
LogiCORE IP Chroma
Resampler v2.00.a

Product Guide

PG012 April 24, 2012

Chroma Resampler v2.00.a www.xilinx.com 2

PG012 April 24, 2012

Table of Contents

Chapter 1: Overview

Feature Summary. 6

Applications . 6

Licensing . 7

Chapter 2: Product Specification

Standards Compliance . 8

Performance. 8

Resource Utilization. 11

Port Descriptions . 15

Common Interface Signals. 16

Data Interface. 17

Control Interface . 21

Register Space . 22

Chapter 3: Customizing and Generating the Core

CORE Generator GUI . 31

Generating the EDK pCore. 34

Parameter Values in the XCO File . 35

Output Generation. 35

Chapter 4: Designing with the Core

Sub-sampled Video Formats . 37

Resampling Filters . 45

General Design Guidelines . 45

Clock, Enable, and Reset Considerations . 46

System Considerations . 48

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 3

PG012 April 24, 2012

Chapter 5: Constraining the Core

Required Constraints . 50

Device, Package, and Speed Grade Selections. 50

Clock Frequencies . 50

Clock Management . 50

Clock Placement. 50

Banking . 51

Transceiver Placement . 51

I/O Standard and Placement. 51

Chapter 6: Detailed Example Design

Demonstration Test Bench . 52

Test bench structure . 52

Running the Simulation . 53

Directory and File Contents. 53

Appendix A: Verification, Compliance, and Interoperability

Simulation . 55

Hardware Testing. 55

Interoperability . 56

Appendix B: Migrating

Appendix C: Debugging

Bringing up the AXI4-Lite Interface. 59

Bringing up the AXI4-Stream Interfaces . 60

Debugging Features . 61

Appendix D: Application Software Development

Programmer’s Guide . 64

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 4

PG012 April 24, 2012

Appendix E: C Model Reference

Features . 67

Overview . 67

User Instructions . 68

Using the C Model . 69

C Model Example Code . 75

Compiling the Chroma Resampler C Model with Example Wrapper . 77

Appendix F: Additional Resources

Xilinx Resources . 79

References . 79

Technical Support . 79

Revision History . 80

Notice of Disclaimer. 80

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 5

PG012 April 24, 2012 Product Specification

Introduction

The Xilinx LogiCORE IP Chroma Resampler
provides users with an easy-to-use IP block for
converting between chroma sub-sampling
formats.

Features

� Converts between YCbCr:

° 4:4:4

° 4:2:2

° 4:2:0

� Supports both progressive and interlaced
video

� Static, predefined, powers-of-two
coefficients for low-footprint applications

� Configurable f ilters sizes with
programmable filter coeff icients for high
performance applications

� AXI4-Stream data interfaces

� Optional AXI4-Lite control interface

� Supports 8, 10, and 12-bits per color
component input and output

� Built-in, optional bypass and test-pattern
generator mode

� Built-in, optional throughput monitors

� Supports spatial resolutions from 32x32 up
to 7680x7680

° Supports 1080P60 in all supported
device families

° Supports 4kx2k @ 24 Hz in supported
high performance devices

LogiCORE IP Chroma Resampler
v2.00.a

LogiCORE IP Facts Table

Core Specifics

Supported

Device Family(1)

Zynq™-7000, Artix-7, Virtex®-7, Kintex®-7,

Virtex-6, Spartan®-6

Supported User

Interfaces
AXI4-Lite, AXI4-Stream

Resources See Table 2-1 through Table 2-6.

Provided with Core

Documentation Product Guide

Design Files NGC netlist, Encrypted HDL

Example Design Not Provided

Test Bench Verilog (2)

Constraints File Not Provided

Simulation

Models
VHDL or Verilog Structural, C-Model (2)

Tested Design Tools

Design Entry

Tools
CORE Generator™ tool, Platform Studio (XPS)

Simulation(3) Mentor Graphics ModelSim, Xilinx ISim

Synthesis Tools Xilinx Synthesis Technology (XST)

Support

Provided by Xilinx, Inc.

1. For a complete listing of supported devices, see the release
notes for this core.

2. HDL test bench and C-Model available on the product page

on Xilinx.com at www.xilinx.com/products/

intellectual-property/EF-DI-CHROM-RESAMP.htm.

3. For the supported versions of the tools, see the ISE Design

Suite 14: Release Notes Guide.

http://www.xilinx.com
www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
http://www.xilinx.com/products/intellectual-property/EF-DI-CHROM-RESAMP.htm
http://www.xilinx.com/products/intellectual-property/EF-DI-CHROM-RESAMP.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14/irn.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14/irn.pdf

Chroma Resampler v2.00.a www.xilinx.com 6

PG012 April 24, 2012

Chapter 1

Overview

It is accepted that the human eye is not as receptive to chrominance (color) detail as
luminance (brightness) detail. Using color-space conversion, it is possible to convert RGB
into the YCbCr color space, where Y is Luminance information, and Cb and Cr are derived
color difference signals. At normal viewing distances, there is no perceptible loss incurred
by sampling the color difference signals (Cb and Cr) at a lower rate to provide a simple and
effective video compression to reduce storage and transmission costs

The Chroma Resampler core converts between chroma sub-sampling formats of 4:4:4, 4:2:2,
and 4:2:0. There are a total of six conversions available for the three supported
sub-sampling formats. Conversion is achieved using a FIR filter approach. Some
conversions require f iltering in only the horizontal dimension, vertical dimension, or both.
Interpolation operations are implemented using a two-phase polyphase FIR f ilter.
Decimation operations are implemented using a low-pass FIR f ilter to suppress chroma
aliasing.

Feature Summary

The Chroma Resampler core converts between different Chroma sub-sampling formats. The
supported formats are 4:4:4, 4:2:2, and 4:2:0. There are three different options for
interpolating and decimating the video samples:

� Define a configurable f ilter with programmable coefficients for high-performance
applications

� Use the pre-defined static f ilter with power-of-two coeff icients for low-footprint
applications.

� Replicate or drop pixels.

The core can be configured and instantiated using CORE Generator or EDK tools. Core
functionality can be controlled dynamically with an optional AXI4-Lite interface.

Applications

� Pre-processing block for image sensors

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 7

PG012 April 24, 2012

Licensing

� Video surveillance

� Industrial imaging

� Video conferencing

� Machine vision

� Other imaging applications

Licensing

This Xilinx LogiCORE IP module is provided under the terms of the Xilinx Core License
Agreement. The core may be generated using either the Xilinx ISE CORE Generator tool or
Embedded Edition software (EDK). For full access to all core functionality in simulation and
in hardware, you must purchase a license for the core. Please contact your local Xilinx sales
representative for information on pricing and availability of Xilinx LogiCORE IP.

For more information, please visit the LogiCORE IP Chroma Resampler product page.

