
Using EDK to Run
Xilkernel on a
MicroBlaze Processor

Example Design

UG758 (v14.1) April 24, 2012

Xilkernel on a MicroBlaze Processor www.xilinx.com UG758 (v14.1) April 24, 2012

Xilinx is disclosing this user guide, manual, release note, and/or specification (the “Documentation”) to you solely for use in the development
of designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the
Documentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves
the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors
contained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with
technical support or assistance that may be provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU “AS-IS” WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER
WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY
RIGHTS. IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL
DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE INFORMATION OR
ANY IMPLEMENTATION BASED THEREON, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR REPRESENTATIONS THAT
THIS IMPLEMENTATION IS FREE FROM CLAIMS OF INFRINGEMENT AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE.

Except as stated herein, none of the Information may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or
transmitted in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without
the prior written consent of Xilinx.

© Copyright 2012 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of
Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.
.

Revision History

The following table shows the revision history for this document.

Date Version Revision

10/19/2011 13.3 EDK 13.3 release. Version changed to match release number.

• Design updated for AXI. Board platform changed to ML605.

• IP source versions updated.

• Document content structure redesigned for clarity.

01/18/2012 13.4 EDK 13.4 release.

• IP source versions updated on page 8.

• Added link to source files in “Project Source Files,” page 6.

• Added more information to the section “Run the Xilkernel Application,” page 7.

• Added bus connection information to “Bus Connection and Memory Map,” page 9.

• Added Appendix A, “Additional Resources.”

04/24/2012 14.1 EDK 14.1 release.

• IP source versions updated on page 8

http://www.xilinx.com

UG758 October 19, 2011 www.xilinx.com Xilkernel on a MicroBlaze Processor

Revision History . 2

Xilkernel on a MicroBlaze Processor Example Design in EDK

Run Demos on the Board . 5
Hardware Requirements . 5
Software Requirements . 5
Project Source Files . 6
Implement the Hardware Design . 6
Connect the Board . 6
Download the Bitstream . 6
Run the Xilkernel Application . 7

Hardware Design . 7
Hardware Design Files . 8
IP Source Version . 8
Bus Connection and Memory Map . 9
Clocking . 9

Software Design . 10
Software Demo Application and Associated Files . 10
Software Platform Specification . 11
Demo Application Description . 15

Shell . 15
Using the Application Threads . 15
Making a Thread Joinable . 16
Semaphore Example . 18
Timer Example . 23
Tic-Tac-Toe Game . 24
Mutex Demo Application . 25
Push Button Application. 29
Interrupt Handling Mechanism in Xilkernel. 29

Appendix A: Additional Resources

Xilinx Resources . 31

EDK Documentation . 31

EDK Additional Resources . 32

http://www.xilinx.com

Xilkernel on a MicroBlaze Processor www.xilinx.com UG758 October 19, 2011

http://www.xilinx.com

Xilkernel on a MicroBlaze Processor www.xilinx.com 5

UG758 (v14.1) April 24, 2012

Xilkernel on a MicroBlaze Processor
Example Design in EDK

This document details an embedded system example design for the ML605 Evaluation
Platform board that illustrates the features of Xilkernel executing on the MicroBlaze™ soft
processor, using the Xilinx® Embedded Development Kit (EDK). The hardware consists of
an ARM AMBA infrastructure connecting the CPU to numerous peripherals using
Advanced eXtensible Interface (AXI) and Local Memory Bus (LMB) to build a complete
system. This document describes the contents of the reference system and provides
information about how the system is organized and implemented.

The design illustrates the usage of each API of Xilkernel. Xilkernel is a small light-weight
easy to use kernel, providing features like scheduling, threads, IPC and synchronization
with a POSIX subset interface. The hardware design used to illustrate the kernel consists of
a MicroBlaze processor connected to two AXI timers, a UART Lite, an AXI interrupt
controller, external DDR3 SDRAM controller, and the MicroBlaze Debug Module (MDM)
for debugging the processor. The software application consists of Xilkernel and application
threads executing on top of the kernel, each illustrating various concepts of the kernel.

Xilkernel and each of the APIs are described in great detail in the chapter on "Xilkernel" in
the OS and Libraries Document Collection, available on the EDK documentation web page:
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/oslib_rm.pdf.

Run Demos on the Board

The first step, described in this section, is to run the demo design on the board. This gives
you a better understanding of the design.

Later chapters describe the hardware design structure and software application work flow
in more detail.

Hardware Requirements

• ML605 Evaluation Platform

• Two USB cables (provided in the ML605 package): one each for JTAG and UART

Software Requirements

• Embedded Development Kit (EDK) 14.1

• ISE® 14.1 or later

http://www.xilinx.com
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14
_1/oslib_rm.pdf

6 www.xilinx.com Xilkernel on a MicroBlaze Processor

UG758 (v14.1) April 24, 2012

Run Demos on the Board

Project Source Files

Download the project files online at:

https://secure.xilinx.com/webreg/clickthrough.do?cid=184435&license=RefDesLicense
&filename=ug758_example_design_files.zip

Implement the Hardware Design

1. Click the Generate Netlist button. This generates the synthesis, HDL, and
implementation directories.

2. Click the Generate Bitstream button. This runs translate, MAP, PAR, and Bitgen. A
file called system.bit is generated in the implementation directory.

Refer to the “Platform Generator (Platgen)” chapter of the Embedded System Tools Reference
Manual (UG111) for further details about EDK hardware generation flow. A link to this
document is available in Appendix A, “Additional Resources.”

Connect the Board

1. Connect two USB cables to the board: one for JTAG USB, and the other for UART USB.

2. Select Device Manager > Ports (COM & LPT) to verify the UART COM port number.

For more information about installing UART USB drivers, refer to Getting Started with
the Xilinx Virtex®-6 FPGA ML605 Evaluation Kit (UG533).

Note: The JTAG chain for the ML605 Demonstration Board has been defined by the

download.cmd file included in the /etc directory of the project.

Download the Bitstream

You can download the bitstream to the board using various tools, such as iMPACT, XPS,
and SDK. The following steps explain how to download the bitstream in SDK. This is the
main development and debug environment in this manual.

1. In XPS, select Project > Export Hardware Design to SDK.

2. Make sure the Include bitstream and BMM file check box is selected.

3. Click Export and Launch SDK.

4. Select the SDK Workspace (located in <PROJECT>/SDK/Workspace).

5. In SDK, select Xilinx Tools > Program FPGA.

6. Make sure that the software configuration is bootloop.

7. Make sure the bit and bmm file location are set correctly:

<SDK\Workspace\ug758_example_hw_platform\system.bit>

<SDK\Workspace\ug758_example_hw_platform\system_bd.bmm>

http://www.xilinx.com
https://secure.xilinx.com/webreg/clickthrough.do?cid=184435&license=RefDesLicense&filename=ug758_example_design_files.zip

Xilkernel on a MicroBlaze Processor www.xilinx.com 7

UG758 (v14.1) April 24, 2012

Hardware Design

Run the Xilkernel Application

The following steps explain how to run the program in SDK.

1. In the SDK Project Explorer, right-click xilkernel_demo and select Clean Project.

Because the Build Automatically option is turned on by default, the application builds
automatically after a clean process runs.

2. Select Run > Run Configurations.

3. Click the STDIO Connection tab and specify the following settings:

- Enable STDIO to Console.

- Select the corresponding port viewed from Device Manager. Recall that you
determined the port in “Connect the Board,” page 6.

- Set the BAUD Rate to 9600.

4. Select Run > Run As > Launch on Hardware.

5. You should see the kernel start up and print messages in the SDK Console, as
displayed below. The shell starts to run, clears the screen, and presents a prompt for
you to type your commands.

