
XAPP1140 (v1.0) July 27, 2009 www.xilinx.com 1

© 2009 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other countries.
The PowerPC name and logo are registered trademarks of IBM Corp. and used under license. All other trademarks are the property of their respective owners.

Summary This application note discusses an in-the-field upgrade of the Virtex®-5 FXT bitstream, Linux

kernel, and loader flash images, using the presently running Linux kernel. Upgrade files are

obtained from a USB mass storage device using the XPS USB Host core or over the network

from an FTP server.

Included
Systems

Included with this application note is one reference system built for the Xilinx ML507 Rev A

board. The reference system is available in the following ZIP file available at:

https://secure.xilinx.com/webreg/clickthrough.do?cid=133141

Introduction New features and bug fixes often necessitate upgrading flash images to replace the existing

FPGA bitstream, bootloader, Linux kernel, or file system. This presents a challenge to provide

a convenient mechanism for end users to perform this task. This application note provides a

reference system and an example methodology to perform an in the field flash upgrade. New

images may be retrieved from a USB Mass Storage device or from a network server. The

running Linux image performs the flash upgrade.

Target Audience This application note best serves users who are already adept at building and using Linux.

Hardware And
Software
Requirements

The hardware and software requirements for this reference system are:

• Xilinx ML507 Rev A board

• Xilinx Platform USB or Parallel IV programming cable

• RS232 serial cable and serial communication utility (HyperTerminal)

• Xilinx Platform Studio 11.2

• Xilinx Integrated Software Environment (ISE®) 11.2

• Xilinx Open Source Linux

• Suitable PowerPC® processor toolchain and Linux Root File System, such as DENX

ELDK.

• (optional) GIT revision control software

• SMSC EVB-USB3300-XLX USB Daughter Card

• Ethernet Cable

• FTP server

Reference
System
Specifics

The supplied PowerPC processor reference system is configured to boot from on board parallel

flash. The system also contains DDR2 Memory Controller, IIC master, Interrupt Controller, Tri-

Mode Ethernet MAC, USB Host Controller, 16550 UART, and External Memory Controller

(parallel flash) IP cores. This application note utilizes the SMSC EVB-USB-XLNX daughter

card to provide USB connectivity.

Application Note: Embedded Processing

XAPP1140 (v1.0) July 27, 2009

Embedded Platform Software and Hardware
In-the-Field Upgrade Using Linux
Author: Brian Hill

Reference System Specifics

XAPP1140 (v1.0) July 27, 2009 www.xilinx.com 2

Note: The xps_usb_host IP core version 1.00.a only supports high speed USB devices. Full speed and

low speed devices will not operate with this version of the core.

Address Map

Support Files

The reference system includes the following files which support this application note:

X-Ref Target - Figure 1

Figure 1: ML507 with SMSC EVB-USB3300-XLX USB Daughter Card

Table 1: Reference System Address Map

Peripheral Instance Base Address High Address

ppc440mc_ddr2 DDR2_SDRAM 0x00000000 0x0FFFFFFF

xps_iic IIC_EEPROM 0x81600000 0x8160FFFF

xps_intc xps_intc_0 0x81800000 0x8180FFFF

xps_ll_temac Hard_Ethernet_MAC 0x81C00000 0x81C0FFFF

xps_usb_host xps_usb_host_0 0x82400000 0x824001FF

xps_uart16550 RS232_Uart_1 0x83E00000 0x83E0FFFF

xps_mch_emc FLASH 0xFE000000 0xFFFFFFFF

ready_for_download/

download.bit FPGA bitstream

xapp1140.cmd Instructions for iMPACT

xapp1140.opt Commands for XMD

simpleImage.initrd.virtex440-ml507.elf Bootable Linux image

XAPP1140_01_062209

Executing the Reference System

XAPP1140 (v1.0) July 27, 2009 www.xilinx.com 3

Executing the
Reference
System

Using HyperTerminal or a similar serial communications utility, map the operation of the utility to

the physical COM port to be used. Then connect the UART of the board to this COM port. Set

the HyperTerminal to the Bits per second to 9600, Data Bits to 8, Parity to None, and Flow

Control to None.