Information about this and other Xilinx LogiCORE IP modules is available at the Xilinx
Intellectual Property page. For information on pricing and availability of other Xilinx
LogiCORE modules and software, please contact your local Xilinx sales representative.

http://www.xilinx.com
http://www.xilinx.com/products/intellectual-property/EF-DI-CHROM-RESAMP.htm
http://www.xilinx.com/ipcenter/doc/xilinx_click_core_site_license.pdf
http://www.xilinx.com/ipcenter/doc/xilinx_click_core_site_license.pdf
http://www.xilinx.com/products/intellectual-property/index.htm
http://www.xilinx.com/products/intellectual-property/index.htm
http://www.xilinx.com/company/contact/index.htm

Chroma Resampler v2.00.a www.xilinx.com 8

PG012 April 24, 2012 Product Specification

Chapter 2

Product Specification

The Chroma Resampler core converts between chroma sub-sampling formats of 4:4:4, 4:2:2,
and 4:2:0. This chapter details the standards, performance, resource utilization and
interfaces.

Standards Compliance

The Chroma Resampler core is compliant with the AXI4-Stream Video Protocol and
AXI4-Lite interconnect standards. Refer to “Video IP: AXI Feature Adoption” in UG761,
Xilinx AXI Reference Guide, for additional information.

Performance

This section details the performance characteristics of the Chroma Resampler core.

Maximum Frequencies

This section contains typical clock frequencies for the target devices. The maximum
achievable clock frequency can vary. The maximum achievable clock frequency and all
resource counts can be affected by other tool options, additional logic in the FPGA device,
using a different version of Xilinx tools and other factors. Refer to Table 2-1 through
Table 2-6 for device-specific information.

Throughput

The Chroma Resampler core produces one output pixel per input sample.

The core supports bidirectional data throttling between its AXI4-Stream Slave and Master
interfaces. If the slave side data source is not providing valid data samples
(s_axis_video_tvalid is not asserted), the core cannot produce valid output samples
after its internal buffers are depleted. Similarly, if the master side interface is not ready to
accept valid data samples (m_axis_video_tready is not asserted) the core cannot
accept valid input samples once its buffers become full.

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 9

PG012 April 24, 2012 Product Specification

Performance

If the master interface is able to provide valid samples (s_axis_video_tvalid is high)
and the slave interface is ready to accept valid samples (m_axis_video_tready is high),
typically the core can process one sample and produce one pixel per ACLK cycle.

However, at the end of each scan line the core flushes internal pipelines for a number of
clock cycles equal to the latency of the core, during which the s_axis_video_tready is
de-asserted signaling that the core is not ready to process samples. Also at the end of each
frame the core flushes internal line buffers for the number of lines of latency, during which
the s_axis_video_tready is de-asserted signaling that the core is not ready to process
samples.

When the core is processing timed streaming video (which is typical for image sensors), the
flushing periods coincide with the blanking periods therefore do not reduce the throughput
of the system.

When the core is processing data from a video source which can always provide valid data,
e.g. a frame buffer, the throughput of the core can be defined as follows (assuming a worst
case latency of 18 clock cycles and 7 scan lines):

Equation 2-1

In numeric terms, 1080P/60 represents an average data rate of 124.4 MPixels/second (1080
rows x 1920 columns x 60 frames / second), and a burst data rate of 148.5 MPixels/sec.

To ensure that the core can process 124.4 MPixels/second, it needs to operate minimally at:

Equation 2-2

Latency

This section includes equations to calculate the latency of the core. NUM_H_TAPS is the
number of horizontal f ilter taps. NUM_V_TAPS is the number of vertical f ilter taps. A delay
of one line is equal to the number of video clock cycles between subsequent EOL Signal
pulses.

4:2:2 to 4:4:4

The latency through the default f ilter is eight clock cycles. For non-default f ilters, the
latency can be calculated according to the formula:

Latency = (2*NUM_H_TAPS) + 4 clock cycles

When using the replicate option, the latency is seven clock cycles.

RMAX fACLK
ROWS

ROWS 7+

----------------------×
COLS

COLS 18+

-----------------------×=

fACLK RMAX
ROWS 7+

ROWS
----------------------×

COLS 58+

COLS
-----------------------× 124.4

1087
1080
----------×

1938
1920
----------×= 126.4==

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 10

PG012 April 24, 2012 Product Specification

Performance

4:4:4 to 4:2:2

The latency through the default f ilter is ten clock cycles. For non-default f ilters, the latency
can be calculated according to the formula:

Latency = (NUM_H_TAPS + 7) clock cycles

When using the drop option, the latency is two clock cycles.

4:2:0 to 4:2:2

The latency through the default f ilter is 1 line + 10 clock cycles. For non-default f ilters, the
latency can be calculated according to the formulas:

Vertical_Latency = (NUM_V_TAPS - 1) lines

Horizontal_Latency = (NUM_V_TAPS +8) clock cycles

When using the replicate option, the latency is 5 clock cycles.

4:2:2 to 4:2:0

The latency through the default f ilter is 1 line + 7 clock cycles. For non-default f ilters, the
latency can be calculated according to the formulas:

Vertical_Latency = (NUM_V_TAPS/2) lines

Horizontal_Latency = (NUM_V_TAPS + 5) clock cycles

When using the drop option, the latency is 3 clock cycles.

4:2:0 to 4:4:4

The latency through the default f ilter is 1 line + 18 clock cycles. For non-default f ilters, the
latency can be calculated according to the formulas:

Vertical_Latency = (NUM_V_TAPS - 1) lines

Horizontal_Latency = (NUM_V_TAPS + (2*NUM_H_TAPS) + 12) clock cycles

When using the replicate option, the latency is 12 clock cycles.

4:4:4 to 4:2:0

The latency through this default f ilter is 1 line + 17 clock cycles. For non-default f ilters, the
latency can be calculated according to the formulas:

Vertical_Latency = (NUM_V_TAPS/2) lines

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 11

PG012 April 24, 2012 Product Specification

Resource Utilization

Horizontal_Latency = (NUM_H_TAPS + NUM_V_TAPS + 12) clock cycles

When using the drop option, the latency is equal to 5 clock cycles.

Resource Utilization

For an accurate measure of the usage of primitives, slices, and CLBs for a particular instance,
check the Display Core Viewer after Generation check box in the CORE Generator
interface.

The information presented in Table 2-1 through Table 2-6 is a guide to the resource
utilization and maximum clock frequency of the Chroma Resampler core for Zynq-7000,
Artix-7, Virtex-7, Kintex-7, Virtex-6, and Spartan-6 FPGA families. This core does not use
any dedicated I/O or CLK resources. The design was tested using ISE® Design Suite v14.1
with the default tool options for characterization data.