XMK: Starting kernel.
XMK: Initializing Hardware.
XMK: System initialization.
XMK: Process scheduling starts.
Idle Task
Idle Task
Idle Task SHELL: Starting clock...
CLOCK: Successfully registered a handler for extra timer interrupts.
CLOCK: Configuring extra timer to generate one interrupt per second..
CLOCK: Enabling the interval timer interrupt...

When the shell successfully starts, type run N, where N is the demo application number,
to launch the application number. You can also print the full command list by typing help.

Try these demo applications. Details about these applications are described in “Demo
Application Description,” page 15.

Hardware Design

This section describes the details of the hardware design, including the design file
functions, clock structure, IP core bus connection, and memory map.

The design is described entirely within EDK to simplify the design flow. It is created using
Base System Builder with the cores being configured as mentioned in the memory map.

The design contains the following peripherals in the EDK installation directory.

http://www.xilinx.com

8 www.xilinx.com Xilkernel on a MicroBlaze Processor

UG758 (v14.1) April 24, 2012

Hardware Design

Hardware Design Files

A listing of the relevant files in the design is shown in Table 1.

IP Source Version

The reference design uses the latest IP cores from EDK 14.1. A list of used IP cores and their
versions is shown in Table 2.

Table 1: EDK Hardware Design Files Description

Directory File Description

<project>
system.xmp XPS project file

system.mhs Microprocessor Hardware Specification file

<project>/data system.ucf
Timing constraints and pin locations for ML605
demonstration board

<project>/etc

bitgen.opt Bitgen command line options

download.cmd
IMPACT command file for downloading
download.bit

fast_runtime
.opt

XFLOW option file for Translate, MAP, and PAR

Table 2: IP Source Version

Core Name Version

microblaze 8.30a

axi_interconnect 1.06a

mdm 2.00b

lmb_v10 2.00b

lmb_bram_if_cntlr 3.00b

axi_uartlite 1.02a

proc_sys_reset 3.00.a

axi_timer 1.03a

axi_v6_ddrx 1.05.a

clock_generator 4.03.a

axi_intc 1.02a

bram_block 1.00a

http://www.xilinx.com

Xilkernel on a MicroBlaze Processor www.xilinx.com 9

UG758 (v14.1) April 24, 2012

Hardware Design

Bus Connection and Memory Map

The memory for this design consists of 8 KB of block RAM connected via the LMB bus to
both the data and instruction side of the processor, and 64 MB of external DDR3 SRAM
with 8 KB ICACHE and 8 KB DCACHE attaching to an AXI interconnect with AXI4 spec to
achieve high performance. The peripherals are connected to another AXI Interconnect with
AXI4-Lite standard to reduce resource consumption.

Clocking

The oscillator on the board generates a 200 MHz clock that is connected to the Clock
Generator core in EDK. The Clock Generator core uses an MMCM to output the required
100 MHz, 200 MHz, or 400 MHz clock.

Table 3: Memory Map

Bus IP Base Address High Address Size

LMB Bus microblaze_0_i_bram_ctrl 0x00000000 0x00001FFF 8K

microblaze_0_d_bram_ctrl 0x00000000 0x00001FFF 8K

AXI Interconnect

RS232_Uart_1 0x40600000 0x4060FFFF 64K

microblaze_0_intc 0x41200000 0x4120FFFF 64K

axi_timer_0 0x41C00000 0x41C0FFFF 64K

axi_timer_1 0x41C200000 0x41C2FFFF 64K

debug_module 0x74800000 0x7480FFFF 64K

AXI_Interconnect DDR3_SDRAM 0xBC000000 0XBFFFFFFF 64M

Table 4: Clocking Explanations

Input Output Usage

200 MHz 100 MHz MicroBlaze, AXI Interconnect, LMB bus, and peripherals

200 MHz DDR Controller

400 MHz DDR Controller

http://www.xilinx.com

10 www.xilinx.com Xilkernel on a MicroBlaze Processor

UG758 (v14.1) April 24, 2012

Software Design

Software Design

The software design is constructed by the application and the board support package
(BSP), which includes the Xilkernel RTOS and drivers for various IP.

This section describes the software related files, Xilkernel settings, and the application
design details that illustrate the basic use of most common RTOS services. These services
include process creation, inter-process communication, and interrupt.

Software Demo Application and Associated Files

The Xilkernel demonstration is organized as one software application project. You can
browse through the sources in the SDK/Workspace/xilkernel_demo directory as you
work through this demo. It consists of the following application threads:

Table 5: Application Threads and Associated Files

Thread Description
Associated

File

shell Main controlling thread. Presents a shell with a few simple
commands and from which you can launch the other demo
threads.

shell.c

prodcon Producer consumer example thread(s) using message queues. prodcon.c

llist Linked list demo using the buffer memory allocation
interfaces.

llist.c

sem Semaphore example showing multiple competing threads
using semaphores to co-ordinate.

sem.c

TicTacToe Simple tic-tac-toe game, which illustrates how to dynamically
assign stack memory to a thread when creating it.

tictac.c

TimerTest Simple time management demo. timertest.c

prio Thread illustrating dynamically changing priorities and
priority queues in the kernel structures.

prio.c

mutex Mutex demo, illustrating pthread mutex locks mutexdemo.c

clock Simple thread, using the second timer device and handling
interrupts from it, to keep track of wall-clock time. This
illustrates user-level interrupt handling.

clock.c

push Simple interrupt system that detects interrupt on the external
port when a button is push on the board.

pushbutton.c

standby Simple illustration of how priority affects execution of
threads, by showing that all of the application threads can be
put into standby.

standby.c

http://www.xilinx.com

Xilkernel on a MicroBlaze Processor www.xilinx.com 11

UG758 (v14.1) April 24, 2012

Software Design

Software Platform Specification

The example system has a pre-configured software platform with chosen values for each
parameter. These Software Platform Specification values are stored in the
<PROJECT>/SDK/Workspace/xilkernel_bsp_0/system.mss file. To modify these
parameters, right-click the BSP in SDK, such as xilkernel_bsp_0, and select Board

Support Package Settings.

Review the following MSS snippet from the MicroBlaze processor example, and examine
some parameters and their definitions. The Xilkernel MSS specification is enclosed within
an OS block. The MSS example shown below is generated for this software platform.

Click a parameter to view its description.

BEGIN OS
 PARAMETER OS_NAME = xilkernel
 PARAMETER OS_VER = 5.01.a
 PARAMETER PROC_INSTANCE = microblaze_0
Specification of the intc device
 PARAMETER sysintc_spec = axi_intc_0
Specifying the standard IN / OUT device
 PARAMETER STDIN = RS232_Uart_1
 PARAMETER STDOUT = RS232_Uart_1
Enhanced features
 PARAMETER enhanced_features = true
 PARAMETER config_kill = true
Enable diagnostic/debug messages
 PARAMETER config_debug_support = true
 PARAMETER verbose = true
MSGQ's require config_bufmalloc to be true.
 PARAMETER config_bufmalloc = true
 PARAMETER mem_table = ((4,30),(8,20))
Semaphore specification
 PARAMETER config_sema = true
 PARAMETER max_sem_waitq = 10
 PARAMETER max_sem = 4
MSGQ specification
 PARAMETER config_msgq = true
 PARAMETER msgq_capacity = 10
 PARAMETER num_msgqs = 1
Configure time related features
 PARAMETER config_time = true
 PARAMETER max_tmrs = 10
Scheduling type
 PARAMETER config_sched = true
 PARAMETER max_readyq = 10
 PARAMETER n_prio = 6
 PARAMETER sched_type = SCHED_PRIO
Configure pthreads
 PARAMETER config_pthread_support = true
 PARAMETER static_pthread_table = ((shell_main,1))
 PARAMETER config_pthread_mutex = true
 PARAMETER max_pthreads = 10
MicroBlaze system timer device specification
 PARAMETER systmr_spec = true
 PARAMETER systmr_interval = 100
 PARAMETER systmr_freq = 100000000
 PARAMETER systmr_dev = axi_timer_1
END

http://www.xilinx.com

12 www.xilinx.com Xilkernel on a MicroBlaze Processor

UG758 (v14.1) April 24, 2012

Software Design

The Xilkernel MSS specification is enclosed within an OS block. The parameters in bold are
the required parameters that you must provide values for. The following table describes
each parameter.