Executing the Reference System using the Pre-Built Bitstream and the

Compiled Software Application

To execute the system using files in the ready_for_download/ directory in the project root

directory, follow these steps:

1. Change directories to the ready_for_download directory.

2. Use iMPACT to download the bitstream by using the following command:

impact -batch xapp1140.cmd

3. Invoke XMD and connect to the processor using the following command:

xmd -opt xapp1140.opt

4. Download and run the Linux executable using the following commands:

dow simpleImage.initrd.virtex440-ml507.elf

run

5. Proceed to the “Programming the Flash with Linux” section, using the upgrade files

provided in the ready_for_download/upgrade-image/ area.

linux/

dotconfig Linux kernel configuration

ramdisk.image.gz Linux ramdisk image

virtex440-ml507.dts Device tree hardware description

scripts/

build_rom.pl Generates a flash image suitable for use with
the enclosed loader application.

mk_download.bin.sh Converts download.bit to a file suitable for
programming into flash with Linux.

upgrade.sh Script which performs a flash upgrade.

upgrade-image/

manifest Upgrade description file

upgrade.tgz Upgrade images

loader/

loader.c Simple boot loader

loader_linker_script.ld Manually modified linker script. The loader .text
is linked to the very end of flash memory.

Obtaining the Software

XAPP1140 (v1.0) July 27, 2009 www.xilinx.com 4

Executing the Reference System from XPS for Hardware

To execute the system for hardware using XPS, follow these steps:

1. Open system.xmp in XPS.

2. Select Hardware→Generate Bitstream to generate a bitstream for the system.

3. Select Device Configuration→Download Bitstream to download the bitstream.

4. Invoke XMD and connect to the processor using the following command:

xmd -opt xapp1140.opt

5. Download and run the Linux executable using the following commands:

dow simpleImage.initrd.virtex440-ml507.elf

run

6. Proceed to the “Programming the Flash with Linux” section, using the upgrade files

provided in the ready_for_download/upgrade-image/ area.

Obtaining the
Software

The user will need to obtain source code for the Linux kernel, and the Linux kernel BSP

generator in order to complete the tasks discussed in this application note. These are available

on the Xilinx public GIT server. GIT is a distributed revision control system. Installation and

usage of GIT are beyond the scope of this application note; consult XAPP1107 for additional

information.

Obtaining the Software with GIT

Users which do not have GIT installed, or who do not wish to use GIT should proceed to the

“Obtaining a Snapshot of the Software Without GIT” section.

Users which already have GIT properly installed may obtain the latest versions of the required

software with the following commands:

1. Obtain the latest Linux 2.6 kernel

$ mkdir <project area>
$ cd <project area>
$ git clone git://git.xilinx.com/linux-2.6-xlnx.git

(OPTIONAL) Revert to the version used with this application note. This version has been

demonstrated to work as described in this document without modification. Perform after cloning

the tree.

$ cd linux-2.6-xlnx
$ git checkout 6b06f54c

2. Obtain the latest device tree generator

$ cd <project area>
$ git clone git://git.xilinx.com/device-tree.git

(OPTIONAL) Revert to the version used with this application note. This version has been

demonstrated to work as described in this document without modification. Perform after cloning

the tree.

$ cd device-tree
$ git checkout 33b0797b

Flash Organization

XAPP1140 (v1.0) July 27, 2009 www.xilinx.com 5

Obtaining a Snapshot of the Software Without GIT

A snapshot of the source tree may be obtained from git.xilinx.com as a compressed tar file.

The exact revisions used to create this application note can be obtained with the following links:

device-tree

linux-2.6-xlnx

Note: In the future these direct links may not be available, and the user may need to navigate to the

desired snapshot directly from the git.xilinx.com page.

Obtaining a Toolchain Compiler

To build any of the software used in this application note, the user will require an appropriate

PowerPC processor toolchain (compiler, linker, etc...). Linux will also require a Root File

System. If the user does not already have these resources available, the DENX ELDK 4.1 is

one example implementation which is freely available. This application note utilizes the ELDK,

which can be found at http://www.denx.de/wiki/DULG/ELDK. Toolchain installation is beyond

the scope of this application note.