For each configuration, the resource usage and performance numbers were generated with
the following parameters:

� 1920 x 1080 frame size

� Default f ilter size

� Progressive video

� 8-bit data

� Odd Chroma parity

� AXI4-Lite interface included

Table 2-1: Zynq-7000 resource Usage

Conversion Filter Type
LUT-FF
Pairs

Slice-LUTs
Slice-

Registers

RAMB16B
WERs/

8BWERs
DSP48A1s

Clock
Frequency

(MHz)

4:4:4 to
4:2:2

Drop/Replicate 2274 2147 1601 0/0 0 246

Fixed Coeff icient 2274 2147 1601 0/0 0 246

User Defined 2259 2163 1618 0/0 3 230

4:4:4 to
4:2:0

Drop/Replicate 2233 2130 1529 0/1 0 230

Fixed Coeff icient 2513 2358 1808 0/2 0 246

User Defined 2283 2138 1608 0/2 5 239

4:2:2 to
4:4:4

Drop/Replicate 2117 2040 1479 0/0 0 246

Fixed Coeff icient 2251 2155 1593 0/0 0 230

User Defined 2266 2168 1614 0/0 2 255

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 12

PG012 April 24, 2012 Product Specification

Resource Utilization

4:2:2 to
4:2:0

Drop/Replicate 2181 2093 1465 0/1 0 239

Fixed Coeff icient 2268 2139 1592 0/2 0 255

User Defined 2283 2138 1608 0/2 2 239

4:2:0 to
4:4:4

Drop/Replicate 2368 2256 1666 0/2 0 239

Fixed Coeff icient 2798 2615 1971 0/4 0 239

User Defined 2873 2723 2027 0/4 4 263

4:2:0 to
4:2:2

Drop/Replicate 2200 2101 1528 0/2 0 222

Fixed Coeff icient 2393 2227 1682 0/4 0 239

User Defined 2430 2291 1717 0/4 2 239

Device: XC7Z030-1FFG676C (ADVANCED 1.01d 2012-04-02)

Table 2-1: Zynq-7000 resource Usage (Cont’d)

Conversion Filter Type
LUT-FF
Pairs

Slice-LUTs
Slice-

Registers

RAMB16B
WERs/

8BWERs
DSP48A1s

Clock
Frequency

(MHz)

Table 2-2: Artix-7 Resource Usage

Conversion Filter Type
LUT-FF
Pairs

Slice-LUTs
Slice-

Registers

RAMB16B
WERs/

8BWERs
DSP48A1s

Clock
Frequency

(MHz)

4:4:4 to
4:2:2

Drop/Replicate 2183 2066 1597 0/0 0 173

Fixed Coefficient 2183 2066 1597 0/0 0 173

User Defined 2222 2104 1618 0/0 3 173

4:4:4 to
4:2:0

Drop/Replicate 2169 2059 1529 0/1 0 173

Fixed Coefficient 2441 2292 1808 0/2 0 164

User Defined 2530 2339 1849 0/2 5 173

4:2:2 to
4:4:4

Drop/Replicate 2050 1944 1475 0/0 0 164

Fixed Coefficient 2160 2066 1593 0/0 0 173

User Defined 2211 2085 1614 0/0 2 173

4:2:2 to
4:2:0

Drop/Replicate 2134 2021 1465 0/1 0 173

Fixed Coefficient 2187 2077 1595 0/2 0 164

User Defined 2238 2098 1613 0/2 2 164

4:2:0 to
4:4:4

Drop/Replicate 2292 2150 1668 0/2 0 164

Fixed Coefficient 2734 2513 1972 0/4 0 173

User Defined 2803 2606 2032 0/4 4 164

4:2:0 to
4:2:2

Drop/Replicate 2175 2026 1530 0/2 0 164

Fixed Coefficient 2309 2164 1684 0/4 0 173

User Defined 2364 2219 1719 0/4 2 173

Device: XC7A100T-1FGG484C (ADVANCED 1.03j 2012-04-02)

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 13

PG012 April 24, 2012 Product Specification

Resource Utilization

Table 2-3: Virtex-7 Resource Usage

Conversion Filter Type
LUT-FF
Pairs

Slice-LUTs
Slice-

Registers

RAMB16B
WERs/

8BWERs
DSP48A1s

Clock
Frequency

(MHz)

4:4:4 to
4:2:2

Drop/Replicate 2068 1995 1446 0/0 0 232

Fixed Coeff icient 2272 2149 1601 0/0 0 273

User Defined 2284 2161 1618 0/0 3 253

4:4:4 to
4:2:0

Drop/Replicate 2244 2121 1529 0/1 0 253

Fixed Coeff icient 2506 2361 1808 0/2 0 242

User Defined 2564 2443 1848 0/2 5 253

4:2:2 to
4:4:4

Drop/Replicate 2119 2026 1479 0/0 0 253

Fixed Coeff icient 2260 2164 1593 0/0 0 263

User Defined 2273 2178 1615 0/0 2 253

4:2:2 to
4:2:0

Drop/Replicate 2182 2100 1465 0/1 0 232

Fixed Coeff icient 2272 2163 1592 0/2 0 222

User Defined 2288 2167 1609 0/2 2 212

4:2:0 to
4:4:4

Drop/Replicate 2382 2249 1666 0/2 0 263

Fixed Coeff icient 2766 2623 1971 0/4 0 253

User Defined 2889 2707 2028 0/4 4 247

4:2:0 to
4:2:2

Drop/Replicate 2208 2114 1531 0/2 0 263

Fixed Coeff icient 2368 2247 1685 0/4 0 253

User Defined 2457 2318 1718 0/4 2 202

Device: XC7V585T-1FFG1157C (ADVANCED 1.04j 2012-04-02)

Table 2-4: Kintex-7 Resource Usage

Conversion Filter Type
LUT-FF
Pairs

Slice-LUTs
Slice-

Registers

RAMB16B
WERs/

8BWERs
DSP48A1s

Clock
Frequency

(MHz)

4:4:4 to
4:2:2

Drop/Replicate 2239 2157 1601 0/0 0 255

Fixed Coefficient 2239 2157 1601 0/0 0 255

User Defined 2268 2167 1618 0/0 3 255

4:4:4 to
4:2:0

Drop/Replicate 2226 2129 1529 0/1 0 263

Fixed Coefficient 2518 2346 1808 0/2 0 255

User Defined 2586 2435 1848 0/2 5 239

4:2:2 to
4:4:4

Drop/Replicate 2105 2029 1479 0/0 0 230

Fixed Coefficient 2239 2162 1593 0/0 0 230

User Defined 2262 2181 1615 0/0 2 246

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 14

PG012 April 24, 2012 Product Specification

Resource Utilization

4:2:2 to
4:2:0

Drop/Replicate 2171 2100 1465 0/1 0 239

Fixed Coefficient 2230 2155 1592 0/2 0 255

User Defined 2288 2160 1609 0/2 2 246

4:2:0 to
4:4:4

Drop/Replicate 2388 2244 1666 0/2 0 239

Fixed Coefficient 2779 2621 1971 0/4 0 255

User Defined 2838 2712 2028 0/4 4 239

4:2:0 to
4:2:2

Drop/Replicate 2203 2120 1531 0/2 0 255

Fixed Coefficient 2365 2248 1685 0/4 0 263

User Defined 2437 2326 1718 0/4 2 239

Device: XC7K70T-1FBG484C (ADVANCED 1.04c 2012-04-02)

Table 2-4: Kintex-7 Resource Usage (Cont’d)

Conversion Filter Type
LUT-FF
Pairs

Slice-LUTs
Slice-

Registers

RAMB16B
WERs/

8BWERs
DSP48A1s

Clock
Frequency

(MHz)

Table 2-5: Virtex-6 Resource Usage

Conversion Filter Type
LUT-FF
Pairs

Slice-LUTs
Slice-

Registers

RAMB16B
WERs/

8BWERs
DSP48A1s

Clock
Frequency

(MHz)

