (Note that, in general, prior independence does not force the posterior distributions to
be independent).

αc , τα , βc , τβ , τc are given independent ``noninformative'' priors. Interest particularly focuses

on the intercept at zero time (birth), denoted α0 = αc - βc xbar.

Graphical model for rats example:

Weights Yij of rat i on day xj

xj = 8 15 22 29 36

__________________________________

Rat 1 151 199 246 283 320

Rat 2 145 199 249 293 354

.......

Rat 30 153 200 244 286 324
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BUGS language for rats example:

model
{

for( i in 1 : N ) {
for( j in 1 : T ) {

Y[i , j] ~ dnorm(mu[i , j],tau.c)
mu[i , j] <- alpha[i] + beta[i] * (x[j] - xbar)

}
alpha[i] ~ dnorm(alpha.c,alpha.tau)
beta[i] ~ dnorm(beta.c,beta.tau)

}
tau.c ~ dgamma(0.001,0.001)
sigma <- 1 / sqrt(tau.c)
alpha.c ~ dnorm(0.0,1.0E-6)
alpha.tau ~ dgamma(0.001,0.001)
beta.c ~ dnorm(0.0,1.0E-6)
beta.tau ~ dgamma(0.001,0.001)
alpha0 <- alpha.c - xbar * beta.c

}

Note the use of a very flat but conjugate prior for the population effects: a locally uniform prior

for(j IN 1 : T)

for(i IN 1 : N)

sigma

tau.c

x[j]

Y[i, j]

mu[i, j]

beta[i]alpha[i]

beta.taubeta.calpha0alpha.calpha.tau
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could also have been used.

Data ( click to open )

Inits ( click to open )

(Note: the response data (Y) for the rats example can also be found in the file ratsy.odc in
rectangular format. The covariate data (X) can be found in S-Plus format in file ratsx.odc. To load
data from each of these files, focus the window containing the open data file before clicking on
"load data" from the "Specification" dialog.)

Results

A 1000 update burn in followed by a further 10000 updates gave the parameter estimates:

These results may be compared with Figure 5 of Gelfand et al 1990 --- we note that the mean
gradient of independent fitted straight lines is 6.19.

Gelfand et al 1990 also consider the problem of missing data, and delete the last observation of
cases 6-10, the last two from 11-20, the last 3 from 21-25 and the last 4 from 26-30. The
appropriate data file is obtained by simply replacing data values by NA (see below). The model
specification is unchanged, since the distinction between observed and unobserved quantities is
made in the data file and not the model specification.

Data ( click to open )

Gelfand et al 1990 focus on the parameter estimates and the predictions for the final 4

observations on rat 26. These predictions are obtained automatically in BUGS by monitoring the
relevant Y[] nodes. The following estimates were obtained:

We note that our estimate 6.58 of βc is substantially greater than that shown in Figure 6 of

Gelfand et al 1990. However, plotting the growth curves indicates some curvature with steeper
gradients at the beginning: the mean of the estimated gradients of the reduced data is 6.66,
compared to 6.19 for the full data. Hence we are inclined to believe our analysis. The observed

mean sd MC_error val2.5pc median val97.5pc start sample

alpha0 106.6 3.655 0.04079 99.44 106.5 113.8 1001 10000

beta.c 6.185 0.1061 0.00132 5.975 6.185 6.394 1001 10000

sigma 6.086 0.4606 0.007398 5.255 6.061 7.049 1001 10000

mean sd MC_error val2.5pc median val97.5pc start sample

Y[26,2] 204.6 8.689 0.1145 187.6 204.7 221.4 1001 10000

Y[26,3] 250.2 10.21 0.1732 230.1 250.2 270.5 1001 10000

Y[26,4] 295.6 12.5 0.228 270.6 295.5 319.7 1001 10000

Y[26,5] 341.2 15.29 0.2936 310.7 341.3 370.9 1001 10000

beta.c 6.578 0.1497 0.003415 6.284 6.578 6.87 1001 10000
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weights for rat 26 were 207, 257, 303 and 345, compared to our predictions of 204, 250, 295
and 341.
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Dogs: loglinear model for binary data

Lindley (19??) analyses data from Kalbfleisch (1985) on the Solomon-Wynne experiment on
dogs, whereby they learn to avoid an electric shock. A dog is put in a compartment, the lights are
turned out and a barrier is raised, and 10 seconds later an electric shock is applied. The results
are recorded as success (Y = 1 ) if the dog jumps the barrier before the shock occurs, or failure
(Y = 0) otherwise.

Thirty dogs were each subjected to 25 such trials. A plausible model is to suppose that a dog
learns from previous trials, with the probability of success depending on the number of previous
shocks and the number of previous avoidances. Lindley thus uses the following model

π j = Axj Bj-xj

for the probability of a shock (failure) at trial j, where xj = number of success (avoidances) before

trial j and j - xj = number of previous failures (shocks). This is equivalent to the following log linear

model

log π j = αxj + β ( j-xj )

Hence we have a generalised linear model for binary data, but with a log-link function rather than
the canonical logit link. This is trivial to implement in BUGS:

model
{

for (i in 1 : Dogs) {
xa[i, 1] <- 0; xs[i, 1] <- 0 p[i, 1] <- 0
for (j in 2 : Trials) {

xa[i, j] <- sum(Y[i, 1 : j - 1])
xs[i, j] <- j - 1 - xa[i, j]
log(p[i, j]) <- alpha * xa[i, j] + beta * xs[i, j]
y[i, j] <- 1 - Y[i, j]
y[i, j] ~ dbern(p[i, j])

}
}
alpha ~ dnorm(0, 0.00001)I(, -0.00001)
beta ~ dnorm(0, 0.00001)I(, -0.00001)
A <- exp(alpha)
B <- exp(beta)

}
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Data ( click to open )

Inits( click to open )

Results

mean sd MC_error val2.5pc median val97.5pc start sample

A 0.7833 0.01917 2.665E-4 0.746 0.7833 0.8207 1001 10000

B 0.9242 0.01089 1.573E-4 0.9018 0.9247 0.9445 1001 10000

alpha -0.2446 0.02451 3.4E-4 -0.293 -0.2442 -0.1976 1001 10000

beta -0.07886 0.0118 1.705E-4 -0.1033 -0.07825 -0.05711 1001 10000
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Seeds: Random effect logistic regression

This example is taken from Table 3 of Crowder (1978), and concerns the proportion of seeds
that germinated on each of 21 plates arranged according to a 2 by 2 factorial layout by seed and
type of root extract. The data are shown below, where ri and ni are the number of germinated

and the total number of seeds on the i th plate, i =1,...,N. These data are also analysed by, for
example, Breslow: and Clayton (1993).

The model is essentially a random effects logistic, allowing for over-dispersion. If pi is the

probability of germination on the i th plate, we assume

ri ~ Binomial(pi, ni)

logit(pi) = α0 + α1x1i + α2x2i + α12x1ix2i + bi

bi ~ Normal(0, τ)

where x1i , x2i are the seed type and root extract of the i th plate, and an interaction term

α12x1ix2i is included. α0 , α1 , α2 , α12 , τ are given independent "noninformative" priors.

Graphical model for seeds example

seed O. aegyptiaco 75 seed O. aegyptiaco 73

Bean Cucumber Bean Cucumber

r n r/n r n r/n r n r/n r n r/n

_________________________________________________________________

10 39 0.26 5 6 0.83 8 16 0.50 3 12 0.25

23 62 0.37 53 74 0.72 10 30 0.33 22 41 0.54

23 81 0.28 55 72 0.76 8 28 0.29 15 30 0.50

26 51 0.51 32 51 0.63 23 45 0.51 32 51 0.63

17 39 0.44 46 79 0.58 0 4 0.00 3 7 0.43

10 13 0.77
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BUGS language for seeds example

model

{

for( i in 1 : N ) {

r[i] ~ dbin(p[i],n[i])

b[i] ~ dnorm(0.0,tau)

logit(p[i]) <- alpha0 + alpha1 * x1[i] + alpha2 * x2[i] +

alpha12 * x1[i] * x2[i] + b[i]

}

alpha0 ~ dnorm(0.0,1.0E-6)

alpha1 ~ dnorm(0.0,1.0E-6)

alpha2 ~ dnorm(0.0,1.0E-6)

alpha12 ~ dnorm(0.0,1.0E-6)

tau ~ dgamma(0.001,0.001)

sigma <- 1 / sqrt(tau)

}

Data ( click to open )

Inits ( click to open )

for(i IN 1 : N)

sigma

tau

alpha12alpha2alpha1alpha0

b[i]

n[i]

x1[i]

x2[i] p[i]

r[i]
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Results

A burn in of 1000 updates followed by a further 10000 updates gave the following parameter
estimates:

We may compare simple logistic, maximum likelihood (from EGRET), penalized quasi-likelihood

(PQL) Breslow and Clayton (1993) with the BUGS results

Heirarchical centering is an interesting reformulation of random effects models. Introduce the
variables

µi = α0 + α1x1i + α2x2i + α12x1ix2i

β i = µi + bi

the model then becomes
ri ~ Binomial(pi, ni)

logit(pi) = β i

β i ~ Normal(µi , τ)

The graphical model is shown below

mean sd MC_error val2.5pc median val97.5pc start sample

alpha0 -0.5525 0.1852 0.00402 -0.9312 -0.5505 -0.1879 1001 10000

alpha1 0.08382 0.3031 0.005803 -0.5238 0.09076 0.6794 1001 10000

alpha12 -0.8165 0.4109 0.008128 -1.671 -0.8073 -0.0287 1001 10000

alpha2 1.346 0.2564 0.00553 0.8501 1.34 1.881 1001 10000

sigma 0.267 0.1471 0.007996 0.03842 0.2552 0.5929 1001 10000

Logistic maximum PQL

regression likelihood

variable β SE β SE β SE

_________________________________________________

α0 -0.558 0.126 -0.546 0.167 -0.542 0.190

α1 0.146 0.223 0.097 0.278 0.77 0.308

α2 1.318 0.177 1.337 0.237 1.339 0.270

α12 -0.778 0.306 -0.811 0.385 -0.825 0.430

σ --- --- 0.236 0.110 0.313 0.121
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This formulation of the model has two advantages: the squence of random numbers generated
by the Gibbs sampler has better correlation properties and the time per update is reduced
because the updating for the α parameters is now conjugate.

for(i IN 1 : N)

beta[i]

p[i]

sigma

tau

alpha12alpha2alpha1alpha0

n[i]

x1[i]

x2[i]

mu[i]

r[i]
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Surgical: Institutional ranking

This example considers mortality rates in 12 hospitals performing cardiac surgery in babies. The
data are shown below.