Table 6: Software Platform Parameters

Parameter Description

OS_NAME These parameters combine to tell Libgen what the OS is.

OS_VER

STDIN These parameters provide input and output for the example
applications. In this example, you must tell Xilkernel the
instance names of the peripherals that are to be used for
standard inputs and outputs. In this case, we use the PLB
UART Lite peripheral in the system, named RS232_Uart_1,
as the input-output device.

STDOUT

proc_instance This parameter ties the OS to a particular processor in the
hardware system. In this case, it is tied to the processor
whose instance name is microblaze_0.

config_debug_support This parameter controls various aspects of debugging the
kernel.

verbose This sub-parameter of config_debug_support, if set to
true, will enable verbose messages from the kernel, such as
on error conditions. We set this to true in our example.

systmr_dev Xilkernel requires a timer to tick the kernel. This parameter
works with the systmr_freq and systmr_interval
parameters.

systmr_freq This parameter specifies the frequency at which the timer is
clocked, measured in Hertz. In this case, the timer is clocked
at 100 MHz.

systmr_interval This parameter allows you to control the time interval at
which the kernel ticks are to arrive. This is automatically
determined if a fit_timer is used, since the interval cannot be
programmed. Otherwise, a value in milliseconds is
provided. In this case, we provide a large granularity tick of
100 ms. This ensures that the output from the application
threads are not interleaved and appear mangled on the
screen. This setting directly controls the CPU budget of each
thread.

sysintc_spec The example hardware system has multiple interrupting
devices, so an interrupt controller is tied to the external
interrupt pin of the processor. In this case, the
sysintc_spec parameter is set to the instance name of the
corresponding peripheral.

config_sched You configure the scheduling scheme of the kernel with the
config_sched parameter. In this example, the scheduling
type is set as SCHED_PRIO with six priority levels, and the
length of each ready queue is 10.

sched_type

N_prio

max_readyq

http://www.xilinx.com

Xilkernel on a MicroBlaze Processor www.xilinx.com 13

UG758 (v14.1) April 24, 2012

Software Design

config_pthread_support This parameter specifies whether to support threads. Since
this example works with threads, this parameter is set to
true.

max_pthreads This parameter controls the maximum number of pthreads
that can run on Xilkernel at any instant in time.

config_sema This parameter determines whether to include semaphore
support in the kernel. In this example, config_sema
parameter is enabled.

max_sem This parameter specifies the maximum number of
semaphores required at run time.

max_sem_waitq This parameter specifies the length of each semaphore's
wait queue.

config_msgq This parameter enables the message queue category. The
message queue module depends on both the semaphore
and buffer memory allocation modules. Each message
queue uses two semaphores internally and uses block
memory allocation to allocate memory for messages in the
queue. This dependency is enforced both in the GUI and in
the library generation process with Libgen. Libgen Design
Rule Checkers (DRCs) will catch any errors due to missing
dependencies.

num_msgqs This parameter specifies the number of message queues.
This example requires a single message queue for the
producer consumer demo thread.

msgq_capacity This parameter specifies the maximum number of messages
that the queue accommodates. In this example, the message
queue can contain a maximum of 10 messages.

config_bufmal loc This parameter defines whether or not to use buffer
memory allocation. In this example, buffer memory
allocation is needed by both the message queue module and
the linked list demo thread, so the parameter is set to true.

config_pthread_mutex This parameter defines whether to enable mutex lock
support. This example has a mutex lock demo thread, so it
sets this parameter to true.

config_time This parameter defines whether to enable software timer
support. This example requires software timer support, so it
sets this parameter to true.

max_tmrs This parameter specifies the maximum number of timers.
This example uses a maximum of 10 timers for the kernel to
support.

Table 6: Software Platform Parameters (Cont’d)

Parameter Description

http://www.xilinx.com

14 www.xilinx.com Xilkernel on a MicroBlaze Processor

UG758 (v14.1) April 24, 2012

Software Design

Parameters whose default values have not been changed do not appear in the MSS file. All
of the parameters in the platform specification are translated into configuration directives
and definitions in header files. Specifically, for Xilkernel, the files os_config.h and
config_init.h are generated header files that contain C-language equivalents of the
specifications in the MSS file. For the system timer device and system interrupt controller
device specifications, the header files contain definitions of base addresses of these
devices, which are in turn used by the Xilkernel code. These header files are generated
under the main processor include directory. In this example, the include directory is <SDK
Workspace>/xilkernel_bsp0/microblaze_0/include.

The information regarding these parameters is available in the Xilkernel section of the OS
and Libraries Reference Guide (UG643), available at
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/oslib_rm.pdf.

mem_table This parameter statically specifies a list of block sizes that
the kernel will support when it starts.

It consists of a tuple (m,n) where m is the block size, and n
is the number of such blocks to be allocated. We have two
entries in this array - (4,30) and (8,20). This means that the
kernel must support up to 30 requests for memory of size 4
bytes and 20 requests for memory of size 8 bytes.

enhanced_features The enhanced_features parameter defines whether to use
enhanced features. One such feature is the ability to kill a
process, config_kill, as defined in this example. In order
to use enhanced features, the enhanced_features parameter
must be defined as true, and each feature must also be
separately included and defined as true.

config_kill

static_pthread_table This parameter specifies a list of threads to create at kernel
startup. It is made up of an array of tuples (start_func,
prio) which specifies, for each thread, the starting point of
execution (start_func) and the priority at which it starts
(prio).

For this example, the static_pthread_table parameter
is specified as (shell_main, 1). The shell_main() function
is the start of the shell, and the priority is 1.

Table 6: Software Platform Parameters (Cont’d)

Parameter Description

http://www.xilinx.com/support/documentation/sw_manuals/xilinx14
_1/oslib_rm.pdf
http://www.xilinx.com

Xilkernel on a MicroBlaze Processor www.xilinx.com 15

UG758 (v14.1) April 24, 2012

Software Design

Demo Application Description

Shell

The messages display the output of the first two programs from the execution of Xilkernel.
The lines of output that begin with “XMK: “ are debug messages from the kernel. The
kernel begins by initializing the hardware. This step includes initializing the interrupt
controller and the timer device so that the kernel is interrupted at the configured time
interval. Then Xilkernel performs a system initialization, which includes initializing data
structures inside the kernel, initializing kernel flags, and creating the statically specified
processes and threads. The threads and processes are created in the same order that they
were specified in the MSS file. There is also an idle task created by the kernel.

The shell starts, creating a clock thread that illustrates user-level interrupt handling in the
following manner:

• Initializes the extra timer peripheral to generate interrupts every one second.

• Registers a handler for this interrupt with Xilkernel.

• Initializes a semaphore with the value 0.

• Enables the interrupt.

• Performs a sem_wait() operation on the semaphore, causing the clock thread to be
blocked.

Upon each interrupt, the extra_timer_int_handler() handler resets the timer
counter device and invokes a semaphore system call to post to the semaphore. This causes
the clock thread to be unblocked once every second. Whenever the clock thread is
unblocked, it increments its concept of time, and returns to a wait operation on the
semaphore, blocking again. This simple thread illustrates how you can register handlers
for other interrupts in the system and perform communication between the interrupt
handler and your application threads, such as a semaphore post operation as in this
example. Your user-level interrupt handlers cannot invoke blocking system calls.

Using the Application Threads

There are three active threads: the idle task, the shell, and the clock. The idle task never
runs while there are other higher priority threads in the system, so you do not see it run.
The shell runs, providing a prompt on the user computer and responding to user
commands. The shell can be used to launch other example threads. The clock thread
executes every one second, when the extra timer provides an interrupt.