4:4:4 to
4:2:2

Drop/Replicate 2165 2056 1601 0/0 0 246

Fixed Coeff icient 2165 2056 1601 0/0 0 246

User Defined 2175 2069 1618 0/0 3 239

4:4:4 to
4:2:0

Drop/Replicate 2084 2001 1530 0/1 0 246

Fixed Coeff icient 2381 2215 1808 0/2 0 255

User Defined 2458 2285 1847 0/2 5 239

4:2:2 to
4:4:4

Drop/Replicate 2041 1926 1479 0/0 0 231

Fixed Coeff icient 2183 2087 1595 0/0 0 246

User Defined 2196 2073 1614 0/0 2 231

4:2:2 to
4:2:0

Drop/Replicate 2040 1953 1466 0/1 0 239

Fixed Coeff icient 2171 2081 1592 0/2 0 262

User Defined 2163 2074 1608 0/2 2 239

4:2:0 to
4:4:4

Drop/Replicate 2292 2161 1667 0/2 0 255

Fixed Coeff icient 2693 2542 1971 0/4 0 255

User Defined 2738 2627 2034 0/4 4 246

4:2:0 to
4:2:2

Drop/Replicate 2122 2035 1529 0/2 0 239

Fixed Coeff icient 2262 2145 1682 0/4 0 255

User Defined 2327 2205 1717 0/4 2 255

Device: XC6VLX75T-1FF484C (PRODUCTION 1.17 2012-04-02)

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 15

PG012 April 24, 2012 Product Specification

Port Descriptions

Port Descriptions

The Chroma Resampler core uses industry standard control and data interfaces to connect
to other system components. The following sections describe the various interfaces
available with the core. Figure 2-1 illustrates an I/O diagram of the Chroma Resampler.
Some signals are optional and not present for all configurations of the core. The AXI4-Lite
interface and the IRQ pin are present only when the core is configured via the GUI with an
AXI4-Lite control interface. The INTC_IF interface is present only when the core is
configured via the GUI with the INTC interface enabled.

Table 2-6: Spartan-6 Resource Usage

Conversion Filter Type
LUT-FF
Pairs

Slice-LUTs
Slice-

Registers
RAMB16BWERs/

8BWERs
DSP48A1s

Clock Frequency
(MHz)

4:4:4 to
4:2:2

Drop/Replicate 2190 2056 1607 0/0 0 164

Fixed Coefficient 2190 2056 1607 0/0 0 164

User Defined 2226 2085 1627 0/0 3 164

4:4:4 to
4:2:0

Drop/Replicate 2184 2043 1532 1/0 0 154

Fixed Coefficient 2465 2290 1813 2/0 0 154

User Defined 2544 2372 1856 2/0 5 154

4:2:2 to
4:4:4

Drop/Replicate 2055 1949 1487 0/0 0 164

Fixed Coefficient 2211 2091 1603 0/0 0 154

User Defined 2210 2086 1626 0/0 2 154

4:2:2 to
4:2:0

Drop/Replicate 2166 2052 1470 1/0 0 154

Fixed Coefficient 2223 2073 1600 2/0 0 164

User Defined 2217 2068 1615 2/0 2 148

4:2:0 to
4:4:4

Drop/Replicate 2314 2153 1673 2/0 0 164

Fixed Coefficient 2746 2531 1982 4/0 0 164

User Defined 2790 2624 2040 4/0 4 164

4:2:0 to
4:2:2

Drop/Replicate 2158 2037 1539 2/0 0 169

Fixed Coefficient 2348 2195 1694 4/0 0 154

User Defined 2380 2231 1727 4/0 2 154

Device: XC6SLX25-2FGG484C (PRODUCTION 1.21 2012-04-02)

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 16

PG012 April 24, 2012 Product Specification

Common Interface Signals

Common Interface Signals

Table 2-7 summarizes the signals which are either shared by, or not part of the dedicated
AXI4-Stream data or AXI4-Lite control interfaces.

X-Ref Target - Figure 2-1

Figure 2-1: Chroma Resampler Top-Level Signaling Interface

Table 2-7: Common Interface Signals

Signal Name Direction Width Description

ACLK In 1 Clock

ACLKEN In 1 Clock Enable

ARESETn In 1 Active low synchronous

INTC_IF
Out 9

Optional External Interrupt Controller Interface. Available
only when INTC_IF is selected on GUI.

IRQ
Out 1

Optional Interrupt Request Pin. Available only when
AXI4-Liter interface is selected on GUI.

#HROMA฀2ESAMPLER

S?AXIS?VIDEO?TDATA

S?AXIS?VIDEO?TVALID

S?AXIS?VIDEO?TREADY

S?AXIS?VIDEO?TLAST

M?AXIS?VIDEO?TDATA

M?AXIS?VIDEO?TVALID

M?AXIS?VIDEO?TREADY

M?AXIS?VIDEO?TLAST

M?AXIS?VIDEO?TUSER

!8)�
3TREAM
3LAVE฀�INPUT	

)NTERFACE

/PTIONAL
!8)�
,ITE
#ONTROL

)NTERFACE

!8)�
3TREAM
-ASTER฀฀�OUTPUT	

)NTERFACE

S?AXIS?VIDEO?TUSER

ACLK

ACLKEN

ARESETN

S?AXI?AWADDR;����=

S?AXI?AWVALID

S?AXI?AWREADY

S?AXI?WDATA;�����=

S?AXI?WSTRB;�����=

S?AXI?WVALID

S?AXI?WREADY

S?AXI?BRESP;����=

S?AXI?BVALID

S?AXI?BREADY

S?AXI?ARADDR;����=

S?AXI?ARVALID

S?AXI?ARREADY

S?AXI?RDATA;�����=

S?AXI?RRESP;�����=

S?AXI?RVALID

S?AXI?RREADY

).4#?IF

IRQ

8�����

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 17

PG012 April 24, 2012 Product Specification

Data Interface

The ACLK, ACLKEN and ARESETn signals are shared between the core, the AXI4-Stream
data interfaces, and the AXI4-Lite control interface. Refer to The Interrupt Subsystem for a
description of the INTC_IF and IRQ pins.

ACLK

All signals, including the AXI4-Stream and AXI4-Lite component interfaces, must be
synchronous to the core clock signal ACLK. All interface input signals are sampled on the
rising edge of ACLK. All output signal changes occur after the rising edge of ACLK.

ACLKEN

The ACLKEN pin is an active-high, synchronous clock-enable input pertaining to both the
AXI4-Stream and AXI4-Lite interfaces. Setting ACLKEN low (de-asserted) halts the operation
of the core despite rising edges on the ACLK pin. Internal states are maintained, and output
signal levels are held until ACLKEN is asserted again. When ACLKEN is de-asserted, core
inputs are not sampled, except ARESETn, which supersedes ACLKEN.

ARESETn

The ARESETn pin is an active-low, synchronous reset input pertaining to both the
AXI4-Stream and AXI4-Lite interfaces. ARESETn supersedes ACLKEN, and when set to 0, the
core resets at the next rising edge of ACLK even if ACLKEN is de-asserted.

Data Interface

The Chroma Resampler receives and transmits data using AXI4-Stream interfaces that
implement a video protocol as defined in the AXI Reference Guide (UG761), Video IP: AXI
Feature Adoption section.

AXI4-Stream Signal Names and Descriptions

Table 2-8 describes the AXI4-Stream signal names and descriptions.