The number of deaths ri for hospital i are modelled as a binary response variable with `true'

failure probability pi:

ri ~ Binomial(pi, ni)

We first assume that the true failure probabilities are independent (i.e.fixed effects) for each
hospital. This is equivalent to assuming a standard non-informative prior distribution for the pi's,

namely:

pi ~ Beta(1.0, 1.0)

Graphical model for fixed effects surgical example:

Hospital No of ops No of deaths

__________________________________

A 47 0

B 148 18

C 119 8

D 810 46

E 211 8

F 196 13

G 148 9

H 215 31

I 207 14

J 97 8

K 256 29

L 360 24
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BUGS language for fixed effects surgical model:

model
{

for( i in 1 : N ) {
p[i] ~ dbeta(1.0, 1.0)

r[i] ~ dbin(p[i], n[i])
}

}

Data ( click to open )

Inits ( click to open )

A more realistic model for the surgical data is to assume that the failure rates across hospitals

are similar in some way. This is equivalent to specifying a random effects model for the true
failure probabilities pi as follows:

logit(pi) = bi

bi ~ Normal(µ, τ)

Standard non-informative priors are then specified for the population mean (logit) probability of
failure, µ, and precision, τ.

Graphical model for random effects surgical example:

for(i IN 1 : N)

n[i]p[i]

r[i]
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BUGS language for random effects surgical model:

model
{

for( i in 1 : N ) {
b[i] ~ dnorm(mu,tau)
r[i] ~ dbin(p[i],n[i])
logit(p[i]) <- b[i]
}

pop.mean <- exp(mu) / (1 + exp(mu))
mu ~ dnorm(0.0,1.0E-6)
sigma <- 1 / sqrt(tau)
tau ~ dgamma(0.001,0.001)

}

Data ( click to open )

Inits ( click to open )

Results

A burn in of 1000 updates followed by a further 10000 updates gave the following estimates of
surgical mortality in each hospital for the fixed effect analysis

for(i IN 1 : N)

sigma

pop.mean

taumu

b[i]

n[i]p[i]

r[i]
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and for the random effects analysis

A particular strength of the Markov chain Monte Carlo (Gibbs sampling) approach implemented

in BUGS is the ability to make inferences on arbitrary functions of unknown model parameters.

For example, we may compute the rank probabilty of failure for each hospital at each iteration.
This yields a sample from the posterior distribution of the ranks.

The figures below show the posterior ranks for the estimated surgical mortality rate in each
hospital for the random effect models. These are obtained by setting the rank monitor for variable
p (select the "Rank" option from the "Statistics" menu) after the burn-in phase, and then selecting
the "histogram" option from this menu after a further 10000 updates. These distributions illustrate
the considerable uncertainty associated with 'league tables': there are only 2 hospitals (H and K)
whose intervals exclude the median rank and none whose intervals fall completely within the
lower or upper quartiles.

Plots of distribution of ranks of true failure probability for random effects model:

mean sd MC_error val2.5pc median val97.5pc start sample

p[1] 0.02009 0.01946 2.085E-4 6.091E-4 0.01441 0.07178 1001 10000

p[2] 0.1266 0.0271 2.67E-4 0.07853 0.125 0.1845 1001 10000

p[3] 0.07436 0.02371 2.349E-4 0.03492 0.07181 0.1265 1001 10000

p[4] 0.05789 0.00824 8.136E-5 0.04264 0.05762 0.07487 1001 10000

p[5] 0.04237 0.01388 1.096E-4 0.01972 0.04086 0.07362 1001 10000

p[6] 0.07081 0.01811 1.935E-4 0.0397 0.06931 0.1098 1001 10000

p[7] 0.06686 0.02025 1.872E-4 0.03259 0.06493 0.111 1001 10000

p[8] 0.1473 0.02393 2.681E-4 0.1039 0.146 0.1983 1001 10000

p[9] 0.07216 0.0179 1.59E-4 0.04093 0.07071 0.1104 1001 10000

p[10] 0.09078 0.0288 3.122E-4 0.04274 0.08817 0.1531 1001 10000

p[11] 0.1165 0.02009 2.074E-4 0.08 0.1155 0.1589 1001 10000

p[12] 0.06906 0.01345 1.261E-4 0.04518 0.06816 0.0977 1001 10000

mean sd MC_error val2.5pc median val97.5pc start sample

mu -2.558 0.1554 0.002585 -2.884 -2.551 -2.266 1001 10000

p[1] 0.05302 0.01948 3.565E-4 0.01802 0.05221 0.09348 1001 10000

p[2] 0.1029 0.02196 2.976E-4 0.06712 0.1006 0.152 1001 10000

p[3] 0.07044 0.01727 1.978E-4 0.0397 0.06916 0.1079 1001 10000

p[4] 0.0593 0.007985 1.212E-4 0.04458 0.05897 0.07591 1001 10000

p[5] 0.05187 0.01329 2.269E-4 0.02791 0.05102 0.07961 1001 10000

p[6] 0.06903 0.01448 1.564E-4 0.04284 0.06854 0.1004 1001 10000

p[7] 0.06682 0.01602 1.773E-4 0.03835 0.06595 0.1009 1001 10000

p[8] 0.1226 0.02244 4.014E-4 0.08196 0.1217 0.1698 1001 10000

p[9] 0.0698 0.01432 1.508E-4 0.04432 0.06901 0.1004 1001 10000

p[10] 0.07851 0.01955 2.03E-4 0.04506 0.07662 0.1217 1001 10000

p[11] 0.1021 0.01761 2.283E-4 0.07158 0.1009 0.1398 1001 10000

p[12] 0.06858 0.01168 1.301E-4 0.04745 0.06805 0.09349 1001 10000

pop.mean 0.07259 0.01028 1.696E-4 0.05293 0.07235 0.09401 1001 10000

sigma 0.4028 0.16 0.003672 0.1577 0.3793 0.7872 1001 10000
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p[1]

rank

0 5 10

    0.0
    0.1
    0.2
    0.3
    0.4

p[2]

rank

0 5 10

    0.0

    0.1

    0.2

    0.3

p[3]

rank

0 5 10

    0.0

   0.05

    0.1

   0.15

p[4]

rank

0 5 10

    0.0

    0.1

    0.2

    0.3

p[5]

rank

0 5 10

    0.0
    0.1
    0.2
    0.3
    0.4

p[6]

rank

0 5 10

    0.0

   0.05

    0.1

   0.15

p[7]

rank

0 5 10

    0.0

   0.05

    0.1

   0.15

p[8]

rank

0 5 10

    0.0
    0.2
    0.4
    0.6
    0.8

p[9]

rank

0 5 10

    0.0

   0.05

    0.1

   0.15

p[10]

rank

0 5 10

    0.0
   0.05
    0.1
   0.15
    0.2

p[11]

rank

0 5 10

    0.0
    0.1
    0.2
    0.3
    0.4

p[12]

rank

0 5 10

    0.0
   0.05
    0.1
   0.15
    0.2
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Salm: extra - Poisson variation in dose - response
study

Breslow (1984) analyses some mutagenicity assay data (shown below) on salmonella in which

three plates have been processed at each dose i of quinoline and the number of revertant
colonies of TA98 Salmonella measured. A certain dose-response curve is suggested by theory.

This is assumed to be a random effects Poisson model allowing for over-dispersion. Let xi be

the dose on the plates i1, i2 and i3. Then we assume

yij ~ Poisson(µij)

log(µij) = α + β log(xi + 10) + γxi + λij

λij ~ Normal(0, τ)

α , β , γ , τ are given independent ``noninformative'' priors. The appropriate graph is shown

Graphical model for salm example

dose of quinoline (µg per plate)

0 10 33 100 333 1000

_______________________________

15 16 16 27 33 20

21 18 26 41 38 27

29 21 33 69 41 42
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BUGS language for salm example

model
{

for( i in 1 : doses ) {
for( j in 1 : plates ) {

y[i , j] ~ dpois(mu[i , j])
log(mu[i , j]) <- alpha + beta * log(x[i] + 10) +

gamma * x[i] + lambda[i , j]
lambda[i , j] ~ dnorm(0.0, tau)

}
}
alpha ~ dnorm(0.0,1.0E-6)
beta ~ dnorm(0.0,1.0E-6)
gamma ~ dnorm(0.0,1.0E-6)
tau ~ dgamma(0.001, 0.001)
sigma <- 1 / sqrt(tau)

}

Data ( click to open )

Inits ( click to open )

for(i IN 1 : doses)

for(j IN 1 : plates)

sigmataugammabetaalpha

x[i] lambda[i, j]mu[i, j]

y[i, j]
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Results

A 1000 update burn in followed by a further 10000 updates gave the parameter estimates

These estimates can be compared with the quasi-likelihood estimates of Breslow (1984) who
reported α = 2.203 +/- 0.363, β = 0.311 +/- 0.099, γ = -9.74E-4 +/- 4.37E-4, σ = 0.268

mean sd MC_error val2.5pc median val97.5pc start sample

alpha 2.193 0.3874 0.01118 1.438 2.194 2.959 1001 10000

beta 0.3059 0.1054 0.003266 0.09692 0.3065 0.5131 1001 10000

gamma -9.577E-4 4.525E-4 1.48E-5 -0.001837 -9.622E-4 -3.196E-5 1001 10000

sigma 0.2608 0.08077 0.002114 0.1305 0.2512 0.4472 1001 10000
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Equiv: bioequivalence in a cross-over trial

The table below shows some data from a two-treatment, two-period crossover trial to compare 2

tablets A and B, as reported by Gelfand et al (1990).