Consider the POSIX threads API before examining the different application threads. The
pthread API implemented in Xilkernel is very close to the POSIX standards; therefore,
many applications in the demo can be directly compiled using the compiler for any POSIX
operating system and execute without any changes.

One of the first commands used by an application creating threads is:

retval = pthread_attr_init(&attr);

This system call initializes an attributes structure pthread_attr_t that can be used to
configure the creation parameters for a new thread. It includes fields to specify the
scheduling priority, the detach state of the created thread, and the stack that is to be used.
The pthread_attr_init system call inserts default attributes in the attribute structure
specified. The default attributes are that the scheduling priority is the lowest priority of the
system, with no custom stack space and with the threads created in the default detach
state, PTHREAD_CREATE_DETACHED. This detach state specifies that the thread's

http://www.xilinx.com

16 www.xilinx.com Xilkernel on a MicroBlaze Processor

UG758 (v14.1) April 24, 2012

Software Design

resources will be automatically reclaimed and completely flushed from the system upon
the thread's termination. Specifying the detach state as PTHREAD_CREATE_JOINABLE
causes the thread's storage to be reclaimed only when another thread joins, as described in
“Making a Thread Joinable.” Use pthread_attr_init() only if you want to modify
some of these attributes later. With other system calls, you can change just the other
creation attributes, and untouched parameters will have default values. If only default
attributes are required, then do not change attributes at all; instead, use a NULL pointer in
the pthread_create() system call.

The pthread_create() system call dynamically creates a new thread:

retval = pthread_create(&tid1,&attr,thread_func,&arg1);

At the end of the create system call, a new thread is created, starting from the function
specified in the call. This thread starts in the ready state, waiting to be scheduled. The
system call returns the ID of the newly created thread in the location of the first parameter.
The thread identifier is of type pthread_t. This identifier must be used in identifying the
target of many thread operations. The created thread executes based on the scheduling
policy. For example, if the thread was created with a higher priority, then it executes
immediately, whereas if it was created with a lower priority, it executes when the
scheduling allows it to. A thread exits by invoking the following code:

pthread_exit(&ret);

Alternatively, a thread that does not use the pthread_exit() call in its body invokes it
implicitly. Therefore, use pthread_exit() only if you want to return a value to the
joining thread.

Making a Thread Joinable

If a thread is configured to be joinable, the call to pthread_exit() suspends the calling
thread without reclaiming resources and context switches to the next schedulable process
or thread. The exit routine takes a pointer argument that points to a return value data
structure. This pointer argument can be reclaimed by any thread that joins with this thread.
Joins are performed with the pthread_join() system call, as shown here:

print ("-- shell going into wait-mode to join with launched
program.\r\n");
ret = pthread_join (tid, NULL);

This code snippet is run by the shell whenever it launches the application threads. It
performs a join, which causes the shell to suspend while waiting for the thread. The
thread's identifier is the value contained in tid to terminate. When the target thread
terminates, the shell is unblocked and it goes about reclaiming the resources of the target
thread. The second parameter to pthread_join(), if provided, is used for reclaiming the
return value of the terminated thread.

1. Type help in the shell to see possible commands:

shell>help

List of commands
run <program_num>: Run a program. For e.g. "run 0" loads the first
program.
time ?HHMM? : Set/Display the current time.
standby : Suspend all tasks for 10 seconds. Idle task executes.
clear : Clear the screen
list : List the programs loaded for this example system
help : This help screen
exit : Exit this shell

http://www.xilinx.com

Xilkernel on a MicroBlaze Processor www.xilinx.com 17

UG758 (v14.1) April 24, 2012

Software Design

2. Set the current time using the time command:

shell>time 0637
shell>time
Time is: 06:37:01.
shell>time 0954
shell>time
Time is: 09:54:06
shell>

Note: The clear command clears a screenful of the hyperterminal window.

3. Use the shell>standby command to have the shell create the standby thread at a
higher priority than itself:

shell>standby
Idle Task
Idle Task
Idle Task
shell>

The standby command illustrates strict priority scheduling. The shell is the highest
priority process when it is waiting for input. The shell also always performs a
pthread_join with the thread that it launches to wait for it to complete. Our standby
thread, however, performs a sleep(1000) call, causing it to suspend for 10 seconds.
Therefore, all threads are suspended and only the idle task executes.

4. Type list in the shell to view a list of programs that the shell can load. When the
standby thread terminates, then the shell gets control again and it returns the prompt.

shell>list
List of programs loaded in this example system
0: MEMORY : Linked list example using buffer memory allocation
1: SEM : Semaphores example
2: PRODCON: Producer consumer example using message queues
3: TIMER : Timer example, illustrating software timers
4: TICTAC : TicTacToe thread with dynamically assigned large stack
5: MUTEX : Mutex lock demo
6: PRIO : Priority queue demo
7: PUSH : Push Button Interrupt demo
shell>

5. Type run 0 in the hyperterminal session to run the memory allocation example. The
shell creates a new thread using the pthread_create system call with default attributes.
The output from the execution of llist.elf is shown below:

shell>run 0
-- shell going into wait-mode to join with launched program.

LLIST: Sorted Linked List Implementation.
LLIST: Demonstrates memory allocation interfaces.
LLIST: Creating block memory pool....
LLIST: Adding to list 10 statically defined elements....
(0 1 2 3 4 5 6 7 8 9)
LLIST: Deleting the list elements.. 0,5,9
LLIST: The list right now is,
(1 2 3 4 6 7 8)
LLIST: Adding to list 1535, 661, 2862 and 8.
LLIST: The list right now is,
(1 2 3 4 6 7 8 8 661 1535 2862)
LLIST: Deleting block memory pool...
LLIST: Done. Good Bye..
shell>

http://www.xilinx.com

18 www.xilinx.com Xilkernel on a MicroBlaze Processor

UG758 (v14.1) April 24, 2012

Software Design

6. This is a linked list program which uses the dynamic buffer memory allocation
interface of Xilkernel. It starts off by creating a buffer memory pool of 20 buffers, each
of size 8 bytes with the bufcreate() system call.

i = bufcreate (&mbuft, membuf, 20, 8);
If the call returns successfully, it returns the identifier of the
created memory buffer in mbuft. Every time the application thread needs
to add an element to the linked list, it invokes bufmalloc().
temp = (list_t *)bufmalloc (MEMBUF_ANY, sizeof(list_t));

The first parameter should be the identifier of the memory buffer that was created;
however, programs can obtain a buffer from any memory buffer available. This program
illustrates such a usage of the bufmalloc() interface. When you invoke bufmalloc()
with MEMBUF_ANY as the memory buffer identifier, it requests that the kernel finds the
requested sized block from any memory buffer available. The linked list thread, t, deletes
an element and releases storage for that element with the buffree() method. The
application starts by adding some elements, then removing some, then again adding some
and terminating.

Semaphore Example

Among the system calls used in this example thread, of interest are the POSIX compliant
semaphore calls, as described below:

• Creating a semaphore and getting a handle to it:

sem_init (&protect, 1, 1)

The sem_init() system call creates a new semaphore inside the kernel and returns
the identifier of the created semaphore in the location passed as the first parameter.
This identifier is of type sem_t. The second argument is ignored. The third argument
provides the initial value of the semaphore.

• Performing a wait operation on the semaphore:

sem_wait (&rzvous_1)

The wait operation blocks execution of the calling process until the semaphore is
successfully acquired. The semaphore's value indicates the current state of the
semaphore. If the semaphore value is greater than zero, then the process decrements
this value and successfully acquires the semaphore. If it is less than or equal to zero,
then the process blocks.

• Performing a post operation on the semaphore:

sem_post (&rzvous_1)

The post operation increments the value of the referenced semaphore. If the
semaphore value indicates that there are processes waiting to acquire the semaphore,
then it unblocks exactly one waiting process from the waiting queue. This queue is a
priority queue when scheduling is priority driven.