Flash
Organization

The onboard flash must be logically divided into four separate areas to contain the various

objects needed to boot Linux in a standalone fashion. Table 2 shows the division chosen in this

application note.

Linux requires an explicit definition of all flash sections. This explicit definition is represented by

Linux as partitions of the flash device, much like fixed disk or any other mass storage partition.

This configuration is presented in the “Prepare the Device Tree for Linux” section.

Generate the
Linux BSP

The device tree is a single text file which describes the hardware devices present in the system.

The device tree generator is used to create this BSP.

Note: The user may wish to begin with the provided xapp1140/ready_for_download/linux/virtex440-

ml507.dts device tree rather than creating one with the device tree generator.

Open the EDK project in XPS. Choose Software → Software Platform Settings. Choose

device-tree in the OS & Library Settings list box. Select version 0.00.x.

Table 2: Flash partitions

Start Address Offset Size

FPGA Bitstream 0xFE000000 0x00000000 0x00400000 (4M)

Linux Kernel 0xFE400000 0x00400000 0x00500000 (5M)

JFFS2 Filesystem 0xFE900000 0x00900000 0x01600000 (22M)

(unused) 0xFFF00000 0x01FF0000 0x000E0000 (896K)

Loadert 0xFFFE0000 0x01FE0000 0x00020000 (128K)

Generate the Linux BSP

XAPP1140 (v1.0) July 27, 2009 www.xilinx.com 6

Note: The device tree generator does not presently support the Xilinx SDK application. Instead, XPS

must be used as shown in this application note.

Click OS and Lib Configuration. Expand the device-tree item and enter RS232_Uart_1 in the

console section. Click OK.

In XPS, select Software → Generate Libraries and BSPs.

Copy <edk system>/ppc440_0/libsrc/device-tree/xilinx.dts to <project
area>/linux-2.6-xlnx/arch/powerpc/boot/dts/virtex440-ml507.dts

Prepare the Device Tree for Linux

The device tree file <project area>/linux-2.6-xlnx/arch/powerpc/boot/dts/virtex440-ml507.dts is

edited to specify the proper kernel command line. The unique Ethernet MAC address is also

specified in this file. The MAC address assigned to the user’s board is found on a sticker on the

bottom of the board.

X-Ref Target - Figure 2

Figure 2: OS & Library Settings

X-Ref Target - Figure 3

Figure 3: OS an Lib Configuration

XAPP1140_02_062209

XAPP1140_03_062209

Build the Linux Kernel

XAPP1140 (v1.0) July 27, 2009 www.xilinx.com 7

The proper modifications are shown in red:

 chosen {
 bootargs = "console=ttyS0 ip=192.168.1.10 root=/dev/ram rw
mtdparts=fe000000.flash:4M(bits),5M(zImage),22M(rootfs),896k(unused),128k
(loader)";
 } ;
...
 Hard_Ethernet_MAC: xps-ll-temac@81c00000 {
 #address-cells = <1>;
 #size-cells = <1>;
 compatible = "xlnx,compound";
 ethernet@81c00000 {
 compatible = "xlnx,xps-ll-temac-2.02.a", "xlnx,xps-ll-temac-
1.00.a";
 device_type = "network";
 interrupt-parent = <&xps_intc_0>;
 interrupts = < 3 2 >;
 llink-connected = <&DMA0>;
 local-mac-address = [00 0A 35 00 00 00];
 reg = < 0x81c00000 0x40 >;

This specifies that the root file system is a ramdisk. The flash organization shown in “Flash

Organization” is specified here. An ip address of 192.168.1.10 is statically assigned.

Build the Linux
Kernel

Copy the Ramdisk Image

Copy the provided ramdisk image to the kernel tree:

$ cp <edk project>/ready_for_download/linux/ramdisk.image.gz <project
area>/linux-2.6-xlnx/arch/powerpc/boot

Configure the Kernel

The Linux kernel is configured to include the appropriate drivers needed to access the on board

flash.

Indicate which toolchain is to be used. This below will work with a properly installed ELDK.