The response Yik from the i th subject (i = 1,...,10) in the k th period (k = 1,2) is assumed to be of

the form

Yik ~ Normal(mik, τ1)

mik = µ + (-1)Tik - 1 φ / 2 + (-1)k - 1 π / 2 + δ i

δ i ~ Normal(0, τ2)

where Tik= 1,2 denotes the treatment given to subject i in period k, µ, φ, π are the overall mean,

treatment and period effects respectively, and δ i represents the random effect for subject i. The

graph of this model and its BUGS language description are shown below

Graphical model for equiv example

Subject i Sequence seq Period 1 Ti1 Period 2 Ti2

________________________________________________________________________

1 AB 1 1.40 1 1.65 2

2 AB 1 1.64 1 1.57 2

3 BA -1 1.44 2 1.58 1

....

8 AB 1 1.25 1 1.44 2

9 BA -1 1.25 2 1.39 1

10 BA -1 1.30 2 1.52 1
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BUGS language for equiv example

model
{

for( k in 1 : P ) {
for( i in 1 : N ) {

Y[i , k] ~ dnorm(m[i , k], tau1)
m[i , k] <- mu + sign[T[i , k]] * phi / 2 + sign[k] * pi / 2 + delta[i]
T[i , k] <- group[i] * (k - 1.5) + 1.5

}
}
for( i in 1 : N ) {

delta[i] ~ dnorm(0.0, tau2)
}
tau1 ~ dgamma(0.001, 0.001) sigma1 <- 1 / sqrt(tau1)
tau2 ~ dgamma(0.001, 0.001) sigma2 <- 1 / sqrt(tau2)
mu ~ dnorm(0.0, 1.0E-6)
phi ~ dnorm(0.0, 1.0E-6)
pi ~ dnorm(0.0, 1.0E-6)
theta <- exp(phi)
equiv <- step(theta - 0.8) - step(theta - 1.2)

}

Note the use of the step function to indicate whether θ = eφ lies between 0.8 and 1.2

for(i IN 1 : N)

for(k IN 1 : P)

sigma2

sigma1

equiv

theta

muphi pi tau2

tau1

delta[i]

T[i, k] m[i, k]

Y[i, k]

Examples Volume I Equiv

[22]



which traditionally determines bioequivelence.

Data ( click to open )

Inits ( click to open )

Results

A 1000 update burn in followed by a further 10000 updates gave the parameteres
estimates

mean sd MC_error val2.5pc median val97.5pc start sample

equiv 0.9976 0.04893 5.148E-4 1.0 1.0 1.0 1001 10000

mu 1.437 0.05364 0.001822 1.329 1.437 1.542 1001 10000

phi -0.008338 0.05201 5.151E-4 -0.1127 -0.008502 0.09926 1001 10000

pi -0.1802 0.05189 4.793E-4 -0.2834 -0.1803 -0.07353 1001 10000

sigma1 0.1106 0.03374 9.345E-4 0.06492 0.1033 0.194 1001 10000

sigma2 0.1399 0.05357 0.001464 0.04614 0.1355 0.2624 1001 10000

theta 0.993 0.05181 5.125E-4 0.8934 0.9915 1.104 1001 10000
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Dyes: variance components model

Box and Tiao (1973) analyse data first presented by Davies (1967) concerning batch to batch
variation in yields of dyestuff. The data (shown below) arise from a balanced experiment whereby
the total product yield was determined for 5 samples from each of 6 randomly chosen batches of
raw material.

The object of the study was to determine the relative importance of between batch variation
versus variation due to sampling and analytic errors. On the assumption that the batches and
samples vary independently, and contribute additively to the total error variance, we may assume
the following model for dyestuff yield:

yij ~ Normal(µi, τwithin)

µi ~ Normal(θ, τbetween)

where yij is the yield for sample j of batch i, µi is the true yield for batch i, τwithin is the inverse of

the within-batch variance σ2
within ( i.e. the variation due to sampling and analytic error), θ is the

true average yield for all batches and τbetween is the inverse of the between-batch variance

s2
between. The total variation in product yield is thus σ2

total = σ2
within + σ2

between and the relative

contributions of each component to the total variance are fwithin = σ2
within / σ2

total and fbetween =

σ2
between / σ2

total . We assume standard non-informative priors for θ, τwithin and τbetween.

Graphical model for dyes example

Batch Yield (in grams)

_______________________________________

1 1545 1440 1440 1520 1580

2 1540 1555 1490 1560 1495

3 1595 1550 1605 1510 1560

4 1445 1440 1595 1465 1545

5 1595 1630 1515 1635 1625

6 1520 1455 1450 1480 1445
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Bugs language for dyes example

model
{

for(i in 1 : batches) {
m[i] ~ dnorm(theta, tau.btw)
for(j in 1 : samples) {

y[i , j] ~ dnorm(m[i], tau.with)
}

}
sigma2.with <- 1 / tau.with
sigma2.btw <- 1 / tau.btw
tau.with ~ dgamma(0.001, 0.001)
tau.btw ~ dgamma(0.001, 0.001)
theta ~ dnorm(0.0, 1.0E-10)

}

Data ( click to open )

Inits ( click to open )

Results

A 25000 update burn in followed by a further 100000 updates gave the parameter estimates

for(j IN 1 : samples)

for(i IN 1 : batches)

sigma2.btw

sigma2.with

tau.btw

tau.with

theta

mu[i]

y[i, j]
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Note that a relatively long run was required because of the high autocorrelation between

successively sampled values of some parameters. Such correlations reduce the 'effective' size

of the posterior sample, and hence a longer run is needed to ensure sufficient precision of the

posterior estimates. Note that the posterior distribution for σ2
between has a very long upper tail:

hence the posterior mean is considerably larger than the median. Box and Tiao estimate σ2
within

= 2451 and σ2
between = 1764 by classical analysis of variance. Here, σ2

between is estimated by

the difference of the between- and within-batch mean squares divided by the number of batches -

1. In cases where the between-batch mean square within-batch mean square, this leads to the

unsatisfactory situation of a negative variance estimate. Computing a confidence interval for

σ2
between is also difficult using the classical approach due to its complicated sampling

distribution

mean sd MC_error val2.5pc median val97.5pc start sample

sigma2.btw 2207.0 4289.0 40.94 0.008042 1290.0 10210.0 25001 100000

sigma2.with 3034.0 1102.0 19.89 1561.0 2807.0 5752.0 25001 100000

theta 1528.0 21.5 0.1712 1484.0 1527.0 1571.0 25001 100000
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Stacks: robust regression

Birkes and Dodge (1993) apply different regression models to the much-analysed stack-loss
data of Brownlee (1965). This features 21 daily responses of stack loss y, the amount of
ammonia escaping, with covariates being air flow x1, temperature x2 and acid concentration

x3. Part of the data is shown below.

We first assume a linear regression on the expectation of y, with a variety of different error
structures. Specifically

µi = β0 + β1z1i + β2z2i + β3z3i

yi ~ Normal(µi, τ)

yi ~ Double exp(µi, τ)

yi ~ t(µi, τ, d)

where zij = (xij - xbarj) /sd(xj) are covariates standardised to have zero mean and unit variance.

β1, β2, β3 are initially given independent "noninformative" priors.

Maximum likelihood estimates for the double expontential (Laplace) distribution are essentially
equivalent to minimising the sum of absolute deviations (LAD), while the other options are
alternative heavy-tailed distributions. A t on 4 degrees of freedom has been chosen, although
with more data it would be possible to allow this parameter also to be unknown.

We also consider the use of 'ridge regression', intended to avoid the instability due to correlated
covariates. This has been shown Lindley and Smith (1972) to be equivalent to assuming the
regression coefficients of the standardised covariates to be exchangeable, so that

β j ~ Normal(0, φ), j = 1, 2, 3.

In the following example we extend the work of Birkes and Dodge (1993) by applying this ridge

Day Stack loss y air flow x1 temperature x2 acid x3

_______________________________________________________________

1 42 80 27 89

2 37 80 27 88

.....

21 15 70 20 91
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technique to each of the possible error distributions.

Birkes and Dodge (1993) suggest investigating outliers by examining residuals yi - µi greater

than 2.5 standard deviations. We can calculate standardised residuals for each of these
distributions, and create a variable outlier[i] taking on the value 1 whenever this condition is
fulfilled. Mean values of outlier[i] then show the confidence with which this definition of outlier is
fulfilled.