• Destroying the semaphore:

sem_destroy (&protect)

This call de-allocates the semaphore resources and removes it from the system. This
call fails if there are processes blocked on the semaphore.

http://www.xilinx.com

Xilkernel on a MicroBlaze Processor www.xilinx.com 19

UG758 (v14.1) April 24, 2012

Software Design

The semaphore main thread initializes a total of three semaphores. It uses two of these as
flags to converge with two dynamically created threads. That is, it creates these
semaphores with an initial value of 0. The created threads, as one of their first steps,
perform sem_wait() on these converged semaphores. The main thread performs all the
thread creation and initialization operations, and flags the threads off by running a post on
both threads. This ensures that both threads start their critical sections as closely as
possible.

The threads then contend for the console to perform some message output operations. To
prevent the interleaving of the output on the console, they do this inside a critical section.
The protect semaphore is used to ensure mutual exclusion while executing in the critical
section. The protect semaphore has an initial value of 1. The threads use sem_wait() to
acquire the semaphore and then use sem_post() to release it when they are completed
with the critical section.

The two threads contend a couple of times and then terminate. The main thread, which
was waiting to join with these two threads, now reclaims their resources, destroys the
semaphores, and terminates. Type run 1 in the hyperterminal shell prompt to run this
example:

shell>run 1
-- shell going into wait-mode to join with launched program.
SEM: Starting...
SEM: Spawning 1...
SEM: Returned TID: 00000003
SEM: Spawning 2..
SEM: Returned TID: 00000004
SEM: Rendezvousing with 1.
SEM: Thread 1: Doing sem_wait.
SEM: Thread 1: 00000000
SEM: Thread 1: 00000001
SEM: Thread 1: 00000002
SEM: Thread 1: 00000003
SEM: Thread 1: 00000004
SEM: Thread 1: 00000005
SEM: ThreadSEM: Rendezvousing with 2.
 1: 00000006
SEM: Thread 1: 00000007
SEM: Thread 1: 00000008
SEM: Thread 1: 00000009
SEM: Thread 1: Doing sem_post.
SEM: Thread 1: Doing sem_wait.
SEM: Thread 1SEM: Thread 2: Doing sem_wait.
: 00000000
SEM: Thread 1: 00000001
SEM: Thread 1: 00000002
SEM: Thread 1: 00000003
SEM: Thread 1: 00000004
SEM: Thread 1: 00000005
SEM: Thread 1: 00000006
SEM: Thread 1: 00000007
SEM: Thread 1: 00000008
SEM: Thread 1: 00000009
SEM: Thread 1: Doing sem_post.
SEM: Thread 2: 00000000
SEM: Thread 2: 00000001
SEM: Thread 2: 00000002
SEM: Thread 2: 00000003

http://www.xilinx.com

20 www.xilinx.com Xilkernel on a MicroBlaze Processor

UG758 (v14.1) April 24, 2012

Software Design

SEM: Thread 2: 00000004
SEM: Thread 2: 00000005
SEM: Thread 2: 00000006
SEM: Thread 2: 00000007
SEM: Thread 2: 00000008
SEM: Thread 2: 00000009
SEM: Thread 2: Doing sem_post.
SEM: Thread 2: Doing sem_wait.
SEM: Thread 2: 00000000
SEM: Thread 2: 00000001
SEM: ThreadSEM: Successfully joined with thread 1. Return value of
terminated thread: 00000064
SEM: Thread 2: 00000002
SEM: Thread 2: 00000003
SEM: Thread 2: 00000004
SEM: Thread 2: 00000005
SEM: Thread 2: 00000006
SEM: Thread 2: 00000007
SEM: Thread 2: 00000008
SEM: Thread 2: 00000009
SEM: Thread 2: Doing sem_post.
SEM: Successfully joined with thread 2. Return value of terminated
thread: 00000
0c8
SEM: Releasing misc resources..
SEM: Good bye !
shell>

Next, execute the producer consumer example. This application solves the producer
consumer problem using message queues. An application that uses message queues must
include the sys/ipc.h and sys/msg.h header files to make available standard
declarations. Consider the POSIX compliant message queue API that is used in this
example:

• Creating a message queue and getting a handle to it:

msgid = msgget (key, IPC_CREAT);

The msgget() system call creates a new message queue inside the kernel and returns
an identifier to it. When obtaining a message queue, a unique key is used to identify
the message queue. Thus two threads, by agreeing upon a command key, can operate
on the same message queue and co-ordinate.

• Performing a blocking message send:

msgsnd (msgid, &msg_p, 4, 0)

The message send operation blocks execution of the calling process until the message
in the buffer msg_p is successfully stored in the message queue. The size of the
message to be sent is passed in as an argument. You can make the message send
operation non-blocking by using IPC_NOWAIT in the flags.

• Performing a blocking message receive:

msgrcv (msgid, &msg_c, 4, 0,0)

The receive operation blocks the calling thread until a message is placed on the
message queue. The target buffer to store the message and the size of the target buffer
are also passed in as parameters. You can make the receive non-blocking by using the
IPC_NOWAIT flag. When this call returns successfully, a message is stored in the
requested buffer.

http://www.xilinx.com

Xilkernel on a MicroBlaze Processor www.xilinx.com 21

UG758 (v14.1) April 24, 2012

Software Design

• Retrieving the message queue statistics:

msgctl(msgid, IPC_STAT, &stats)

Statistics about the message queue can be retrieved using the msgctl() API. The
statistics are placed in the stats structure, which is of type msgid_ds. The statistics that
can be retrieved are the number of messages in the queue, the maximum size of the
message queue, the identifier of the last process that performed a send operation on
the queue, and the identifier of the last process that performed a receive on the queue.

• Removing the message queue:

msgctl(msgid, IPC_RMID, NULL)

The message queue is removed, again, with the msgctl() API. The operation
requested should be IPC_RMID. This forcefully clears the message queue and flushes
out messages that are in the queue and processes that are waiting on the message
queue, either on a send or a receive.

The message queue application begins by creating two threads: a producer thread and a
consumer thread. The producer thread continues producing all of the english alphabets
from a to t while the consumer consumes the same. One way to synchronize both the
producer and the consumer is to use message queues to store whatever the producer
produces, and have the consumer consume from the message queue, which acts as the
synchronizing agent in this case. Both the producer and the consumer block sends and
receives. Therefore, the producer blocks when all the production buffers (message queue)
are full and is unblocked whenever the consumer consumes a message. Similarly, the
consumer blocks on empty buffers and gets unblocked whenever the producer produces
an item. The main thread also performs some additional operations, such as requesting the
statistics of the message queue, verifying that it cannot acquire an existing message queue
in exclusive mode, removing the message queue from the system, and ensuring that
processes that are blocked on the queue are flushed out of the queue.

Type run 2 in the hyperterminal shell prompt. The following code displays the output
from this example:

shell>run 2
-- shell going into wait-mode to join with launched program.
PRODCON: Starting..
PRODCON: Spawning Producer..
PRODCON: Producer -- Start !
PRODCON: Producer -- a
PRODCON: Producer -- b
PRODCON: Producer -- c
PRODCON: Producer -- d
PRODCON: Producer -- e
PRODCON: Producer -- f
PRODCON: Producer -
PRODCON: Returned TID: 00000003
PRODCON: Spawning consumer...
- g
PRODCON: Producer -- h
PRODCON: Producer -- i
PRODCON: Producer -- j
PRODCON: Consumer -- Start !