Table 2-8: AXI4-Stream Data Interface Signal Descriptions

Signal Name Direction Width Description

s_axis_video_tdata In 16, 24, 32, 40 Input Video Data

s_axis_video_tvalid In 1 Input Video Valid Signal

s_axis_video_tready Out 1 Input Ready

s_axis_video_tuser In 1 Input Video Start Of Frame

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 18

PG012 April 24, 2012 Product Specification

Data Interface

Video Data

The AXI4-Stream interface specif ication restricts TDATA widths to integer multiples of
8 bits. Therefore, 10 and 12 bit sensor data must be padded with zeros on the MSB to form
a 24-, 32-, or 40-bit wide vector before connecting to s_axis_video_tdata. Padding
does not affect the size of the core.

Similarly, YCbCr data on the Chroma Resampler output m_axis_video_tdata is packed
and padded to multiples of 8 bits as necessary, as seen in Figure 2-2 and Figure 2-3. Zero
padding the most signif icant bits is only necessary for 10- and 12-bit wide data.

YCbCr data is packed on the video_data bus as shown in Figure 2-4, Figure 2-5, and
Figure 2-6. For 4:4:4 chroma format, Y, Cb, and Cr are on a single bus and run at full sample
rate, as shown in Figure 2-4.

s_axis_video_tlast In 1 Input Video End Of Line

m_axis_video_tdata Out 16, 24,32,40 Output Video Data

m_axis_video_tvalid Out 1 Output Valid

m_axis_video_tready In 1 Output Ready

m_axis_video_tuser Out 1 Output Video Start Of Frame

m_axis_video_tlast Out 1 Output Video End Of Line

X-Ref Target - Figure 2-2

Figure 2-2: YCbCr Data Encoding for 4:4:4 on m_axis_video_tdata

X-Ref Target - Figure 2-3

Figure 2-3: YCbCr Data Encoding for 4:2:2 or 4:2:0 on m_axis_video_tdata

Table 2-8: AXI4-Stream Data Interface Signal Descriptions

Signal Name Direction Width Description

"IT฀��������

�฀PAD฀฀฀฀฀#OMPONENT฀#R฀฀฀฀฀฀฀฀฀฀#OMPONENT฀#B฀฀฀฀฀฀฀฀฀฀#OMPONENT฀9

8�����

8�����

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 19

PG012 April 24, 2012 Product Specification

Data Interface

For 4:2:2, Cb and Cr are interleaved on the video_data bus. The first active video data
sample contains Cb first, as shown in Figure 2-5.

For 4:2:0, the format is similar to 4:2:2, except only the alternate lines have valid chroma, as
shown in Figure 2-6. The chroma_parity register signals whether the first line has
chroma information. Cb and Cr samples are interleaved as per 4:2:2.

READY/VALID Handshake

A valid transfer occurs whenever READY, VALID, ACLKEN, and ARESETn are high at the
rising edge of ACLK, as seen in Figure 2-9. During valid transfers, DATA only carries active
video data. Blank periods and ancillary data packets are not transferred via the AXI4-Stream
video protocol.

X-Ref Target - Figure 2-4

Figure 2-4: YCbCr 4:4:4

CLK

ACTIVE?VIDEO

ACTIVE?CHROMA

VIDEO?DATA

� � � � � � � �

8�����

#B��#R��9� #B��#R��9� #B��#R��9� #B��#R��9� #B��#R��9� #B��#R��9�

X-Ref Target - Figure 2-5

Figure 2-5: YCbCr 4:2:2

CLK

ACTIVE?VIDEO

ACTIVE?CHROMA

VIDEO?DATA

� � � � � � � �

8�����

#B��9� #R��9� #B��9� #R��9� #B��9� #R��9�

X-Ref Target - Figure 2-6

Figure 2-6: YCbCr 4:2:0

ACTIVE?VIDEO

ACTIVE?CHROMA

VIDEO?DATA LINE฀� LINE฀� LINE฀� LINE฀� LINE฀� LINE฀� LINE฀�
8�����

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 20

PG012 April 24, 2012 Product Specification

Data Interface

Guidelines on Driving s_axis_video_tvalid

Once s_axis_video_tvalid is asserted, no interface signals (except the Chroma
Resampler driving s_axis_video_tready) may change value until the transaction
completes (s_axis_video_tready, s_axis_video_tvalid, and ACLKEN are high on
the rising edge of ACLK). Once asserted, s_axis_video_tvalid may only be de-asserted
after a transaction has completed. Transactions may not be retracted or aborted. In any
cycle following a transaction, s_axis_video_tvalid can either be de-asserted or remain
asserted to initiate a new transfer.

Guidelines on Driving m_axis_video_tready

The m_axis_video_tready signal may be asserted before, during or after the cycle in
which the Chroma Resampler asserted m_axis_video_tvalid. The assertion of
m_axis_video_tready may be dependent on the value of m_axis_video_tvalid. A slave
that can immediately accept data qualif ied by m_axis_video_tvalid, should pre-assert
its m_axis_video_tready signal until data is received. Alternatively,
m_axis_video_tready can be registered and driven the cycle following VALID
assertion. It is recommended that the AXI4-Stream slave should drive READY
independently, or pre-assert READY to minimize latency.

Start of Frame Signals - m_axis_video_tuser,
s_axis_video_tuser

The Start-Of-Frame (SOF) signal, physically transmitted over the AXI4-Stream TUSER0
signal, marks the f irst pixel of a video frame. The SOF pulse is 1 valid transaction wide, and
must coincide with the first pixel of the frame, as seen in Figure 2-7. SOF serves as a frame
synchronization signal, which allows downstream cores to re-initialize, and detect the f irst
pixel of a frame. The SOF signal may be asserted an arbitrary number of ACLK cycles before
the first pixel value is presented on DATA , as long as a VALID is not asserted.

X-Ref Target - Figure 2-7

Figure 2-7: Example of READY/VALID Handshake, Start of a New Frame

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 21

PG012 April 24, 2012 Product Specification

Control Interface

End of Line Signals - m_axis_video_tlast, s_axis_video_tlast

The End-Of-Line signal, physically transmitted over the AXI4-Stream TLAST signal, marks
the last pixel of a line. The EOL pulse is 1 valid transaction wide, and must coincide with the
last pixel of a scan-line, as seen in Figure 2-8.

Control Interface

When configuring the core, the user has the option to add an AXI4-Lite register interface to
dynamically control the behavior of the core. The AXI4-Lite slave interface facilitates
integrating the core into a processor system, or along with other video or AXI4-Lite
compliant IP, connected via AXI4-Lite interface to an AXI4-Lite master. In a static
configuration with a fixed set of parameters (constant configuration), the core can be
instantiated without the AXI4-Lite control interface, which reduces the core Slice footprint.

Constant Configuration

The constant configuration caters to users who will interface the core to a particular image
sensor with a known, stationary resolution, f ield parity, and chroma parity. In constant
configuration the image resolution (number of active pixels per scan line and the number of
active scan lines per frame), and the f ield parity and chroma parity are hard coded into the
core via the Chroma Resampler GUI. Since there is no AXI4-Lite interface, the core is not
programmable, but can be reset, enabled, or disabled using the ARESETn and ACLKEN
ports.