The BUGS language for all the models is shown below, with all models except the normal linear
regression commented out:

model
{
# Standardise x's and coefficients

for (j in 1 : p) {
b[j] <- beta[j] / sd(x[ , j ])
for (i in 1 : N) {

z[i, j] <- (x[i, j] - mean(x[, j])) / sd(x[ , j])
}

}
b0 <- beta0 - b[1] * mean(x[, 1]) - b[2] * mean(x[, 2]) - b[3] * mean(x[, 3])

# Model
d <- 4; # degrees of freedom for t

for (i in 1 : N) {
Y[i] ~ dnorm(mu[i], tau)

# Y[i] ~ ddexp(mu[i], tau)
# Y[i] ~ dt(mu[i], tau, d)

mu[i] <- beta0 + beta[1] * z[i, 1] + beta[2] * z[i, 2] + beta[3] * z[i, 3]
stres[i] <- (Y[i] - mu[i]) / sigma
outlier[i] <- step(stres[i] - 2.5) + step(-(stres[i] + 2.5) )

}
# Priors

beta0 ~ dnorm(0, 0.00001)
for (j in 1 : p) {

beta[j] ~ dnorm(0, 0.00001) # coeffs independent
# beta[j] ~ dnorm(0, phi) # coeffs exchangeable (ridge regression)

}
tau ~ dgamma(1.0E-3, 1.0E-3)
phi ~ dgamma(1.0E-2,1.0E-2)

# standard deviation of error distribution
sigma <- sqrt(1 / tau) # normal errors

# sigma <- sqrt(2) / tau # double exponential errors
# sigma <- sqrt(d / (tau * (d - 2))); # t errors on d degrees of freedom
}
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Data ( click to open )

Inits ( click to open )

Results

a) Normal error

A 1000 update burn in followed by a further 10000 updates gave the parameter estimates

b) Double exponential error

A 1000 update burn in followed by a further 10000 updates gave the parameter estimates

c) t4 error

A 1000 update burn in followed by a further 10000 updates gave the parameter estimates

d) Normal eror ridge regression

A 1000 update burn in followed by a further 10000 updates gave the parameter estimates

mean sd MC_error val2.5pc median val97.5pc start sample

b[1] 0.7135 0.1402 0.002709 0.436 0.7129 0.9943 1001 10000

b[2] 1.301 0.3829 0.007076 0.5377 1.3 2.053 1001 10000

b[3] -0.1511 0.1666 0.00215 -0.4792 -0.1511 0.1836 1001 10000

b0 -40.0 12.64 0.136 -65.26 -40.02 -14.64 1001 10000

outlier[3] 0.01 0.0995 8.876E-4 0.0 0.0 0.0 1001 10000

outlier[4] 0.0494 0.2167 0.002287 0.0 0.0 1.0 1001 10000

outlier[21] 0.3118 0.4632 0.005947 0.0 0.0 1.0 1001 10000

sigma 3.393 0.6217 0.007985 2.435 3.308 4.859 1001 10000

mean sd MC_error val2.5pc median val97.5pc start sample

b[1] 0.831 0.131 0.003069 0.5563 0.8341 1.092 1001 10000

b[2] 0.7545 0.3405 0.007192 0.1691 0.7245 1.521 1001 10000

b[3] -0.1152 0.1199 0.001538 -0.3629 -0.1106 0.1157 1001 10000

b0 -38.78 8.788 0.08773 -56.6 -38.76 -21.08 1001 10000

outlier[1] 0.0453 0.208 0.002081 0.0 0.0 1.0 1001 10000

outlier[3] 0.0578 0.2334 0.002381 0.0 0.0 1.0 1001 10000

outlier[4] 0.2929 0.4551 0.00534 0.0 0.0 1.0 1001 10000

outlier[21] 0.59 0.4918 0.007638 0.0 1.0 1.0 1001 10000

sigma 3.492 0.8657 0.01174 2.169 3.362 5.528 1001 10000

mean sd MC_error val2.5pc median val97.5pc start sample

b[1] 0.8361 0.1412 0.004002 0.5501 0.8401 1.114 1001 10000

b[2] 0.8565 0.3744 0.01016 0.1622 0.8302 1.67 1001 10000

b[3] -0.1254 0.1289 0.001917 -0.3816 -0.1251 0.1311 1001 10000

b0 -40.22 9.839 0.1218 -59.98 -40.16 -20.85 1001 10000

outlier[3] 0.0334 0.1797 0.002467 0.0 0.0 1.0 1001 10000

outlier[4] 0.2343 0.4236 0.007791 0.0 0.0 1.0 1001 10000

outlier[21] 0.5904 0.4918 0.01125 0.0 1.0 1.0 1001 10000

sigma 3.478 0.8485 0.01899 2.146 3.368 5.464 1001 10000
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e) Double exponential error ridge regression

A 1000 update burn in followed by a further 10000 updates gave the parameter estimates

f) t4 error ridge regression

A 1000 update burn in followed by a further 10000 updates gave the parameter estimates

We note the similar results between the Birkes and Dodge methods and BUGS, and the lack of
influence of the ridge technique in this context.

mean sd MC_error val2.5pc median val97.5pc start sample

b[1] 0.6816 0.1345 0.002706 0.4144 0.6828 0.9451 1001 10000

b[2] 1.317 0.3652 0.006841 0.5829 1.318 2.042 1001 10000

b[3] -0.1266 0.1644 0.002001 -0.4488 -0.1267 0.2017 1001 10000

b0 -40.53 12.46 0.1255 -65.46 -40.51 -15.94 1001 10000

outlier[3] 0.0189 0.1362 0.001325 0.0 0.0 0.0 1001 10000

outlier[4] 0.0471 0.2119 0.002388 0.0 0.0 1.0 1001 10000

outlier[21] 0.2795 0.4488 0.006227 0.0 0.0 1.0 1001 10000

sigma 3.395 0.6197 0.007177 2.425 3.312 4.828 1001 10000

mean sd MC_error val2.5pc median val97.5pc start sample

b[1] 0.796 0.1328 0.00319 0.5135 0.8005 1.058 1001 10000

b[2] 0.7883 0.3334 0.007516 0.2109 0.7546 1.53 1001 10000

b[3] -0.09911 0.1169 0.001705 -0.3386 -0.09686 0.1279 1001 10000

b0 -38.82 8.665 0.09608 -56.67 -38.77 -21.62 1001 10000

outlier[1] 0.0603 0.238 0.00301 0.0 0.0 1.0 1001 10000

outlier[3] 0.0735 0.261 0.00317 0.0 0.0 1.0 1001 10000

outlier[4] 0.2875 0.4526 0.005526 0.0 0.0 1.0 1001 10000

outlier[21] 0.5463 0.4979 0.008318 0.0 1.0 1.0 1001 10000

sigma 3.499 0.8798 0.01195 2.17 3.359 5.636 1001 10000

mean sd MC_error val2.5pc median val97.5pc start sample

b[1] 0.7949 0.1399 0.003333 0.5108 0.7975 1.063 1001 10000

b[2] 0.9094 0.3624 0.008192 0.2511 0.8879 1.701 1001 10000

b[3] -0.1087 0.1304 0.001715 -0.3691 -0.1071 0.1468 1001 10000

b0 -40.34 9.901 0.1074 -60.01 -40.33 -20.52 1001 10000

outlier[1] 0.0327 0.1779 0.0023 0.0 0.0 1.0 1001 10000

outlier[3] 0.0466 0.2108 0.002868 0.0 0.0 1.0 1001 10000

outlier[4] 0.2127 0.4092 0.007202 0.0 0.0 1.0 1001 10000

outlier[21] 0.5218 0.4995 0.01065 0.0 1.0 1.0 1001 10000

sigma 3.521 0.8663 0.01802 2.157 3.41 5.487 1001 10000
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Blocker: random effects meta-analysis of clinical
trials

Carlin (1992) considers a Bayesian approach to meta-analysis, and includes the following
examples of 22 trials of beta-blockers to prevent mortality after myocardial infarction.

In a random effects meta-analysis we assume the true effect (on a log-odds scale) δ i in a trial i is

drawn from some population distribution.Let rCi denote number of events in the control group in

trial i, and rTi denote events under active treatment in trial i. Our model is:

rCi ~ Binomial(pC
i, nC

i)

rTi ~ Binomial(pT
i, nT

i)

logit(pC
i) = µi

logit(pT
i) = µi + δ i

δ i ~ Normal(d, τ)

``Noninformative'' priors are given for the µi's. τ and d. The graph for this model is shown in

below. We want to make inferences about the population effect d, and the predictive distribution

for the effect δnew in a new trial. Empirical Bayes methods estimate d and τ by maximum

likelihood and use these estimates to form the predictive distribution p(δnew | dhat, τhat ). Full

Bayes allows for the uncertainty concerning d and τ.

Graphical model for blocker example:

Study Mortality: deaths / total

Treated Control

_____________________________________________

1 3/38 3/39

2 7/114 14/116

3 5/69 11/93

4 102/1533 127/1520

.....

20 32/209 40/218

21 27/391 43/364

22 22/680 39/674
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BUGS language for blocker example:

model
{

for( i in 1 : Num ) {
rc[i] ~ dbin(pc[i], nc[i])
rt[i] ~ dbin(pt[i], nt[i])
logit(pc[i]) <- mu[i]
logit(pt[i]) <- mu[i] + delta[i]
mu[i] ~ dnorm(0.0,1.0E-5)
delta[i] ~ dt(d, tau, 4)

}
d ~ dnorm(0.0,1.0E-6)
tau ~ dgamma(0.001,0.001)
delta.new ~ dt(d, tau, 4)
sigma <- 1 / sqrt(tau)

}

Data ( click to open )

Inits ( click to open )

Results

for(i IN 1 : Num)

sigma

taud

delta.newmu[i] delta[i]

pt[i]nt[i]pc[i]nc[i]

rt[i]rc[i]
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A 1000 update burn in followed by a further 10000 updates gave the parameter estimates

Our estimates are lower and with tighter precision - in fact similar to the values obtained by
Carlin for the empirical Bayes estimator. The discrepancy appears to be due to Carlin's use of a

uniform prior for σ2 in his analysis, which will lead to increased posterior mean and standard

deviation for d, as compared to our (approximate) use of p(σ2)  ~ 1 / σ2 (see his Figure 1).

In some circumstances it might be reasonable to assume that the population distribution has
heavier tails, for example a t distribution with low degrees of freedom. This is easily

accomplished in BUGS by using the dt distribution function instead of dnorm for δ and δnew.

mean sd MC_error val2.5pc median val97.5pc start sample

d -0.2492 0.06422 0.002004 -0.3727 -0.2502 -0.1194 1001 10000

delta.new -0.2499 0.1509 0.002389 -0.5592 -0.2536 0.07169 1001 10000

sigma 0.1189 0.07 0.003521 0.02428 0.1067 0.2825 1001 10000
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Oxford: smooth fit to log-odds ratios

Breslow and Clayton (1993) re-analyse 2 by 2 tables of cases (deaths from childhood cancer)
and controls tabulated against maternal exposure to X-rays, one table for each of 120
combinations of age (0-9) and birth year (1944-1964). The data may be arranged to the following
form.