$ export CROSS_COMPILE ppc_4xx-
$ cd <project area>/linux-2.6-xlnx

Copy the default ML507 kernel configuration to use as a starting point

$ cp arch/powerpc/configs/44x/virtex5_defconfig .config

Build and run the kernel menu config application

$ make ARCH=powerpc menuconfig

Note: The user may choose to begin with the provided

xapp1140/ready_for_download/linux/dotconfig configuration file instead of performing the

configuration process.

Submenus are chosen with <enter>, options are modified with <space>.

1. Enable Device Drivers→ Memory Technology Device (MTD) support (with the space

bar, making an asterisk (*) appear).

2. Choose Device Drivers→ Memory Technology Device (MTD) support (enter)

a. Enable MTD partitioning support

b. Enable Command line partition table parsing

c. Enable Direct char device access to MTD devices

Build the Linux Kernel

XAPP1140 (v1.0) July 27, 2009 www.xilinx.com 8

d. Enable Caching block device access to MTD devices

3. Choose Device Drivers→ MTD Support → RAM/ROM/Flash chip drivers

a. Enable Detect flash chips by Common Flash Interface (CFI) probe

b. Enable Support for Intel/Sharp flash chips

X-Ref Target - Figure 4

Figure 4: Memory Technology Device (MTD) Support

X-Ref Target - Figure 5

Figure 5: MTD Flash Chip Drivers

XAPP1140_04_062209

XAPP1140_05_062209

Build the Linux Kernel

XAPP1140 (v1.0) July 27, 2009 www.xilinx.com 9

4. Choose Device Drivers→ MTD Support → Mapping drivers for chip access

a. Enable Flash device in physical memory map based on OF description

5. Choose Device Drivers → SCSI device support

a. Enable SCSI device support

b. Enable SCSI disk support

6. Enable Device Drivers → USB support (space)

7. Choose Device Drivers→ USB support (enter)

a. Enable Support of Host-side USB

b. Enable USB device filesystem

c. Enable EHCI HCD (USB 2.0) support

d. Enable Use Xilinx usb host EHCI controller core

e. Enable USB Mass Storage support

8. Choose File Systems → Native language support

a. Enable Codepage 850

b. Enable NLS ISO 8859-1

Note: Users in different geographic locations may need to enable Native language support for their

region (non Western European languages) to successfully mount vfat filesystems created locally.

9. Set File Systems → DOS/FAT/NT Filesystems → Default codepage for FAT to 850

10. Enable File Systems → Miscellaneous filesystems → Journalling Flash File System

v2

X-Ref Target - Figure 6

Figure 6: MTD mapping driver

XAPP1140_06_062209

The Loader

XAPP1140 (v1.0) July 27, 2009 www.xilinx.com 10

11. Exit and save the configuration.

Compile the kernel:

$ make ARCH=powerpc simpleImage.initrd.virtex440-ml507

Note: A prebuilt image simpleImage.initrd.virtex440-ml507.elf is provided in the

ready_for_download area.

The new image is created in linux-2.6-
xlnx/arch/powerpc/boot/simpleImage.initrd.virtex440-ml507.elf.

Note: Other Linux distributions and other hardware architectures often refeer to this target as a

zImage.initrd.

The Loader The simpleImage created in “Build the Linux Kernel” can not be executed directly from flash. A

small loader is required to copy the simpleImage from flash to DRAM. Rather than a loader

which parses the ELF headers of the simpleImage directly, the simpleImage is converted to an

ordinary binary, and a header is prepended to indicate where this binary blob should be copied.

This allows the loader to be very small and simple.

Generate a Binary Image of the ELF file

An absolute memory image of the Linux simpleImage is used in the flash, not the ELF file

output by the linker. The Object Copy utility is used to copy segments from the ELF file to a

binary image.

$ powerpc-eabi-objcopy -O binary simpleImage.initrd.virtex440-ml507.elf
linux.bin

The generated file linux.bin has no relocation information - the loader will not know where

it should be copied from flash.