PRODCON: Returned TID: 00000004
PRODCON: Waiting for these guys to finish.
PRODCON: Producer -- k
PRODCON: Consumer -- a
PRODCON: Producer -- l
PRODCON: Consumer -- b

http://www.xilinx.com

22 www.xilinx.com Xilkernel on a MicroBlaze Processor

UG758 (v14.1) April 24, 2012

Software Design

PRODCON: Producer -- m
PRODCON: Consumer -- c
PRODCON: Producer -- n
PRODCON: Consumer -- d
PRODCON: Producer -- o
PRODCON: Consumer -- e
PRODCON: Producer -- p
PRODCON: Consumer -- f
PRODCON: Producer -- q
PRODCON: Consumer -- g
PRODCON: Producer -- r
PRODCON: Consumer -- h
PRODCON: Producer -- s
PRODCON: Consumer -- i
PRODCON: Producer -- t
PRODCON: Producer done !
PRODCON: Consumer -- j
PRODCON: Consumer -- k
PRODCON: Consumer -- l
PRODCON: Consumer -- m
PRODCON: Consumer -- n
PRODCON: Consumer -- o
PRODCON: Consumer -- p
PRODCON: Consumer -- q
PPRODCON: Successfully joined with producer. Return value of terminated
thread:
00000000
RODCON: Consumer -- r
PRODCON: Consumer -- s
PRODCON: Consumer -- t
PRODCON: Consumer -- Done. ERRORS (1 indicates error in corresponding
message):
00000000
PRODCON: Consumer -- Signalling main.
PRODCON: Starting other tests..
PRODCON: Trying to create a message queue with the same key.
PRODCON: EXCL mode...
PRODCON: SuccePRODCON: Consumer -- Doing other tests...Blocking on
message queue
ssfully failed :). Errno: 00000011
PRODCON: Retrieving msgid for already created msgQ.
PRODCON: Retrieving statistics from message queue.
PRODCON: MsgQ stats:
 msg_qnum : 00000000
 msg_qbytes : 00000000
 msg_lspid : 00000004
 msg_lrpid : 00000005
End Stats
PRODCON: Attempting to destroy message Q while a process is occupying
it.
PRODCON: Consumer -- Great! Got Kicked out of msgrcv appropriately.
PRODCON: Consumer -- Terminating.
PRODCON: Successfully removed message queue.
PRODCON: Successfully joined with consumer. Return value of terminated
thread: 0
0000000
PRODCON: Releasing misc resources..
PRODCON: Done !
shell>

http://www.xilinx.com

Xilkernel on a MicroBlaze Processor www.xilinx.com 23

UG758 (v14.1) April 24, 2012

Software Design

You can run this example an unlimited number of times. Since the semaphore and
producer consumer examples are based on the POSIX API, they should be completely
portable onto a POSIX OS without any change.

Timer Example

The following are some of the basic interfaces used in this example:

• Getting number of clock ticks elapsed since kernel start:

ticks = xget_clock_ticks ();

This routine returns the number of times the kernel received a timer interrupt, such as
a kernel tick, since the kernel was started. This is a useful measure as a kind of
timestamp, or in other time-related calculations.

• Suspending the current task for a certain number of milliseconds:

sleep(1000);

This routine causes the kernel to suspend the invoking thread for the specified number
of milliseconds. The thread regains control after the time elapses.

The timer test thread begins by creating multiple threads, each of which reports the current
timestamp. Each thread then attempts to sleep for a different time amount. This can be
seen by the idle task executing in between the suspension of the threads. The time actually
slept by each thread can be compared against wall clock time and verified.

Type run 3 in the shell prompt. The following code displays output from this demo
thread:

shell>run 3
-- shell going into wait-mode to join with launched program.
TIMER_TEST: Starting...
TIMER_TEST: Creating 3 threads...
Thread 0 starting..
Thread 0 clock ticks currently: 00021e6a. Sleeping for 6 seconds
Thread 1 starting..
Thread 1 clock ticks currently: 00021e6a. Sleeping for 1 second
Thread 2 starting..
Thread 2 clock ticks currently: 00021e6a. Sleeping for 2 seconds
TIMER_TEST: Clock ticks before: 138858.
Thread 1 done.
TIMER_TEST: Clock ticks after: 138868.
TIMER_TEST: Clock ticks before: 138868.
TIMER_TEST: Creating 1 threads...
Thread 1 starting..
Thread 1 clock ticks currently: 00021e74. Sleeping for 1 second
Idle Task
Thread 2 done.
Thread 1 done.
Idle Task
Idle Task
Thread 0 done.
TIMER_TEST: Clock ticks after: 138918.
TIMER_TEST: End demo...
shell>

http://www.xilinx.com

24 www.xilinx.com Xilkernel on a MicroBlaze Processor

UG758 (v14.1) April 24, 2012

Software Design

Tic-Tac-Toe Game

This application thread does not illustrate any kernel interfaces; however, it is slightly
unique and brings to light a common run-time requirement, the run-time stack of a thread.
Since this thread has nine levels of recursion in its MIN-MAX algorithm, it makes sense to
give a bigger stack to it. The static pthread stack size specification, however, applies
globally to all threads. You control the stack size selectively for a few special threads by
using the shell when creating the tictac thread. This example is displayed in the following
code snippet:

static char tictac_stack[TICTAC_STACK_SIZE]
__attribute__ ((aligned(4)));

.

.

.
pthread_attr_init (&attr);
if (opt == 4) {
/* Special attention to tictac thread */
pthread_attr_setstack (&attr, tictac_stack, TICTAC_STACK_SIZE);

}
ret = pthread_create (&tid, &attr, (void*)proginfo[opt].start_addr,
NULL);

Use the pthread_attr_setstack() interface to modify the default thread creation
stack attributes. Do this by assigning a memory buffer, tictac_stack in this example, to be
used as a stack and by also telling the implementation the size of the stack. Therefore, you
can selectively choose to assign a different stack space to threads, preferring over the
default fixed stack size allocated by the kernel.

Type run 4 in the shell prompt. Here is a part of the output from the tictac thread:

shell>run 4
-- shell going into wait-mode to join with launched program.
TICTAC: Game Starting
TICTAC: Current board -->

 | |
TICTAC: Make a move (1-9):
TICTAC: Current board -->
 A | |

TICTAC: I am thinking..
TICTAC: Current board -->
 A | |

X
TICTAC: Make a move (1-9):

http://www.xilinx.com

Xilkernel on a MicroBlaze Processor www.xilinx.com 25

UG758 (v14.1) April 24, 2012

Software Design

Mutex Demo Application

The following are some of the basic mutex operations that are performed by this
application.

• Initializing mutex lock:

pthread_mutex_init (&mutex, NULL)

The pthread_mutex_init() system call creates a new mutex lock within the kernel
and returns the identifier of the mutex in the location passed as the first parameter. The
type of this mutex identifier is pthread_mutex_t. The initialization call requires a
second parameter, which gives a pointer to a mutex initialization attributes structure.
Because only the basic mutex types are supported, this parameter is unused and
NULL or an attribute initialized with pthread_mutexattr_init() should be
passed in.

There is an alternative way to initialize the mutex lock statically, by assigning the value
PTHREAD_MUTEX_INITIALIZER to the pthread_mutex_t structure. This allows
the kernel to initialize the mutex lock, in a lazy fashion, whenever it is operated on for
the first time.

• Performing a lock operation on the mutex:

pthread_mutex_lock (&mutex)

This call locks the mutex for the calling process or thread and returns. If the mutex is
already locked, then the calling process or thread blocks until it is unblocked by some
mutex unlock operation.

• Performing a mutex unlock operation:

pthread_mutex_unlock (&mutex)

This call unlocks the mutex, which must be currently locked by the calling process or
thread, and returns. If there are processes blocked on the mutex, this call unlocks
exactly one of them. If scheduling is priority-driven, then it unlocks the highest-
priority process in the wait queue. If scheduling is round- robin, then it unlocks the
first process in the wait queue.

• Destroying the mutex lock:

pthread_mutex_destroy (&mutex)

This call destroys the mutex lock. No consideration is given for blocked processes and
mutex lock and unlock state.