Their most complex model is equivalent to expressing the log(odds-ratio) ψi for the table in

stratum i as

logψ i = α + β1yeari + β2(yeari
2 - 22) + bi

bi ~ Normal(0, τ)

They use a quasi-likelihood approximation of the full hypergeometric likelihood obtained by
conditioning on the margins of the tables.

We let r0i denote number of exposures among the n0
i controls in stratum i, and r1i denote

number of exposures for the n1
i cases. The we assume

r0i ~ Binomial(p0
i, n0

i)

r1i ~ Binomial(p1
i, n1

i)

logit(p0
i) = µi

logit(p1
i) = µi + logψ i

Assuming this model with independent vague priors for the µi's provides the correct conditional

likelihood. The appropriate graph is shown below

Strata Exposure: X-ray / total

Cases Controls age year - 1954

_______________________________________________________________

1 3/28 0/28 9 -10

.....

120 7/32 1/32 1 10
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BUGS language for Oxford example:

model
{

for (i in 1 : K) {
r0[i] ~ dbin(p0[i], n0[i])
r1[i] ~ dbin(p1[i], n1[i])
logit(p0[i]) <- mu[i]
logit(p1[i]) <- mu[i] + logPsi[i]
logPsi[i] <- alpha + beta1 * year[i] + beta2 * (year[i] * year[i] - 22) + b[i]
b[i] ~ dnorm(0, tau)
mu[i] ~ dnorm(0.0, 1.0E-6)

}
alpha ~ dnorm(0.0, 1.0E-6)
beta1 ~ dnorm(0.0, 1.0E-6)
beta2 ~ dnorm(0.0, 1.0E-6)
tau ~ dgamma(1.0E-3, 1.0E-3)
sigma <- 1 / sqrt(tau)

}

Data ( click to open )

Inits ( click to open )

for(i IN 1 : K)

sigma

taubeta2beta1alpha

b[i]

n1[i]n0[i]

r1[i]

p1[i]

logPsi[i]mu[i]

p0[i]

r0[i]
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Results

A 1000 update burn in followed by a further 10000 updates gave the parameter estimates

These estimates compare well with Breslow and Clayton (1993) PQL estimates of α = 0.566 +/-

0.070, β1 = -0.469 +/- 0.0167, β2 = 0.0071 +/- 0.0033, σ = 0.15 +/- 0.10.

mean sd MC_error val2.5pc median val97.5pc start sample

alpha 0.579 0.062 0.001545 0.4587 0.5793 0.7037 1001 10000

beta1 -0.04557 0.01553 3.929E-4 -0.07688 -0.0457 -0.01586 1001 10000

beta2 0.007041 0.003084 8.953E-5 0.001018 0.007004 0.01314 1001 10000

sigma 0.09697 0.06011 0.005036 0.02419 0.08059 0.2457 1001 10000
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LSAT: item response

Section 6 of the Law School Aptitude Test (LSAT) is a 5-item multiple choice test; students
score 1 on each item for the correct answer and 0 otherwise, giving R = 32 possible response
patterns.Boch and Lieberman (1970) present data on LSAT for N = 1000 students, part of which
is shown below.

The above data may be analysed using the one-parameter Rasch model (see Andersen (1980),

pp.253-254; Boch and Aitkin (1981)). The probability pjk that student j responds correctly to item

k is assumed to follow a logistic function parameterized by an `item difficulty' or threshold
parameter αk and a latent variable θj representing the student's underlying ability. The ability

parameters are assumed to have a Normal distribution in the population of students. That is:

logit(pjk) = θj - αk, j = 1,...,1000; k = 1,...,5

θj ~ Normal(0, τ)

The above model is equivalent to the following random effects logistic regression:

logit(pjk) = βθj - αk, j = 1,...,1000; k = 1,...,5

θj ~ Normal(0, 1)

where β corresponds to the scale parameter (β2 = τ) of the latent ability distribution. We assume

a half-normal distribution with small precision for β; this represents vague prior information but

constrains β to be positive. Standard vague normal priors are assumed for the αk's. Note that

the location of the αk's depend upon the mean of the prior distribution for θj which we have

Pattern index Item response pattern Freq (m)

________________________________________________

1 0 0 0 0 0 3

2 0 0 0 0 1 6

3 0 0 0 1 0 2

. . . . . . .

. . . . . . .

. . . . . . .

30 1 1 1 0 1 61

31 1 1 1 1 0 28

32 1 1 1 1 1 298
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arbitrarily fixed to be zero. Alternatively, Boch and Aitkin ensure identifiability by imposing a sum-
to-zero constraint on the αk's. Hence we calculate ak = αk - αbar to enable comparision of the

BUGS posterior parameter estimates with the Boch and Aitkin marginal maximum likelihood
estimates.

BUGS language for LSAT model

model
{
# Calculate individual (binary) responses to each test from multinomial data

for (j in 1 : culm[1]) {
for (k in 1 : T) {

r[j, k] <- response[1, k]
}

}
for (i in 2 : R) {

for (j in culm[i - 1] + 1 : culm[i]) {
for (k in 1 : T) {

r[j, k] <- response[i, k]
}

}
}

# Rasch model
for (j in 1 : N) {

for (k in 1 : T) {
logit(p[j, k]) <- beta * theta[j] - alpha[k]
r[j, k] ~ dbern(p[j, k])

}
theta[j] ~ dnorm(0, 1)

}
# Priors

for (k in 1 : T) {
alpha[k] ~ dnorm(0, 0.0001)
a[k] <- alpha[k] - mean(alpha[])

}
beta ~ dnorm(0,0.0001) I(0, )

}

Note that the data are read into BUGS in the original multinomial format to economize on space
and effort. The 5 times 1000 individual binary responses for each item and student are then

created within BUGS using the index variable culm (read in from the data file), where culm[i] =
cumulative number of students recording response patterns 1, 2, ..., i; i <= R.

Data ( click to open )
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Inits ( click to open )

Results

A 1000 update burn in followed by a further 10000 updates gave the parameter estimates

mean sd MC_error val2.5pc median val97.5pc start sample

a[1] -1.261 0.1048 0.001383 -1.468 -1.258 -1.06 1001 10000

a[2] 0.4788 0.07014 7.807E-4 0.3419 0.4787 0.62 1001 10000

a[3] 1.238 0.07017 9.431E-4 1.102 1.237 1.376 1001 10000

a[4] 0.1697 0.0731 8.377E-4 0.02005 0.1718 0.3104 1001 10000

a[5] -0.6257 0.08552 0.001034 -0.7943 -0.6242 -0.4612 1001 10000

beta 0.7581 0.06914 0.001899 0.6223 0.7576 0.8957 1001 10000
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Bones: latent trait model for multiple
ordered catagorical responses

The concept of skeletal age (SA) arises from the idea that individuals mature at different rates:

for any given chronological age (CA), the average SA in a sample of individuals should equal
their CA, but with an inter-individual spread which reflects the differential rate of maturation.
Roche et al (1975) have developed a model for predicting SA by calibrating 34 indicators
(items) of skeletal maturity which may be observed in a radiograph. Each indicator is
categorized with respect to its degree of maturity: 19 are binary items (i.e. 0 = immature or 1 =
mature); 8 items have 3 grades (i.e. 0 = immature; 1 = partially mature; 2 = fully mature); 1 item

has 4 ordered grades and the remaining 6 items have 5 ordered grades of maturity. Roche et al.
calculated threshold parameters for the boundarys between grades for each indicator. For the
binary items, there is a single threshold representing the CA at which 50% of individuals are
mature for the indicator. Three-category items have 2 threshold parameters: the first corresponds
to the CA at which 50% of individuals are either partially or fully mature for the indicator; the
second is the CA at which 50% of individuals are fully mature. Four and five-category items have
3 and 4 threshold parameters respectively, which are interpreted in a similar manner to those for

3-category items. In addition, Roche et al. calculated a discriminability (slope) parameter for
each item which reflects its rate of maturation. Part of this data is shown below. Columns 1--4
represent the threshold parameters (note the use of the missing value code NA to `fill in' the
columns for items with fewer than 4 thresholds); column 5 is the discriminability parameter;
column 6 gives the number of grades per item.

Thissen (1986) (p.71) presents the following graded radiograph data on 13 boys whose

Threshold parameters Discriminability Num grades

_____________________________________________________________

0.7425 NA NA NA 2.9541 2

10.2670 NA NA NA 0.6603 2

10.5215 NA NA NA 0.7965 2

9.3877 NA NA NA 1.0495 2

0.2593 NA NA NA 5.7874 2

. . . . . .

. . . . . .

0.3887 1.0153 NA NA 8.1123 3

3.2573 7.0421 NA NA 0.9974 3

. . . . . .

. . . . . .

15.4750 16.9406 17.4944 NA 1.4297 4

. . . . . .

. . . . . .

5.0022 6.3704 8.2832 10.4988 1.0954 5

4.0168 5.1537 7.1053 10.3038 1.5329 5
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chronological ages range from 6 months to 18 years. (Note that for ease of implementation in

BUGS we have listed the items in a different order to that used by Thissen):

Some items have missing data (represented by the code NA in the table above). This does not

present a problem for BUGS: the missing grades are simply treated as unknown parameters to
be estimated along with the other parameters of interest such as the SA for each boy.

Thissen models the above data using the logistic function. For each item j and each grade k, the

cumulative probability Qjk that a boy with skeletal age θ is assigned a more mature grade than k

is given by

logitQjk = δ j(θ - γjk)

where δ j is the discriminability parameter and the γjk are the threshold parameters for item j.

Hence the probability of observing an immature grade (i.e. k =1) for a particular skeletal age θ is

pj,1 = 1 - Qj,1. The probability of observing a fully mature grade (i.e.k = Kj, where Kj is the number

of grades for item j is pj,Kj
= Qj,Kj -1. For items with 3 or more categories, the probability of

observing an itermediate grade is pj,k = Qj,k-1 - Qj,k (i.e. the difference between the cumulative

probability of being assigned grade k or more, and of being assigned grade k+1 or more).