AXI4-Lite Interface

The AXI4-Lite interface allows a user to dynamically control parameters within the core.
Core configuration can be accomplished using an AXI4-Stream master state machine, or an
embedded ARM or soft system processor such as a MicroBlaze processor.

X-Ref Target - Figure 2-8

Figure 2-8: Use of EOL and SOF Signals

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 22

PG012 April 24, 2012 Product Specification

Register Space

The Chroma Resampler can be controlled via the AXI4-Lite interface using read and write
transactions to the Chroma Resampler register space.

Register Space

The standardized Xilinx Video IP register space is partitioned into control-, timing-, and
core specific registers. The Chroma Resampler uses two timing related registers:

� ACTIVE_SIZE (0x0020) allows specifying the input frame dimensions.

� ENCODING (0x0028) allows specifying the field parity and chroma parity.

The core has a set of core-specific registers that allows the resampling filter coeff icient
values to be specif ied.

Table 2-9: AXI4-Lite Interface Signals

Signal Name Direction Width Description

s_axi_lite_awvalid In 1 AXI4-Lite Write Address Channel Write Address Valid.

s_axi_lite_awread
Out 1

AXI4-Lite Write Address Channel Write Address Ready.
Indicates DMA ready to accept the write address.

s_axi_lite_awaddr In 32 AXI4-Lite Write Address Bus

s_axi_lite_wvalid In 1 AXI4-Lite Write Data Channel Write Data Valid.

s_axi_lite_wready
Out 1

AXI4-Lite Write Data Channel Write Data Ready.
Indicates DMA is ready to accept the write data.

s_axi_lite_wdata In 32 AXI4-Lite Write Data Bus

s_axi_lite_bresp
Out 2

AXI4-Lite Write Response Channel. Indicates results of
the write transfer.

s_axi_lite_bvalid
Out 1

AXI4-Lite Write Response Channel Response Valid.
Indicates response is valid.

s_axi_lite_bready
In 1

AXI4-Lite Write Response Channel Ready. Indicates
target is ready to receive response.

s_axi_lite_arvalid In 1 AXI4-Lite Read Address Channel Read Address Valid

s_axi_lite_arready
Out 1

Ready. Indicates DMA is ready to accept the read
address.

s_axi_lite_araddr In 32 AXI4-Lite Read Address Bus

s_axi_lite_rvalid Out 1 AXI4-Lite Read Data Channel Read Data Valid

s_axi_lite_rready
In 1

AXI4-Lite Read Data Channel Read Data Ready.
Indicates target is ready to accept the read data.

s_axi_lite_rdata Out 32 AXI4-Lite Read Data Bus

s_axi_lite_rresp
Out 2

AXI4-Lite Read Response Channel Response. Indicates
results of the read transfer.

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 23

PG012 April 24, 2012 Product Specification

Register Space

Table 2-10: Register Names and Descriptions

Address
(hex)

BASEADDR +
Register Name

Access
Type

Double
Buffered

Default Value Register Description

0x0000 CONTROL R/W No
Power-on-Reset:

0x0

Bit 0: SW_ENABLE

Bit 1: REG_UPDATE

Bit 4: BYPASS

Bit 5: TEST_PATTERN(1)

Bit 30: FRAME_SYNC_RESET (1: reset)

Bit 31: SW_RESET (1: reset)

0x0004 STATUS R/W No 0

Bit 0: PROC_STARTED

Bit 1: EOF

Bit 16: SLAVE_ERROR

0x0008 ERROR R/W No 0

Bit 0: SLAVE_EOL_EARLY

Bit 1: SLAVE_EOL_LATE

Bit 2: SLAVE_SOF_EARLY

Bit 3: SLAVE_SOF_LATE

0x000C IRQ_ENABLE R/W No 0
16-0: Interrupt enable bits
corresponding to STATUS bits

0x0010 VERSION R N/A 0x0500a000

7-0: REVISION_NUMBER

11-8: PATCH_ID

15-12: VERSION_REVISION

23-16: VERSION_MINOR

31-24: VERSION_MAJOR

0x0014 SYSDEBUG0 R N/A 0 0-31: Frame Throughput monitor(1)

0x0018 SYSDEBUG1 R N/A 0 0-31: Line Throughput monitor(1)

0x001C SYSDEBUG2 R N/A 0 0-31: Pixel Throughput monitor(1)

0x0020 ACTIVE_SIZE R/W Yes Specif ied via GUI

12-0: Number of Active Pixels per
Scanline

28-16: Number of Active Lines per
Frame

0x0028 ENCODING R/W Yes Specif ied via GUI

7: Field Parity

8: Chroma Parity

All other bits reserved

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 24

PG012 April 24, 2012 Product Specification

Register Space

0x0100

0x0104

0x0108

0x010C

0x0110

0x0114

0x0118

0x011C

0x0120

0x0124

0x0128

0x012C

0x0130

0x0134

0x0138

0x013C

0x0140

0x0144

0x0148

0x014C

0x0150

0x0154

0x0158

0x015C

COEF00_HPHASE0

COEF01_HPHASE0

COEF02_HPHASE0

COEF03_HPHASE0

COEF04_HPHASE0

COEF05_HPHASE0

COEF06_HPHASE0

COEF07_HPHASE0

COEF08_HPHASE0

COEF09_HPHASE0

COEF10_HPHASE0

COEF11_HPHASE0

COEF12_HPHASE0

COEF13_HPHASE0

COEF14_HPHASE0

COEF15_HPHASE0

COEF16_HPHASE0

COEF17_HPHASE0

COEF18_HPHASE0

COEF19_HPHASE0

COEF20_HPHASE0

COEF21_HPHASE0

COEF22_HPHASE0

COEF23_HPHASE0

R/W Yes
Pre-defined Fixed
Coeff icient Filter

Values

Coefficients for Horizontal Filter
Phase 0

Table 2-10: Register Names and Descriptions (Cont’d)

Address
(hex)

BASEADDR +
Register Name

Access
Type

Double
Buffered

Default Value Register Description

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 25

PG012 April 24, 2012 Product Specification

Register Space

1. Only available when the debugging features option is enabled in the GUI at the time the core is instantiated.

0x0160

0x0164

0x0168

0x016C

0x0170

0x0174

0x0178

0x017C

0x0180

0x0184

0x0188

0x018C

0x0190

0x0194

0x0198

0x019C

0x01A0

0x01A4

0x01A8

0x01AC

0x01B0

0x01B4

0x01B8

0x01BC

COEF00_HPHASE1

COEF01_HPHASE1

COEF02_HPHASE1

COEF03_HPHASE1

COEF04_HPHASE1

COEF05_HPHASE1

COEF06_HPHASE1

COEF07_HPHASE1

COEF08_HPHASE1

COEF09_HPHASE1

COEF10_HPHASE1

COEF11_HPHASE1

COEF12_HPHASE1

COEF13_HPHASE1

COEF14_HPHASE1

COEF15_HPHASE1

COEF16_HPHASE1

COEF17_HPHASE1

COEF18_HPHASE1

COEF19_HPHASE1

COEF20_HPHASE1

COEF21_HPHASE1

COEF22_HPHASE1

COEF23_HPHASE1

R/W Yes
Pre-defined Fixed
Coeff icient Filter

Values

Coefficients for Horizontal Filter
Phase 1

0x01C0

0x01C4

0x01C8

0x01CC

0x01D0

0x01D4

0x01D8

0x01DC

COEF00_VPHASE0

COEF01_VPHASE0

COEF02_VPHASE0

COEF03_VPHASE0

COEF04_VPHASE0

COEF05_VPHASE0

COEF06_VPHASE0

COEF07_VPHASE0

R/W Yes
Pre-defined Fixed
Coefficient Filter
Values

Coeff icients for Vertical Filter Phase 0

0x01E0

0x01E4

0x01E8

0x01EC

0x01F0

0x01F4

0x01F8

0x01FC

COEF00_VPHASE1

COEF01_VPHASE1

COEF02_VPHASE1

COEF03_VPHASE1

COEF04_VPHASE1

COEF05_VPHASE1

COEF06_VPHASE1

COEF07_VPHASE1

R/W Yes
Pre-defined Fixed
Coefficient Filter
Values

Coeff icients for Vertical Filter Phase 0

Table 2-10: Register Names and Descriptions (Cont’d)