The mutex demo application creates some configured number of threads (3 in this
case). Each thread contends for a critical section in which it increments a global
variable. The main thread looks at this global variable to reach a particular value and
then proceeds to join with the threads. The threads use the lock and unlock primitives
to access the critical section. The threads also delay inside the critical section to
demonstrate contention by other threads. There is also a "bad thread" that tries to do an
illegal operation and therefore runs into an error. There are also interfaces for testing
the recursive type pthread mutex locks.

http://www.xilinx.com

26 www.xilinx.com Xilkernel on a MicroBlaze Processor

UG758 (v14.1) April 24, 2012

Software Design

Type run5 to start the mutex demo application. The following code sample displays
the output for this example:

shell>run 5
-- shell going into wait-mode to join with launched program.
MUTEXDEMO: Starting..
MUTEXDEMO: Launching 3 contending threads..
MUTEXDEMO: Thread(0) starting...
MUTEXDEMO: Thread(0) waiting for indication from main.
MUTEXDEMO: Thread(0) waiting for indication from main.
MUTEXDEMO: Thread(0) waiting for indication from main.
MUTEXDEMO: Thread(0) waiting for indication from main.
MUTEXDEMO: Thread(0) waiting for indication from main.
MUTEXDEMO: Thread(0) waiting for indication from main.
MUTEXDEMO: Thread(0) waiting for indication frMUTEXDEMO: Thread(1)
starting...
MUTEXDEMO: Thread(1) waiting for indication from main.
MUTEXDEMO: Thread(1) waiting for indication from main.
MUTEXDEMO: Thread(1) waiting for indication from main.
MUTEXDEMO: Thread(0) waiting for indication from main.
MUTEXDEMO: Thread(0) waiting for indication from main.
MUTEXDEMO: Thread(0) waiting for indication from main.
MUTEXDEMO: Thread(0) waiting fm main.
MUTEXDEMO: Thread(1) waiting for indication from main.
MUTEXDEMO: Thread(1) waiting for indication from main.
MUTEXDEMO: Thread(1) waiting for indication from main.
MUTEXDEMO: ThreaMUTEXDEMO: Thread(2) starting...
MUTEXDEMO: Thread(2) waiting for indication from main.
MUTEXDEMO: Thread(2) waiting for indication from main.
MUTEXDEMO: Thread(2) waiting for indication fro
MUTEXDEMO: Providing indication to waiting threads to start
contending...
MUTEXDEMO: Waiting for threads to get past critical section...
or indication from main.
MUTEXDEMO: Thread(0) contending...
MUTEXDEMO: Thread(0) in critical section..Will spend some time here.
d(1) waiting for indication from main.
MUTEXDEMO: Thread(1) contending...
m main.
MUTEXDEMO: Thread(2) contending...
MUTEXDEMO: Waiting for threads to get past critical section...
MUTEXDEMO: Thread(1) in critical section..Will spend some time here.
MUTEXDEMO: Thread(0) mutex done...
MUTEXDEMO: Waiting for threads to get past critical section...
MUTEXDEMO: Thread(2) in critical section..Will spend some time here.
MUTEXDEMO: Thread(1) mutex done...
MUTEXDEMO: Thread(2) mutex done...
MUTEXDEMO: BAD_THREAD: Starting..
MUTEXDEMO: I am going to try to unlock a mutex I don't own and force an
error.
MUTEXDEMO: Good! I got the right error!
MUTEXDEMO: BAD_THREAD Done.
MUTEXDEMO: Destroying mutex locks...
MUTEXDEMO: Done. Good Bye !
shell>

You can run this demo an unlimited number of times.

http://www.xilinx.com

Xilkernel on a MicroBlaze Processor www.xilinx.com 27

UG758 (v14.1) April 24, 2012

Software Design

Next, run the last application thread. This thread illustrates priority scheduling and
dynamic priority. It also illustrates how priority is ingrained even in the wait queues of
primitives like semaphores, mutex locks, and message queues.

Create several threads with different priority ordering. All the threads block on a single
semaphore which is initialized to 0. The main thread unblocks one single thread using
sem_post. Subsequently, threads must be unblocked in priority order, instead of the
original blocking order. This is confirmed by the outputs issued by the threads. One single
LOW priority thread also tests the sem_timedwait() API by repeatedly attempting to
acquire the semaphore with a time out specified. This thread is the last thread that acquires
the semaphore, but should have timed out several times in between. The main thread joins
with the remaining threads and terminates this portion of the test.

In the second stage of the test, the main thread creates another thread at highest priority. It
then tests this thread by changing its priority at regular intervals and sleeping in the
intervals. This is confirmed by the puppet thread not producing any output in the intervals
that the main thread sleeps. The main thread then kills this puppet thread using the kill
system call.

The following are the relevant interfaces illustrated with this example:

• Specifying thread priority during creation:

spar.sched_priority = prio[i];
pthread_attr_setschedparam(&attr,&spar);

This snippet illustrates how the priority of a thread is controlled while creating a
thread. By setting the priority attribute of the thread creation attributes and passing
the same attributes structure to the pthread_create() call, the priority of a thread
is controlled.

• Dynamically changing the priority of a thread:

retval = pthread_create(&lowpriotid, &attr, low_prio_thread_func,
NULL);
spar.sched_priority = (NUM_PUPPET_THREADS - 1) - i;
if ((retval = pthread_setschedparam (puppet_tid[i], 0, &spar)) != 0)

The pthread_setschedparam() call changes the priority of a thread. This snippet
shows how the priority of the puppet threads are flipped at runtime by the main
thread.

• Advanced features: killing a thread:

if (kill (main_thread_pid) != 0) {

This snippet shows how the low priority thread kills the main thread. Notice that the
identifier passed to the kill interface is a different identifier, not of type pthread_t. This
is because POSIX threads does not define a kill() interface. This is a custom
interface exported by Xilkernel. Therefore, use the underlying process context
identifier to kill the thread. The process context identifier is retrieved by using the
following call:

main_thread_pid = get_currentPID ();

http://www.xilinx.com

28 www.xilinx.com Xilkernel on a MicroBlaze Processor

UG758 (v14.1) April 24, 2012

Software Design

Type run 6 in the shell prompt to run this application thread. The following code snippet
displays the output for this example:

shell>run 6
-- shell going into wait-mode to join with launched program.
PRIOTEST: Starting...
PRIOTEST: Spawning: 0.
Thread(0): Starting...
PRIOTEST: Returned TID: 3.
PRIOTEST: Spawning: 1.
Thread(1): Starting...
PRIOTEST: Returned TID: 4.
Thread(LOWPRIO): Starting. I should be the lowest priority of them
all...
PRIOTEST: Returned TID: 5.
PRIOTEST: Yawn..sleeping for a while (400 ms)
Thread(LOWPRIO): TIMEDOUT while trying to acquire sem.
Thread(LOWPRIO): TIMEDOUT while trying to acquire sem.
Thread(LOWPRIO): TIMEDOUT while trying to acquire sem.
PRIOTEST: Time to wake up the sleeping threads...
Thread(1): Acquired sem. Doing some processing...
Thread(1): Done...
Thread(LOWPRIO): TIMEDOUT while trying to acquire sem.
Thread(0): Acquired sem. Doing some processing...
Thread(0): Done...
PRIOTEST: Joining with threads...
PRIOTEST: Allowing the LOWPRIO thread to finish...
PRIOTEST: Joining with LOWPRIO thread...
Thread(LOWPRIO): TIMEDOUT while trying to acquire sem.
Thread(LOWPRIO): Acquired sem. Doing some processing...
Thread(LOWPRIO): Done...
PRIOTEST: Dynamic priority test phase starting !
PRIOTEST: Initializing barrier semaphore to value 0...
PRIOTEST: Creating puppet threads...
PUPPET(0): Starting...
PUPPET(0): Blocking on semaphore...
PUPPET(1): Starting...
PUPPET(1): Blocking on semaphore...
PRIOTEST: Now I am flipping the priorities of all the blocked puppet
threads.
PRIOTEST: Now I am posting to the semaphores and releasing all the
puppets.
PUPPET(1): Got semaphore...
PUPPET(1): Releasing semaphore...
PUPPET(1): DONE...
PUPPET(0): Got semaphore...
PUPPET(0): Releasing semaphore...
PUPPET(0): GRR Taking revenge for being demoted in priority..
PUPPET(0): Killing main thread before I die...
shell>PUPPET(0): SUCCESS.
PUPPET(0): DONE...

shell>

http://www.xilinx.com

Xilkernel on a MicroBlaze Processor www.xilinx.com 29

UG758 (v14.1) April 24, 2012

Software Design

Push Button Application

Xilkernel takes care of all primary interrupt handling requirements from the user
application. Xilkernel can handle multiple interrupts when connected through an interrupt
controller. An instance of interrupt controller should be provided in Xilkernel setup in
software platform settings. When interrupt occurs in Xilkernel system, an interrupt
handling routine within the kernel is called first. This handler then calls the interrupt
handler routine of the interrupt controller. From this point, the handler for the interrupt
controller invokes the user specified interrupt handlers for the various interrupting
peripherals.