The BUGS language for this model is given below. Note that the θi for each boy i is assigned a

vague, independent normal prior theta[i] ~ dnorm(0.0, 0.001). That is, each boy is treated as a
separate problem with is no `learning' or `borrowing strength' across individuals, and hence no
hierachical structure on the θi's.

BUGS language for bones example

model
{

for (i in 1 : nChild) {
theta[i] ~ dnorm(0.0, 0.001)
for (j in 1 : nInd) {

# Cumulative probability of > grade k given theta
for (k in 1: ncat[j] - 1) {

logit(Q[i, j, k]) <- delta[j] * (theta[i] - gamma[j, k])

ID CA Maturity grades for items 1 - 32

___________________________________________________________________

1 0.6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 2 1 1

2 1.0 2 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 3 1 1 2 1 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12 16.0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 1 NA 2 1 3 2 5 5 5 5 5 5

13 18.0 2 2 2 2 2 2 2 2 2 2 NA 2 2 2 2 2 2 2 2 3 3 3 NA 2 NA 2 3 4 5 5 5 5 5 5
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}
}

# Probability of observing grade k given theta
for (j in 1 : nInd) {

p[i, j, 1] <- 1 - Q[i, j, 1]
for (k in 2 : ncat[j] - 1) {

p[i, j, k] <- Q[i, j, k - 1] - Q[i, j, k]
}
p[i, j, ncat[j]] <- Q[i, j, ncat[j] - 1]
grade[i, j] ~ dcat(p[i, j, 1 : ncat[j]])

}
}

}

Data ( click to open )

Inits ( click to open )

We note a couple of tricks used in the above code. Firstly, the variable p has been declared as a
3-way rectangular array with the size of the third dimension equal to the maximum number of
possible grades (i.e.5) for all items (even though items 1--28 have fewer than 5 categories). The
statement

grade[i, j] ~ dcat(p[i, j, 1 :ngrade[j]])

is then used to select the relevant elements of p[i,j, ] for item j, thus ignoring any `empty' spaces
in the array for items with fewer than the maximum number of grades. Secondly, the final section
of the above code includes a loop indexed as follows

Results

A 1000 update burn in followed by a further 10000 updates gave the parameter estimates
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mean sd MC_error val2.5pc median val97.5pc start sample

theta[1] 0.3244 0.2085 0.002304 -0.0999 0.3317 0.7238 1001 10000

theta[2] 1.366 0.256 0.002403 0.8998 1.352 1.899 1001 10000

theta[3] 2.357 0.2726 0.002822 1.823 2.355 2.903 1001 10000

theta[4] 2.902 0.2959 0.002816 2.317 2.901 3.476 1001 10000

theta[5] 5.535 0.4996 0.004758 4.599 5.527 6.542 1001 10000

theta[6] 6.751 0.6046 0.006357 5.597 6.741 7.951 1001 10000

theta[7] 6.451 0.5857 0.005726 5.358 6.431 7.638 1001 10000

theta[8] 8.93 0.6971 0.006642 7.546 8.938 10.3 1001 10000

theta[9] 8.981 0.6719 0.007133 7.629 8.993 10.27 1001 10000

theta[10] 11.94 0.6871 0.00698 10.63 11.93 13.28 1001 10000

theta[11] 11.58 0.9078 0.009463 9.957 11.53 13.48 1001 10000

theta[12] 15.79 0.5624 0.005932 14.72 15.79 16.92 1001 10000

theta[13] 16.96 0.7477 0.007337 15.56 16.93 18.52 1001 10000
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Inhaler: ordered catagorical data

Ezzet and Whitehead (1993) analyse data from a two-treatment, two-period crossover trial to
compare 2 inhalation devices for delivering the drug salbutamol in 286 asthma patients. Patients
were asked to rate the clarity of leaflet instructions accompanying each device, using a 4-point
ordinal scale. In the table below, the first entry in each cell (r,c) gives the number of subjects in
Group 1 (who received device A in period 1 and device B in period 2) giving response r in
period 1 and response c in period 2. The entry in brackets is the number of Group 2 subjects
(who received the devices in reverse order) giving this response pattern.

The response Rit from the i th subject (i = 1,...,286) in the t th period (t = 1,2) thus assumes

integer values between 1 and 4. It may be expressed in terms of a continuous latent variable Yit

taking values on (-inf, inf) as follows:

Rit = j if Yit in [aj - 1, aj), j = 1,..,4

where a0 = -inf and a4 = inf. Assuming a logistic distribution with mean µit for Yit, then the

cumulative probability Qitj of subject i rating the treatment in period t as worse than category j

(i.e. Prob( Yit >= aj ) is given by

logitQitj = -(aj + µsit
+ bi)

where bi represents the random effect for subject i. Here, µsit
depends only on the period t and

the sequence si = 1,2 to which patient i belongs. It is defined as

µ11 = β / 2 + π / 2

Response in period 2

1 2 3 4 TOTAL

Easy Only clear Not very Confusing

after clear

re-reading

________________________________________________________________________

Response 1 59 (63) 35 (13) 3 (0) 2 (0) 99 (76)

in 2 11 (40) 27 (15) 2 (0) 1 (0) 41 (55)

period 1 3 0 (7) 0 (2) 0 (1) 0 (0) 0 (10)

4 1 (2) 1 (0) 0 (1) 0 (0) 2 (3)

TOTAL 71 (112) 63 (30) 5 (2) 3 (0) 142 (144)
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µ12 = -β / 2 - π / 2 - κ

µ21 = -β / 2 + π / 2

µ22 = β / 2 - π / 2 + κ

where β represents the treatment effect, π represents the period effect and κ represents the

carryover effect. The probability of subject i giving response j in period t is thus given by pitj = Qitj

- 1 - Qitj, where Qit0 = 1 and Qit4 = 0 (see also the Bones example).

The BUGS language for this model is shown below. We assume the bi's to be normally

distributed with zero mean and common precision τ. The fixed effects β, π and κ are given vague

normal priors, as are the unknown cut points a1, a2 and a3. We also impose order constraints on

the latter using the I(,) notation in BUGS, to ensure that a1 < a2 < a3.

model
{
#
# Construct individual response data from contingency table
#

for (i in 1 : Ncum[1, 1]) {
group[i] <- 1
for (t in 1 : T) { response[i, t] <- pattern[1, t] }

}
for (i in (Ncum[1,1] + 1) : Ncum[1, 2]) {

group[i] <- 2 for (t in 1 : T) { response[i, t] <- pattern[1, t] }
}

for (k in 2 : Npattern) {
for(i in (Ncum[k - 1, 2] + 1) : Ncum[k, 1]) {

group[i] <- 1 for (t in 1 : T) { response[i, t] <- pattern[k, t] }
}
for(i in (Ncum[k, 1] + 1) : Ncum[k, 2]) {

group[i] <- 2 for (t in 1 : T) { response[i, t] <- pattern[k, t] }
}

}
#
# Model
#

for (i in 1 : N) {
for (t in 1 : T) {

for (j in 1 : Ncut) {
#
# Cumulative probability of worse response than j
#
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logit(Q[i, t, j]) <- -(a[j] + mu[group[i], t] + b[i])
}

#
# Probability of response = j
#

p[i, t, 1] <- 1 - Q[i, t, 1]
for (j in 2 : Ncut) { p[i, t, j] <- Q[i, t, j - 1] - Q[i, t, j] }
p[i, t, (Ncut+1)] <- Q[i, t, Ncut]

response[i, t] ~ dcat(p[i, t, ])
}

#
# Subject (random) effects
#

b[i] ~ dnorm(0.0, tau)
}

#
# Fixed effects
#

for (g in 1 : G) {
for(t in 1 : T) {

# logistic mean for group i in period t
mu[g, t] <- beta * treat[g, t] / 2 + pi * period[g, t] / 2 + kappa * carry[g, t]

}
}
beta ~ dnorm(0, 1.0E-06)
pi ~ dnorm(0, 1.0E-06)
kappa ~ dnorm(0, 1.0E-06)

# ordered cut points for underlying continuous latent variable
a[1] ~ dnorm(0, 1.0E-06)I(, a[2])
a[2] ~ dnorm(0, 1.0E-06)I(a[1], a[3])
a[3] ~ dnorm(0, 1.0E-06)I(a[2], )

tau ~ dgamma(0.001, 0.001)
sigma <- sqrt(1 / tau)
log.sigma <- log(sigma)

}

Note that the data is read into BUGS in the original contigency table format to economize on
space and effort. The indivdual responses for each of the 286 patients are then constructed

within BUGS.

Data ( click to open )
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Inits ( click to open )

Results

A 1000 update burn in followed by a further 10000 updates gave the parameter estimates

The estimates can be compared with those of Ezzet and Whitehead, who used the Newton-
Raphson method and numerical integration to obtain maximum-likelihood estimates of the
parameters. They reported β = 1.17 +/- 0.75, π = -0.23 +/- 0.20, κ = 0.21 +/- 0.49, logσ = 0.17 +/-

0.23, a1 = 0.68, a2 = 3.85, a3 = 5.10

mean sd MC_error val2.5pc median val97.5pc start sample

a[1] 0.712 0.1382 0.004156 0.4566 0.7069 0.9981 1001 10000

a[2] 3.936 0.3298 0.01597 3.326 3.924 4.614 1001 10000

a[3] 5.28 0.4699 0.01893 4.412 5.262 6.239 1001 10000

beta 1.067 0.3199 0.008454 0.4575 1.057 1.714 1001 10000

kappa 0.2463 0.2503 0.005605 -0.2394 0.2456 0.7475 1001 10000

log.sigma 0.195 0.203 0.01356 -0.2494 0.2145 0.5424 1001 10000

pi -0.2367 0.1976 0.002313 -0.6214 -0.238 0.1509 1001 10000

sigma 1.24 0.2412 0.01562 0.7793 1.239 1.72 1001 10000
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Mice: Weibull regression

Dellaportas and Smith (1993) analyse data from Grieve (1987) on photocarcinogenicity in four
groups, each containing 20 mice, who have recorded a survival time and whether they died or
were censored at that time. A portion of the data, giving survival times in weeks, are shown

below. A * indicates censoring.