The readelf Utility

The readelf utility is used to display the ELF headers of an executable in a textual format. This

data shows how the simpleImage should be relocated to DRAM. The data needed for the flash

loader are shown in red:

$ powerpc-eabi-readelf -e simpleImage.initrd.virtex440-ml507.elf
ELF Header:
 Magic: 7f 45 4c 46 01 02 01 00 00 00 00 00 00 00 00 00
 Class: ELF32
 Data: 2's complement, big endian
 Version: 1 (current)
 OS/ABI: UNIX - System V
 ABI Version: 0
 Type: EXEC (Executable file)
 Machine: PowerPC
 Version: 0x1
 Entry point address: 0x4008bc
 Start of program headers: 52 (bytes into file)
 Start of section headers: 3351540 (bytes into file)
 Flags: 0x8000, relocatable-lib
 Size of this header: 52 (bytes)
 Size of program headers: 32 (bytes)
 Number of program headers: 2
 Size of section headers: 40 (bytes)
 Number of section headers: 22
 Section header string table index: 19

Section Headers:
 [Nr] Name Type Addr Off Size ES Flg Lk Inf Al

The Loader

XAPP1140 (v1.0) July 27, 2009 www.xilinx.com 11

 [0] NULL 00000000 000000 000000 00 0 0 0
 [1] .text PROGBITS 00400000 010000 008d98 00 AX 0 0 4
 [2] .data PROGBITS 00409000 019000 001c64 00 WA 0 0 4
 [3] __builtin_cmdline PROGBITS 0040ac64 01ac64 000200 00 WA 0 0 4
 [4] .kernel:dtb PROGBITS 0040ae68 01ae68 002bfd 00 A 0 0 1
 [5] .kernel:vmlinux.s PROGBITS 0040e000 01e000 1853ca 00 A 0 0 1
 [6] .kernel:initrd PROGBITS 00594000 1a4000 1739e5 00 A 0 0 1
 [7] .bss NOBITS 00708000 3179e5 00cddc 00 WA 0 0 4
 [8] .debug_abbrev PROGBITS 00000000 3179e5 002747 00 0 0 1
 [9] .debug_info PROGBITS 00000000 31a12c 00a3d6 00 0 0 1
 [10] .debug_line PROGBITS 00000000 324502 001c91 00 0 0 1
 [11] .debug_frame PROGBITS 00000000 326194 0016fc 00 0 0 4
 [12] .debug_loc PROGBITS 00000000 327890 007f89 00 0 0 1
 [13] .debug_pubnames PROGBITS 00000000 32f819 000863 00 0 0 1
 [14] .debug_aranges PROGBITS 00000000 33007c 0002e0 00 0 0 1
 [15] .debug_str PROGBITS 00000000 33035c 00190a 01 MS 0 0 1
 [16] .comment PROGBITS 00000000 331c66 0003c0 00 0 0 1
 [17] .note.GNU-stack PROGBITS 00000000 332026 000000 00 0 0 1
 [18] .debug_ranges PROGBITS 00000000 332026 0002d0 00 0 0 1
 [19] .shstrtab STRTAB 00000000 3322f6 0000fe 00 0 0 1
 [20] .symtab SYMTAB 00000000 332764 001330 10 21 183 4
 [21] .strtab STRTAB 00000000 333a94 000ec6 00 0 0 1

Program Headers:
 Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
 LOAD 0x010000 0x00400000 0x00400000 0x3079e5 0x314ddc RWE 0x10000
 GNU_STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RWE 0x4

 Section to Segment mapping:
 Segment Sections...
 00 .text .data __builtin_cmdline .kernel:dtb .kernel:vmlinux.strip
.kernel:initrd .bss
 01

The data provided by readelf needed by the loader is

The build_rom.pl Script

The script build_rom.pl provided with this application note generates a binary image of the ELF

file using objdump, parses the output of readelf, and prepends a header suitable for use with a

simple loader to the binary image. The file format is shown in Table 3.

LOAD The address where the executable begins and it’s size. The simpleImage
begins at 0x00400000

Entry Point The address of the first instruction of the executable.

.bss The BSS, or Block Started by Symbol is not present within the ELF file. This
segment is the location of uninitialized global data. The loader should zero this
memory.