Address
(hex)

BASEADDR +
Register Name

Access
Type

Double
Buffered

Default Value Register Description

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 26

PG012 April 24, 2012 Product Specification

Register Space

CONTROL (0x0000) Register

Bit 0 of the CONTROL register, SW_ENABLE, facilitates enabling and disabling the core from
software. Writing '0' to this bit effectively disables the core halting further operations,
which blocks the propagation of all video signals. After Power up, or Global Reset, the
SW_ENABLE defaults to 0 for the AXI4-Lite interface. Similar to the ACLKEN pin, the
SW_ENABLE flag is not synchronized with the AXI4-Stream interfaces: Enabling or Disabling
the core takes effect immediately, irrespective of the core processing status. Disabling the
core for extended periods may lead to image tearing.

Bit 1 of the CONTROL register, REG_UPDATE is a write done semaphore for the host
processor, which facilitates committing all user and timing register updates simultaneously.
The Chroma Resampler ACTIVE_SIZE, ENCODING, and coeff icient registers are double
buffered. One set of registers (the processor registers) is directly accessed by the processor
interface, while the other set (the active set) is actively used by the core. New values written
to the processor registers will get copied over to the active set at the end of the
AXI4-Stream frame, if and only if REG_UPDATE is set. Setting REG_UPDATE to 0 before
updating multiple register values, then setting REG_UPDATE to 1 when updates are
completed ensures all registers are updated simultaneously at the frame boundary without
causing image tearing.

Bit 4 of the CONTROL register, BYPASS, switches the core to bypass mode if debug features
are enabled. In bypass mode, the core processing function is bypassed, and the core repeats
AXI4-Stream input samples on its output. Refer to Appendix C, Debugging for more
information. If debug features were not included at instantiation, this flag has no effect on
the operation of the core. Switching bypass mode on or off is not synchronized to frame
processing, and therefore can lead to image tearing.

Bit 5 of the CONTROL register, TEST_PATTERN, switches the core to test-pattern generator
mode if debug features are enabled. Refer to Appendix C, Debugging for more information.
If debug features were not included at instantiation, this flag has no effect on the operation
of the core. Switching test-pattern generator mode on or off is not synchronized to frame
processing, therefore can lead to image tearing.

Bits 30 and 31 of the CONTROL register, FRAME_SYNC_RESET and SW_RESET facilitate
software reset. Setting SW_RESET reinitializes the core to GUI default values, all internal
registers and outputs are cleared and held at initial values until SW_RESET is set to 0. The
SW_RESET flag is not synchronized with the AXI4-Stream interfaces. Resetting the core
while frame processing is in progress will cause image tearing. For applications where the
soft-ware reset functionality is desirable, but image tearing has to be avoided a frame
synchronized software reset (FRAME_SYNC_RESET) is available. Setting
FRAME_SYNC_RESET to 1 will reset the core at the end of the frame being processed, or
immediately if the core is between frames when the FRAME_SYNC_RESET was asserted.
After reset, the FRAME_SYNC_RESET bit is automatically cleared, so the core can get ready
to process the next frame of video as soon as possible. The default value of both RESET bits
is 0. Core instances with no AXI4-Lite control interface can only be reset via the ARESETn
pin.

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 27

PG012 April 24, 2012 Product Specification

Register Space

STATUS (0x0004) Register

All bits of the STATUS register can be used to request an interrupt from the host processor.
To facilitate identif ication of the interrupt source, bits of the STATUS register remain set
after an event associated with the particular STATUS register bit, even if the event condition
is not present at the time the interrupt is serviced.

Bits of the STATUS register can be cleared individually by writing '1' to the bit position to be
cleared.

Bit 0 of the STATUS register, PROC_STARTED, indicates that processing of a frame has
commenced via the AXI4-Stream interface.

Bit 1 of the STATUS register, End-of-frame (EOF), indicates that the processing of a frame
has completed.

Bit 16 of the STATUS register, SLAVE_ERROR, indicates that one of the conditions
monitored by the ERROR register has occurred.

ERROR (0x0008) Register

Bit 16 of the STATUS register, SLAVE_ERROR, indicates that one of the conditions
monitored by the ERROR register has occurred. This bit can be used to request an interrupt
from the host processor. To facilitate identif ication of the interrupt source, bits of the
STATUS and ERROR registers remain set after an event associated with the particular ERROR
register bit, even if the event condition is not present at the time the interrupt is serviced.

Bits of the ERROR register can be cleared individually by writing '1' to the bit position to be
cleared.

Bit 0 of the ERROR register, EOL_EARLY, indicates an error during processing a video frame
via the AXI4-Stream slave port. The number of pixels received between the latest and the
preceding End-Of-Line (EOL) signal was less than the value programmed into the
ACTIVE_SIZE register.

Bit 1 of the ERROR register, EOL_LATE, indicates an error during processing a video frame
via the AXI4-Stream slave port. The number of pixels received between the last EOL signal
surpassed the value programmed into the ACTIVE_SIZE register.

Bit 2 of the ERROR register, SOF_EARLY, indicates an error during processing a video frame
via the AXI4-Stream slave port. The number of pixels received between the latest and the
preceding Start-Of-Frame (SOF) signal was less than the value programmed into the
ACTIVE_SIZE register.

Bit 3 of the ERROR register, SOF_LATE, indicates an error during processing a video frame
via the AXI4-Stream slave port. The number of pixels received between the last SOF signal
surpassed the value programmed into the ACTIVE_SIZE register.

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 28

PG012 April 24, 2012 Product Specification

Register Space

IRQ_ENABLE (0x000C) Register

Any bits of the STATUS register can generate a host-processor interrupt request via the IRQ
pin. The Interrupt Enable register facilitates selecting which bits of STATUS register will
assert IRQ. Bits of the STATUS registers are masked by (AND) corresponding bits of the
IRQ_ENABLE register and the resulting terms are combined (OR) together to generate IRQ.

Version (0x0010) Register

Bit f ields of the Version Register facilitate software identif ication of the exact version of the
hardware peripheral incorporated into a system. The core driver can take advantage of this
Read-Only value to verify that the software is matched to the correct version of the
hardware. See Table 2-10 for details.