The survival distribution is assumed to be Weibull. That is

f (ti, z i) = reββββ z i ti
r - 1 exp(-eββββ z itir)

where ti is the failure time of an individual with covariate vector z i and ββββ is a vector of unknown

regression coefficients. This leads to a baseline hazard function of the form

λ0(ti) = rti
r - 1

Setting µi = eββββ z i gives the parameterisation

ti ~ Weibull(τ, µi)

For censored observations, the survival distribution is a truncated Weibull, with lower bound
corresponding to the censoring time. The regression ββββ coefficients were assumed a priori to

follow independent Normal distributions with zero mean and ``vague'' precision 0.0001. The
shape parameter r for the survival distribution was given a Gamma(1, 0.0001) prior, which is
slowly decreasing on the positive real line.

Median survival for individuals with covariate vector z i is given by mi = (log2e−ββββ z i)1/r

The appropriate graph and BUGS language are below, using an undirected dashed line to
represent a logical range constraint.

Mouse Irradiated Vehicle Test Positive

control control substance control

________________________________________________________

1 12 32 22 27

.......

18 *40 30 24 12

19 31 37 37 17

20 36 27 29 26
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model
{

for(i in 1 : M) {
for(j in 1 : N) {

t[i, j] ~ dweib(r, mu[i])I(t.cen[i, j],)
}
mu[i] <- exp(beta[i])
beta[i] ~ dnorm(0.0, 0.001)
median[i] <- pow(log(2) * exp(-beta[i]), 1/r)

}
r ~ dexp(0.001)
veh.control <- beta[2] - beta[1]
test.sub <- beta[3] - beta[1]
pos.control <- beta[4] - beta[1]

}

We note a number of tricks in setting up this model. First, individuals who are censored are given
a missing value in the vector of failure times t, whilst individuals who fail are given a zero in the
censoring time vector t.cen (see data file listing below). The truncated Weibull is modelled using

I(t.cen[i],) to set a lower bound. Second, we set a parameter beta[j] for each treatment group j.
The contrasts beta[j] with group 1 (the irradiated control) are calculated at the end. Alternatively,
we could have included a grand mean term in the relative risk model and constrained beta[1] to
be zero.

for(j IN 1 : N)

for(i IN 1 : M)

t[i, j]

veh.control

test.sub

pos.control

median[i]

r
beta[i]

mu[i]

t.cen[i, j]
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Data ( click to open )

Inits ( click to open )

Results

A burn in of 1000 updates followed by a further 10000 updates gave the parameter estimates
mean sd MC_error val2.5pc median val97.5pc start sample

median[1] 23.65 2.002 0.05203 20.06 23.54 27.93 1001 10000

median[2] 35.18 3.54 0.05764 29.22 34.88 43.21 1001 10000

median[3] 26.68 2.437 0.05828 22.36 26.5 31.99 1001 10000

median[4] 21.28 1.849 0.03371 18.01 21.16 25.36 1001 10000

pos.control 0.3088 0.3416 0.005912 -0.3644 0.3115 0.9685 1001 10000

r 2.902 0.2781 0.02332 2.367 2.904 3.444 1001 10000

test.sub -0.3475 0.3435 0.004663 -1.022 -0.3478 0.3185 1001 10000

veh.control -1.143 0.365 0.006778 -1.87 -1.141 -0.4315 1001 10000
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Kidney: Weibull regression with random efects

McGilchrist and Aisbett (1991) analyse time to first and second recurrence of infection in kidney
patients on dialysis using a Cox model with a multiplicative frailty parameter for each individual.
The risk variables considered are age, sex and underlying disease (coded other, GN, AN and
PKD). A portion of the data are shown below.

We have analysed the same data assuming a parametric Weibull distribution for the survivor
function, and including an additive random effect bi for each patient in the exponent of the hazard

model as follows

tij ~ Weibull(r, µij) i = 1,...,38; j = 1,2

logµij = α + βageAGEij + βsexSEXi + βdisease1DISEASEi1 +

βdisease2DISEASEi2 + βdisease3DISEASEi3 + bi

bi ~ Normal(0, τ)

where AGEij is a continuous covariate, SEXi is a 2-level factor and DISEASEik (k = 1,2,3) are

dummy variables representing the 4-level factor for underlying disease. Note that the the survival
distribution is a truncated Weibull for censored observations as discussed in the mice example.
The regression coefficients and the precision of the random effects τ are given independent

``non-informative'' priors, namely

bk ~ Normal(0, 0.0001)

τ ~ Gamma(0.0001, 0.0001)

Patient Recurrence Event Age at Sex Disease

Number time t (2 = cens) time t (1 = female) (0 = other; 1 = GN

2 = AN; 3 = PKD)

______________________________________________________________________

1 8,16 1,1 28,28 0 0

2 23,13 1,2 48,48 1 1

3 22,28 1,1 32,32 0 0

4 447,318 1,1 31,32 1 0

.....

35 119,8 1,1 22,22 1 1

36 54,16 2,2 42,42 1 1

37 6,78 2,1 52,52 1 3

38 63,8 1,2 60,60 0 3

Kidney Examples Volume I

[51]



The shape parameter of the survival distribution r is given a Gamma(1, 0.0001) prior which is
slowly decreasing on the positive real line.

The graphical model and BUGS language are given below.

Graphical model for kidney example:

BUGS language for kidney example

model
{

for (i in 1 : N) {
for (j in 1 : M) {

# Survival times bounded below by censoring times:
t[i,j] ~ dweib(r, mu[i,j]) I(t.cen[i, j], );
log(mu[i,j ]) <- alpha + beta.age * age[i, j]

+ beta.sex *sex[i]
+ beta.dis[disease[i]] + b[i];

}
# Random effects:

b[i] ~ dnorm(0.0, tau)
}

# Priors:
alpha ~ dnorm(0.0, 0.0001);

for(j IN 1 : M)

for(i IN 1 : N)

alpha beta.dis[4]beta.dis[3]beta.dis[2]beta.sexbeta.age

sigma

tau

b[i]

r

t.cen[i, j]

mu[i, j]

t[i, j]
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beta.age ~ dnorm(0.0, 0.0001);
beta.sex ~ dnorm(0.0, 0.0001);

# beta.dis[1] <- 0; # corner-point constraint
for(k in 2 : 4) {

beta.dis[k] ~ dnorm(0.0, 0.0001);
}
tau ~ dgamma(1.0E-3, 1.0E-3);
r ~ dgamma(1.0, 1.0E-3);
sigma <- 1 / sqrt(tau); # s.d. of random effects

}

Data ( click to open )

Inits ( click to open )

Results

A 1000 update burn in followed by a further 10000 updates gave the parameter estimates

mean sd MC_error val2.5pc median val97.5pc start sample

alpha -4.529 0.9036 0.06244 -6.348 -4.473 -2.932 1001 10000

beta.dis[2] 0.1265 0.5679 0.01859 -0.9922 0.1201 1.3 1001 10000

beta.dis[3] 0.5995 0.5781 0.02205 -0.5284 0.5863 1.815 1001 10000

beta.dis[4] -1.198 0.8483 0.03147 -2.805 -1.206 0.5525 1001 10000

beta.sex -1.945 0.5019 0.028 -3.054 -1.906 -1.042 1001 10000

r 1.205 0.1711 0.01523 0.9005 1.2 1.541 1001 10000

sigma 0.6367 0.3802 0.03159 0.04092 0.6494 1.366 1001 10000
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Leuk: Cox regression

Several authors have discussed Bayesian inference for censored survival data where the
integrated baseline hazard function is to be estimated non-parametrically Kalbfleisch (1978)
,Kalbfleisch and Prentice (1980), Clayton (1991), Clayton (1994).Clayton (1994) formulates the
Cox model using the counting process notation introduced by Andersen and Gill (1982) and
discusses estimation of the baseline hazard and regression parameters using MCMC methods.
Although his approach may appear somewhat contrived, it forms the basis for extensions to
random effect (frailty) models, time-dependent covariates, smoothed hazards, multiple events

and so on. We show below how to implement this formulation of the Cox model in BUGS.

For subjects i = 1,...,n, we observe processes Ni(t) which count the number of failures which have

occurred up to time t. The corresponding intensity process Ii(t) is given by

Ii(t)dt = E(dNi(t) | Ft-)

where dNi(t) is the increment of Ni over the small time interval [t, t+dt), and Ft- represents the

available data just before time t. If subject i is observed to fail during this time interval, dNi(t) will

take the value 1; otherwise dNi(t) = 0. Hence E(dNi(t) | Ft-) corresponds to the probability of

subject i failing in the interval [t, t+dt). As dt -> 0 (assuming time to be continuous) then this

probability becomes the instantaneous hazard at time t for subject i. This is assumed to have the
proportional hazards form

Ii(t) = Yi(t)λ0(t)exp(ββββ z i)

where Yi(t) is an observed process taking the value 1 or 0 according to whether or not subject i is

observed at time t and λ0(t)exp(ββββ z i) is the familiar Cox regression model. Thus we have

observed data D = Ni(t), Yi(t), z i; i = 1,..n and unknown parameters ββββ and Λ0(t) = Integral(λ0(u), u,

t, 0), the latter to be estimated non-parametrically.