Table 3: Loader image header format

0 “XLNX”

1 Entry point address

2 BSS address

3 BSS size

4 Load address

5 Load size

The Loader

XAPP1140 (v1.0) July 27, 2009 www.xilinx.com 12

Generate the Flash Image

The flash image for the Linux kernel is generated with the build_rom script:

$ <edk project>/ready_for_download/scripts/build_rom.pl
simpleImage.initrd.virtex440-ml507.elf
Parsing readelf output for simpleImage.initrd.virtex440-ml507.elf
Entry: 0x4008bc
BSS: 0x00708000 52700
LOAD: 0x00400000 0x3079e5
Generating image:
Appending header:

It is seen that the first six (6) words of the generated binary file contain the expected header

information:

$ hexdump -C simpleImage.initrd.virtex440-ml507.elf.bin |head
00000000 58 4c 4e 58 00 40 08 bc 00 70 80 00 00 00 cd dc
00000010 00 40 00 00 00 30 79 e5 00 01 28 20 94 21 ff f0
00000020 7c 08 02 a6 42 9f 00 05 bf c1 00 08 7f c8 02 a6
00000030 90 01 00 14 80 1e ff f0 7f c0 f2 14 81 3e 80 00 |
00000040 80 09 00 14 2f 80 00 00 41 9e 00 0c 7c 08 03 a6
00000050 4e 80 00 21 48 00 00 00 00 01 27 e0 94 21 ff d0
00000060 7c 08 02 a6 42 9f 00 05 bf 61 00 1c 7f c8 02 a6
00000070 90 01 00 34 80 1e ff f0 7f c0 f2 14 83 fe 80 04
00000080 7f e3 fb 78 48 00 1a 89 2f 83 00 00 41 be 00 10
00000090 80 7e 80 08 48 00 14 35 4b ff ff 85 80 9e 80 0c

Generate the Loader

The loader provided with this application note is a XIlinx standalone BSP application. Generate

a linker script for the application specifying that all segments apart from the heap and the stack

should be in FLASH. The heap and the stack are assigned to DDR memory.

Note: The BSS, if used, should also be assigned to DDR. The loader application has no data in the BSS.

The EDK linker file generator will link items at the beginning of the selected memory. The flash

has been partitioned for various uses, and the loader can not reside at the beginning of flash.

The PowerPC processor boot vector is 0xFFFFFFFC, which requires that the bootloader be at

the end of flash. The generated linker script is edited to that the loader is placed at the end of

flash.

The flash base address is set to match the loader location shown in “Flash Organization”.

MEMORY
{
 DDR2_SDRAM_C_MEM_BASEADDR : ORIGIN = 0x00000000, LENGTH = 0x10000000
 FLASH_C_MEM0_BASEADDR : ORIGIN = 0xFFFE0000, LENGTH = 0x00020000
}

The application and the standalone BSP are configured to compile optimized for size -Os. Build

the loader.

An image of the loader suitable for programming into flash is generated with the objcopy utility.

$ powerpc-eabi-objcopy -O binary executable.elf loader.bin

The image file loader.bin is generated.

The FPGA Bitstream

XAPP1140 (v1.0) July 27, 2009 www.xilinx.com 13

The FPGA
Bitstream

The Virtex-5 FPGA can be configured with a parallel flash. The same flash which holds Linux,

the Linux loader and the Linux file system is used for the purpose of configuring the FPGA. This

will allow the design to be entirely standalone, eliminating the need to configure the FPGA with

impact.

1. Set the ML507 configuration switches so that the FPGA will be configured with BPI_UP

configuration 0. SW3 is set to 00001000.

2. An image file of suitable format is prepared from the download.bit file generated in

“Executing the Reference System from XPS for Hardware”.

$ cd <edk project>/implementation
$ promgen -w -p bin -c FF -o download.bin -u 0 download.bit

Note: A previously generated download.bin is available in the ready_for_download/upgrade-
image/upgrade.tgz archive.

Note: The bitstream used must use the Configuration Clock as the Startup Clock. This has already been

specified in the EDK project file etc/bitgen.ut as shown:

-g StartUpClk:CCLK

Programming
the Flash with
Linux

The previously generated download.bin, loader.bin, and

simpleImage.initrd.virtex440-ml507.elf.bin files are ready to be programmed

into flash at the offsets indicated in “Flash Organization”. The Xilinx flashwriter utility could be

used for this task, but this application note only discusses using Linux to upgrade the flash.

Consult UG111 for information on the Xilinx Flashwriter utility.