There are five user level interrupt handling APIs in Xilkernel:

unsigned int register_int_handler(int_id_t id, void *handler)(void*),
void *callback)
void unregister_int_handler(int_id_t id)
void enable_interrupt(int_id_t id)
void disable_interrupt(int_id_t id)
void acknowledge_interrupt(int_id_t id)

The register_int_handler() function registers the specified user level interrupt
handler as the handler for a specified interrupt. Internally this function calls
XIntc_Connect (&sys_intc, intr_id, (XInterruptHandler)handler,
callback), which registers interrupt handler in the interrupt vector table of the Interrupt
controller for the particular source of the interrupt defined by intr_id.

When the kernel detects an interrupt, the interrupt handler in the kernel calls the interrupt
controller handler, which calls the handler registered by XIntc_connect().

Unregister_int_handler() calls XIntc_Disconnect (&sys_intc, intr_id),

enable_interrupt() calls XIntc_Enable (&sys_intc, intr_id),

disable_interrupt() calls XIntc_Disable (&sys_intc, intr_id), and

acknowledge_interrupt() calls XIntc_Acknowledge (&sys_intc, intr_id).

With interrupt in Xilkernel, it is not necessary to call in acknowledge_interrupt(); it
is automatically handled by the interrupt controller handler. However, you can change the
interrupt controller interrupt handling routine by using this API.

Interrupt Handling Mechanism in Xilkernel

This section describes the list of steps required to handle interrupts from a peripheral.

Following are the steps that were mentioned for handling interrupt in the standalone
system:

1. Define Interrupt handler for Push Button

2. Initialize exception handling for MicroBlaze processors

3. Register external interrupt handler

4. Register Push Button interrupt handler

5. Start the interrupt controller

6. Enable Push Button interrupts in the interrupt controller

7. Enable MicroBlaze processor non-critical interrupts

http://www.xilinx.com

30 www.xilinx.com Xilkernel on a MicroBlaze Processor

UG758 (v14.1) April 24, 2012

Software Design

The steps in handling interrupt in Xilkernel is the same, but some of the steps are taken
care of by the kernel. Also, the kernel provides an API to register a peripheral handler.
Following are the general steps for handling an interrupt in Xilkernel system:

1. Define the peripheral thread.

2. In the peripheral thread, register the peripheral interrupt handler using the
register_int_handler API available in Xilkernel.

3. In the peripheral thread, enable peripheral interrupt and enable interrupt for that
particular peripheral in the interrupt controller.

4. In shell_main(), start the peripheral thread.

The following steps are listed in the standalone system is handled by the kernel itself:

1. Initialization of exception handling for MicroBlaze processors

2. Registering external interrupt handler

3. Starting interrupt controller

4. Enabling MicroBlaze processor non-critical interrupts

Type run 7 in the shell prompt to run this application thread. The following code snippet
displays the output for this example:

-- shell going into wait-mode to join with launched program.
PUSH BUTTON: push_button.c
PUSH BUTTON: ***
PUSH BUTTON: -- --
PUSH BUTTON: -- Press Button --
PUSH BUTTON: -- --
PUSH BUTTON: ***
PUSH BUTTON: Press Button ten times to exit...

After pressing the middle Push Button 10 times, the application will return to the shell
main:

PUSH BUTTON: Push button interrupt[0]
PUSH BUTTON: Push button interrupt[1]
PUSH BUTTON: Push button interrupt[2]
PUSH BUTTON: Push button interrupt[3]
PUSH BUTTON: Push button interrupt[4]
PUSH BUTTON: Push button interrupt[5]
PUSH BUTTON: Push button interrupt[6]
PUSH BUTTON: Push button interrupt[7]
PUSH BUTTON: Push button interrupt[8]
PUSH BUTTON: Push button interrupt[9]
PUSH BUTTON: Exiting push_main...
shell>

When you are done with the examples, type exit in the shell prompt. This ends all the
application threads and leaves only the idle task to continue.

http://www.xilinx.com

Xilkernel on a MicroBlaze Processor www.xilinx.com 31

UG758 (v14.1) April 24, 2012

Appendix A

Additional Resources

Xilinx Resources

• Device User Guides:
http://www.xilinx.com/support/documentation/user_guides.htm

• Glossary of Terms: http://www.xilinx.com/company/terms.htm

• ISE Design Suite: Installation and Licensing Guide (UG798):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/iil.pdf

• ISE Design Suite: Release Notes Guide (UG631):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/irn.pdf

• Product Support and Documentation: http://www.xilinx.com/support

EDK Documentation

You can also access the entire documentation set online at:
http://www.xilinx.com/support/documentation/dt_edk_edk14-1.htm

Individual documents are linked below.

• EDK Concepts, Tools, and Techniques (UG683):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/edk_ctt.pdf

• EDK Profiling Guide (UG448):
http://www.xilinx.com/support/documentation/xilinx14_1/edk_prof.pdf

• Embedded System Tools Reference Manual (UG111):
http://www.xilinx.com/support/documentation/xilinx14_1/est_rm.pdf

• MicroBlaze Processor User Guide (UG081):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/
mb_ref_guide.pdf

• Platform Specification Format Reference Manual (UG642):
http://www.xilinx.com/support/documentation/xilinx14_1/psf_rm.pdf

• PowerPC 405 Processor Block Reference Guide (UG018):
http://www.xilinx.com/support/documentation/user_guides/ug018.pdf

• PowerPC 405 Processor Reference Guide (UG011):
http://www.xilinx.com/support/documentation/user_guides/ug011.pdf

• PowerPC 440 Embedded Processor Block in Virtex-5 FPGAs (UG200):
http://www.xilinx.com/support/documentation/user_guides/ug200.pdf

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=user+guide
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=glossary
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.1;d=iil.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.1;d=irn.pdf
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=support
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=edk
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.1;d=edk_ctt.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.1;d=edk_prof.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.1;d=est_rm.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;t=user+guide;d=mb_ref_guide.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.1;d=psf_rm.pdf
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=user+guide;d=ug018.pdf
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=user+guide;d=ug011.pdf
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=user+guide;d=ug200.pdf

32 www.xilinx.com Xilkernel on a MicroBlaze Processor

UG758 (v14.1) April 24, 2012

Appendix A: Additional Resources

EDK Additional Resources

• EDK Tutorials website:
http://www.xilinx.com/support/documentation/dt_edk_edk14-1_tutorials.htm

• Platform Studio and EDK website:
http://www.xilinx.com/ise/embedded_design_prod/platform_studio.htm

• XPS/EDK Supported IP website:
http://www.xilinx.com/ise/embedded/edk_ip.htm

http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.1;t=edk+tutorials
http://www.xilinx.com/ise/embedded_design_prod/platform_studio.htm
http://www.xilinx.com/ise/embedded/edk_ip.htm
http://www.xilinx.com