The joint posterior distribution for the above model is defined by

P(ββββ , Λ0() | D) ~ P(D | ββββ , Λ0()) P(ββββ ) P(Λ0())

For BUGS, we need to specify the form of the likelihood P(D | ββββ , Λ0()) and prior distributions for

ββββ and Λ0(). Under non-informative censoring, the likelihood of the data is proportional to

n
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Π[Π Ιi(t)
dNi(t)] exp(- Ii(t)dt)

i = 1 t >= 0

This is essentially as if the counting process increments dNi(t) in the time interval [t, t+dt) are

independent Poisson random variables with means Ii(t)dt:

dNi(t) ~ Poisson(Ii(t)dt)

We may write

Ii(t)dt = Yi(t)exp(ββββ z i)dΛ0(t)

where dΛ0(t) = Λ0(t)dt is the increment or jump in the integrated baseline hazard function

occurring during the time interval [t, t+dt). Since the conjugate prior for the Poisson mean is the
gamma distribution, it would be convenient if Λ0() were a process in which the increments dΛ0(t)

are distributed according to gamma distributions. We assume the conjugate independent
increments prior suggested by Kalbfleisch (1978), namely

dΛ0(t) ~ Gamma(cdΛ∗
0(t), c)

Here, dΛ∗
0(t) can be thought of as a prior guess at the unknown hazard function, with c

representing the degree of confidence in this guess. Small values of c correspond to weak prior

beliefs. In the example below, we set dΛ∗
0(t) = r dt where r is a guess at the failure rate per unit

time, and dt is the size of the time interval.

The above formulation is appropriate when genuine prior information exists concerning the
underlying hazard function. Alternatively, if we wish to reproduce a Cox analysis but with, say,
additional hierarchical structure, we may use the multinomial-Poisson trick described in the

BUGS manual. This is equivalent to assuming independent increments in the cumulative `non-
informative' priors. This formulation is also shown below.

The fixed effect regression coefficients ββββ are assigned a vague prior

β ~ Normal(0.0, 0.000001)

BUGS language for the Leuk example:

model
{
# Set up data

for(i in 1:N) {
for(j in 1:T) {
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# risk set = 1 if obs.t >= t
Y[i,j] <- step(obs.t[i] - t[j] + eps)

# counting process jump = 1 if obs.t in [ t[j], t[j+1] )
# i.e. if t[j] <= obs.t < t[j+1]

dN[i, j] <- Y[i, j] * step(t[j + 1] - obs.t[i] - eps) * fail[i]
}

}
# Model

for(j in 1:T) {
for(i in 1:N) {

dN[i, j] ~ dpois(Idt[i, j]) # Likelihood
Idt[i, j] <- Y[i, j] * exp(beta * Z[i]) * dL0[j] # Intensity

}
dL0[j] ~ dgamma(mu[j], c)
mu[j] <- dL0.star[j] * c # prior mean hazard

# Survivor function = exp(-Integral{l0(u)du})^exp(beta*z)
S.treat[j] <- pow(exp(-sum(dL0[1 : j])), exp(beta * -0.5));
S.placebo[j] <- pow(exp(-sum(dL0[1 : j])), exp(beta * 0.5));

}
c <- 0.001
r <- 0.1
for (j in 1 : T) {

dL0.star[j] <- r * (t[j + 1] - t[j])
}
beta ~ dnorm(0.0,0.000001)

}

Data ( click to open )

Inits ( click to open )

Results

A 1000 update burn in followed by a further 10000 updates gave the parameter estimates
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mean sd MC_error val2.5pc median val97.5pc start sample

S.placebo[1] 0.9282 0.04863 5.004E-4 0.8094 0.9387 0.9907 1001 10000

S.placebo[2] 0.8538 0.06843 7.467E-4 0.6926 0.8639 0.9571 1001 10000

S.placebo[3] 0.8161 0.07561 7.661E-4 0.6422 0.8244 0.9362 1001 10000

S.placebo[4] 0.7432 0.08534 8.86E-4 0.5586 0.7503 0.8892 1001 10000

S.placebo[5] 0.6703 0.09256 9.762E-4 0.4749 0.6755 0.835 1001 10000

S.placebo[6] 0.5633 0.09747 9.302E-4 0.3666 0.5661 0.7477 1001 10000

S.placebo[7] 0.5304 0.09778 9.097E-4 0.338 0.5336 0.7148 1001 10000

S.placebo[8] 0.4142 0.09387 8.073E-4 0.2374 0.4119 0.6037 1001 10000

S.placebo[9] 0.3812 0.09325 8.172E-4 0.2086 0.3779 0.5701 1001 10000

S.placebo[10] 0.32 0.08945 8.307E-4 0.1583 0.315 0.509 1001 10000

S.placebo[11] 0.2583 0.0845 7.771E-4 0.111 0.2511 0.4395 1001 10000

S.placebo[12] 0.2257 0.08105 7.359E-4 0.08703 0.2181 0.402 1001 10000

S.placebo[13] 0.1956 0.07723 7.293E-4 0.06867 0.1873 0.3668 1001 10000

S.placebo[14] 0.1656 0.07326 6.788E-4 0.04889 0.1567 0.3298 1001 10000

S.placebo[15] 0.1398 0.06788 6.183E-4 0.03602 0.1305 0.2953 1001 10000

S.placebo[16] 0.0867 0.05455 5.259E-4 0.01301 0.07663 0.22 1001 10000

S.placebo[17] 0.04445 0.03913 4.092E-4 0.002506 0.03349 0.1484 1001 10000

S.treat[1] 0.983 0.01372 1.541E-4 0.9473 0.9866 0.9982 1001 10000

S.treat[2] 0.9643 0.02175 2.58E-4 0.9115 0.9692 0.9922 1001 10000

S.treat[3] 0.9544 0.02538 3.003E-4 0.8918 0.9598 0.9884 1001 10000

S.treat[4] 0.9343 0.03217 4.071E-4 0.8573 0.9398 0.9797 1001 10000

S.treat[5] 0.9125 0.03913 5.007E-4 0.821 0.9185 0.9701 1001 10000

S.treat[6] 0.8772 0.04896 6.526E-4 0.7654 0.8838 0.9521 1001 10000

S.treat[7] 0.8652 0.05234 6.984E-4 0.745 0.8717 0.947 1001 10000

S.treat[8] 0.8178 0.06456 8.45E-4 0.6736 0.8246 0.9229 1001 10000

S.treat[9] 0.8024 0.06872 9.057E-4 0.6528 0.8099 0.9151 1001 10000

S.treat[10] 0.771 0.07613 9.916E-4 0.6064 0.7786 0.8976 1001 10000

S.treat[11] 0.7339 0.08462 0.001154 0.5522 0.7409 0.8774 1001 10000

S.treat[12] 0.7114 0.08897 0.001204 0.5224 0.7174 0.8659 1001 10000

S.treat[13] 0.6882 0.0932 0.001268 0.4913 0.6937 0.8528 1001 10000

S.treat[14] 0.6619 0.097 0.001318 0.4641 0.6669 0.8355 1001 10000

S.treat[15] 0.636 0.1007 0.00137 0.4318 0.6406 0.8191 1001 10000

S.treat[16] 0.5662 0.111 0.001493 0.3453 0.5688 0.773 1001 10000

S.treat[17] 0.4761 0.1189 0.001548 0.2502 0.4747 0.7085 1001 10000

beta 1.538 0.4176 0.005644 0.7718 1.521 2.384 1001 10000
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LeukFr: Cox regression with random effects

Freireich et al (1963)'s data presented in the Leuk example actually arise via a paired design.
Patients were matched according to their remission status (partial or complete). One patient
from each pair received the drug 6-MP whilst the other received the placebo. We may introduce
an additional vector (called pair) in the BUGS data file to indicate each of the 21 pairs of
patients.

We model the potential 'clustering' of failure times within pairs of patients by introducing a group-
specific random effect or frailty term into the proportional hazards model. Using the counting
process notation introduced in the Leuk example, this gives

Ii (t) dt = Yi (t) exp( β ' zi + bpairi ) dΛ0(t) i = 1,...,42; pairi = 1,...,21

bpairi ~ Normal(0, τ)

A non-informative Gamma prior is assumed for τ, the precision of the frailty parameters. Note

that the above 'additive' formualtion of the frailty model is equivalent to assuming multiplicative
frailties with a log-Normal population distibution. Clayton (1991) discusses the Cox proportional
hazards model with multiplicative frailties, but assumes a Gamma population distribution.

The modified BUGS code needed to include a fraility term in the Leuk example is shown below

model
{
# Set up data

for(i in 1 : N) {
for(j in 1 : T) {

# risk set = 1 if obs.t >= t
Y[i, j] <- step(obs.t[i] - t[j] + eps)

# counting process jump = 1 if obs.t in [ t[j], t[j+1] )
# i.e. if t[j] <= obs.t < t[j+1]

dN[i, j] <- Y[i, j ] *step(t[j+1] - obs.t[i] - eps)*fail[i]
}

}
# Model

for(j in 1 : T) {
for(i in 1 : N) {

dN[i, j] ~ dpois(Idt[i, j])
Idt[i, j] <- Y[i, j] * exp(beta * Z[i]+b[pair[i]]) * dL0[j]

}
dL0[j] ~ dgamma(mu[j], c)
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mu[j] <- dL0.star[j] * c # prior mean hazard
# Survivor function = exp(-Integral{l0(u)du})^exp(beta * z)

S.treat[j] <- pow(exp(-sum(dL0[1 : j])), exp(beta * -0.5))
S.placebo[j] <- pow(exp(-sum(dL0[1 : j])), exp(beta * 0.5))

}
for(k in 1 : Npairs) {

b[k] ~ dnorm(0.0, tau);
}
tau ~ dgamma(0.001, 0.001)
sigma <- sqrt(1 / tau)
c <- 0.001 r <- 0.1
for (j in 1 : T) {

dL0.star[j] <- r * (t[j+1]-t[j])
}
beta ~ dnorm(0.0,0.000001)

}

Data ( click to open )

Inits ( click to open )

Results

A 1000 update burn in followed by a further 10000 updates gave the parameter estimates

mean sd MC_error val2.5pc median val97.5pc start sample

beta -1.607 0.4399 0.009042 -2.507 -1.592 -0.7798 1001 10000

sigma 0.2415 0.2255 0.01543 0.02854 0.1625 0.8548 1001 10000
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