Manual Flash Programming

In order to program the flash with new flash images the files must be made available to the

running Linux image. There are numerous ways this can be accomplished, such as FTP the

files over the network, the System ACE, or USB mass storage. This application note only

discusses files on a USB mass storage device and files retrieved over the network.

X-Ref Target - Figure 7

Figure 7: ML507 SW3 Settings for BPI UP Configuration 0

XAPP1140_07_062209

Programming the Flash with Linux

XAPP1140 (v1.0) July 27, 2009 www.xilinx.com 14

Copy the files to be upgraded to a USB mass storage device. Connect the mass storage device

to the ML507. At this time, the mass storage partition should be visible to Linux:

root:/> cat /proc/partitions
major minor #blocks name

 31 0 4096 mtdblock0
 31 1 5120 mtdblock1
 31 2 22528 mtdblock2
 31 3 896 mtdblock3
 31 4 128 mtdblock4
 8 0 7872511 sda

Note: The display will vary depending on how the mass storage device used has been partitioned.

Mount the mass storage device which appears in the partition list:

root:/> mount -t vfat /dev/sda /mnt/usb

The files on the mass storage device are now available in /mnt/usb.

Erase the Partition

The FPGA bitstream is programmed first. Before programming the new image, it is necessary

to erase the appropriate flash region. The first flash partition corresponds to the bitstream:

root:/> cat /proc/mtd
dev: size erasesize name
mtd0: 00400000 00020000 "bits"
mtd1: 00500000 00020000 "zImage"
mtd2: 01600000 00020000 "rootfs"
mtd3: 000e0000 00020000 "unused"
mtd4: 00020000 00008000 "loader"

Erase MTD0:

root:/> flash_eraseall /dev/mtd0
Erasing 128 Kibyte @ 3e0000 -- 96 % complete.

Program Download.bin into the Flash:

root:/> cd /mnt/usb
root:/mnt/usb> cp download.bin /dev/mtd0

Unmount the USB mass storage device

root:/mnt/usb> cd /
root:/> umount /mnt/usb

Automated Flash Upgrade

The script upgrade.sh provided with this application note automates the upgrade procedure.

It can use upgrade images from either a USB mass storage device or over the network. When

executed with no arguments, the script will automatically mount the USB mass storage device.

If there is more than one partition on this mass storage device, only the last one is mounted (the

user must place their files on this partition). Once mounted, the script will look for a file named

manifest. If a URL is provided, the manifest file is retrieved over the network from the

specified location. The sample manifest provided with this application note is shown below:

version: 1.0
tarball: upgrade.tgz
image: mtd0 download.bin
image: mtd1 simpleImage.initrd.virtex440-ml507.elf.bin
image: mtd4 loader.bin

Programming the Flash with Linux

XAPP1140 (v1.0) July 27, 2009 www.xilinx.com 15

The manifest file specifies a version number (1.0). This version coincides with the file /version

in the Linux file system:

root:/> cat /version
version: 1.0

The tarball field indicates which compressed tar file on the USB mass storage device (or on the

network server) contains the upgrade images. In this instance, upgrade.tgz is used.

The image: fields denote which flash partition is programmed with which image file. The image

files are located within the compressed tar image.

Generate the Tarball:

Place all the image files in a subdirectory images:

$ ls images/
download.bin loader.bin simpleImage.initrd.virtex440-ml507.elf.bin

Create a compressed tar file from the images:

$ cd images
$ tar -czvf ../upgrade.tgz *
download.bin
loader.bin
simpleImage.initrd.virtex440-ml507.elf.bin

Note: Previously generated manifest and upgrade.tgz files are provided in the <EDK

project>/ready_for_download/upgrade-image/ directory.

Upgrade the Images with USB

Place the tarball and the manifest files on a USB mass storage device at the top level directory.

Connect the USB mass storage device to the ML507 and run the upgrade.sh script.

root:/> upgrade.sh
Mounting: sda
Upgrade manifest version 1.0 found
Currently installed version: 1.0
Proceed? (y/n)
y
Extracting: /mnt/usb/upgrade.tgz
Upgrading bitstream
Erasing MTD0
Erasing 128 Kibyte @ 3e0000 -- 96 % complete.
Programming MTD0
Upgrading Linux kernel
Erasing MTD1
Erasing 128 Kibyte @ 4e0000 -- 97 % complete.
Programming MTD1
Upgrading loader
Erasing MTD4
Erasing 32 Kibyte @ 18000 -- 75 % complete.
Programming MTD4
root:/>

Power Cycle the ML507.

Xilinx Loader:
Flash header at: 0xFE400000
Entry: 0x004008BC
BSS: 0x00708000
BSS Size: 0x0000CDDC
Load Addr: 0x00400000
Load Size: 0x003079E5

Programming the Flash with Linux

XAPP1140 (v1.0) July 27, 2009 www.xilinx.com 16

Zero BSS:
Copy text:
Launch:
<kernel boot messages follow>

Upgrade the Images Over the Network

The upgrade images can also be fetched over the network. As seen in “Prepare the Device Tree

for Linux” a static IP address of 192.168.1.10 is assigned to the ML507.

IP configuration and addressing are beyond the scope of this application note. While more

complex configurations are possible, the user should directly connect the ML507 to a FTP

server which has been manually configured with the IP address of 192.168.1.1 to successfully

perform the tasks outlined in this application note.

The upgrade.sh script will use the wget utility to obtain the manifest and tarball files. Any URL

supported by wget (FTP, HTTP) should function.

Place the manifest and tarball files on the FTP server and run the upgrade.sh script on the

ML507:

root:/> upgrade.sh ftp://192.168.1.1
Network upgrade from ftp://192.168.1.1
Connecting to 192.168.1.1[192.168.1.1]:21
manifest 100% |*****************************| 170 --:--:-
- ETA
Upgrade manifest version 1.0 found
Currently installed version: 1.0
Proceed? (y/n)
y
Connecting to 192.168.1.1[192.168.1.1]:21
upgrade.tgz 100% |*****************************| 3440 KB --:--:-
- ETA
Extracting: /tmp/upgrade.tgz
IMAGES: download.bin simpleImage.initrd.virtex440-ml507.elf.bin
loader.bin

Upgrading bitstream
Erasing MTD0
Erasing 128 Kibyte @ 3e0000 -- 96 % complete.
Programming MTD0

Upgrading Linux kernel
Erasing MTD1
Erasing 128 Kibyte @ 4e0000 -- 97 % complete.
Programming MTD1

Upgrading loader
Erasing MTD4
Erasing 32 Kibyte @ 18000 -- 75 % complete.
Programming MTD4

root:/>

References

XAPP1140 (v1.0) July 27, 2009 www.xilinx.com 17

Power Cycle the ML507.

Xilinx Loader:
Flash header at: 0xFE400000
Entry: 0x004008BC
BSS: 0x00708000
BSS Size: 0x0000CDDC
Load Addr: 0x00400000
Load Size: 0x003079E5
Zero BSS:
Copy text:
Launch:
<kernel boot messages follow>

References 1. UG347 ML505/506/507 Evaluation Platform

2. UG111 Embedded System Tools Reference Guide

3. XAPP1107 Getting Started Using Git

4. http://www.denx.de/wiki/DULG/ELDK DENX Embedded Linux Development Kit

5. http://git.xilinx.com Xilinx GIT server and access portal

6. http://xilinx.wikidot.com Xilinx Open Source documentation

Revision
History

The following table shows the revision history for this document.

Notice of
Disclaimer

Xilinx is disclosing this Application Note to you “AS-IS” with no warranty of any kind. This Application Note

is one possible implementation of this feature, application, or standard, and is subject to change without

further notice from Xilinx. You are responsible for obtaining any rights you may require in connection with

your use or implementation of this Application Note. XILINX MAKES NO REPRESENTATIONS OR

WARRANTIES, WHETHER EXPRESS OR IMPLIED, STATUTORY OR OTHERWISE, INCLUDING,

WITHOUT LIMITATION, IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT, OR

FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL XILINX BE LIABLE FOR ANY LOSS OF

DATA, LOST PROFITS, OR FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR INDIRECT

DAMAGES ARISING FROM YOUR USE OF THIS APPLICATION NOTE.

Date Version Description of Revisions

07/27/09 1.0 Initial Xilinx release.