SYSDEBUG0 (0x0014) Register

The SYSDEBUG0, or Frame Throughput Monitor, register indicates the number of frames
processed since power-up or the last time the core was reset. The SYSDEBUG registers can
be useful to identify external memory / Frame buffer / or throughput bottlenecks in a video
system. Refer to Appendix C, Debugging for more information.

SYSDEBUG1 (0x0018) Register

The SYSDEBUG1, or Line Throughput Monitor, register indicates the number of lines
processed since power-up or the last time the core was reset. The SYSDEBUG registers can
be useful to identify external memory / Frame buffer / or throughput bottlenecks in a video
system. Refer to Appendix C, Debugging for more information.

SYSDEBUG2 (0x001C) Register

The SYSDEBUG2, or Pixel Throughput Monitor, register indicates the number of pixels
processed since power-up or the last time the core was reset. The SYSDEBUG registers can
be useful to identify external memory / Frame buffer / or throughput bottlenecks in a video
system. Refer to Appendix C, Debugging for more information.

ACTIVE_SIZE (0x0020) Register

The ACTIVE_SIZE register encodes the number of active pixels per scan line and the
number of active scan lines per frame. The lower half-word (bits 12:0) encodes the number
of active pixels per scan line. Supported values are between 32 and the value provided in
the Maximum number of pixels per scan line f ield in the GUI. The upper half-word (bits
28:16) encodes the number of active lines per frame. Supported values are 32 to 7680. To

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 29

PG012 April 24, 2012 Product Specification

Register Space

avoid processing errors, the user should restrict values written to ACTIVE_SIZE to the
range supported by the core instance.

ENCODING (0x0028) Register

Bit 7 (FIELD_PARITY) indicates f ield parity (0: even/bottom field, 1: odd/top f ield) if
interlaced video is used. The host processor is not expected to update this register value on
a frame-by-frame basis. Instead, the core will toggle automatically after processing f ields,
using the programmed value as the initial value for the first f ield after the value was
committed.

Bit 8 (CHROMA_PARITY) of the ENCODING register specif ies whether the f irst line of video
contains Chroma information (1) or not (0) if YCbCr 4:2:0 encoded video being processed.

The Interrupt Subsystem

STATUS register bits can trigger interrupts so embedded application developers can
quickly identify faulty interfaces or incorrectly parameterized cores in a video system.
Irrespective of whether the AXI4-Lite control interface is present or not, the Chroma
Resampler detects AXI4-Stream framing errors, as well as the beginning and the end of
frame processing.

When the core is instantiated with an AXI4-Lite Control interface, the optional interrupt
request pin (IRQ) is present. Events associated with bits of the STATUS register can
generate a (level triggered) interrupt, if the corresponding bits of the interrupt enable
register (IRQ_ENABLE) are set. Once set by the corresponding event, bits of the STATUS
register stay set until the user application clears them by writing '1' to the desired bit
positions. Using this mechanism the system processor can identify and clear the interrupt
source.

Without the AXI4-Lite interface the user can still benefit from the core signaling error and
status events. By selecting the Enable INTC Port check-box on the GUI, the core generates
the optional INTC_IF port. This vector of signals gives parallel access to the individual
interrupt sources, as seen in Table 2-11.

Unlike STATUS and ERROR flags, INTC_IF signals are not held, rather stay asserted only
while the corresponding event persists.

Table 2-11: INTC_IF Signal Functions

INTC_IF signal Function

0 Frame processing start

1 Frame processing complete

2 Pixel counter terminal count

3 Line counter terminal count

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 30

PG012 April 24, 2012 Product Specification

Register Space

In a system integration tool, such as EDK, the interrupt controller INTC IP can be used to
register the selected INTC_IF signals as edge triggered interrupt sources. The INTC IP
provides functionality to mask (enable or disable), as well as identify individual interrupt
sources from software. Alternatively, for an external processor or MCU the user can custom
build a priority interrupt controller to aggregate interrupt requests and identify interrupt
sources.

4 Slave error

5 EOL Early

6 EOL Late

7 SOF Early

8 SOF Late

Table 2-11: INTC_IF Signal Functions

INTC_IF signal Function

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 31

PG012 April 24, 2012

Chapter 3

Customizing and Generating the Core

This chapter includes information on using Xilinx tools to customize and generate the core.

CORE Generator GUI

The Chroma Resampler LogiCORE IP is easily configured to meet the developer's specif ic
needs through the CORE Generator or EDK GUIs. This section provides a quick reference to
the parameters that can be configured at generation time.

The GUI displays a representation of the IP symbol on the left side and the parameter
assignments on the right side, which are described as follows:

� Component Name: The component name is used as the base name of output files
generated for the module. Names must begin with a letter and must be composed
from characters: a to z, 0 to 9 and “_”. The name v_cresample_v2_00_a cannot be used
as a component name.

X-Ref Target - Figure 3-1

Figure 3-1: Chroma Resampler CORE Generator GUI

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 32

PG012 April 24, 2012

CORE Generator GUI

� Video Component Width: Specif ies the bit width of input samples. Permitted values
are 8, 10 and 12 bits.

� Optional Features:

° AXI4-Lite Register Interface: When selected, the core will be generated with an
AXI4-Lite interface, which gives access to dynamically program and change
processing parameters. For more information, refer to Control Interface in
Chapter 3.

° Include Debug Features: When selected, the core will be generated with
debugging features, which simplify system design, testing and debugging. For more
information, refer to Appendix C, Debugging.

Note: Debugging features are only available when the AXI4-Lite Register Interface is
selected.

° INTC Interface: When selected, the core will generate the optional INTC_IF port,
which gives parallel access to signals indicating frame processing status and error
conditions. For more information, refer to The Interrupt Subsystem in Chapter 3.

� Input Frame Dimensions:

° Number of Active Pixels per Scan line: When the AXI4-Lite control interface is
enabled, the generated core will use the value specified in the CORE Generator GUI
as the default value for the lower half-word of the ACTIVE_SIZE register. When an
AXI4-Lite interface is not present, the GUI selection permanently defines the
horizontal size of the frames the generated core instance processes.

° Number of Active Lines per Frame: When the AXI4-Lite control interface is
enabled, the generated core will use the value specified in the CORE Generator GUI
as the default value for the upper half-word of the ACTIVE_SIZE register. When an
AXI4-Lite interface is not present, the GUI selection permanently defines the vertical
size (number of lines) of the frames the generated core instance processes.

° Maximum Number of Active Pixels Per Scan Line: Specif ies the maximum
number of pixels per scan line that can be processed by the generated core
instance. Permitted values are from 32 to 7680. Specifying this value is necessary to
establish the depth of internal line buffers. The actual value selected for Number of
Active Pixels per Scan line, or the corresponding lower half-word of the ACTIVE_SIZE
register must always be less than or equal to the value provided by Maximum
Number of Active Pixels Per Scan line. Using a tight upper-bound results in optimal
block RAM usage. This f ield is enabled only when the AXI4-Lite interface is selected.
Otherwise contents of the f ield reflect the actual contents of the Number of Active

Pixels per Scan Line f ield. In constant mode, the maximum number of pixels equals
the active number of pixels.

� Resampling: Select the input and output chroma formats. The supported formats are
4:4:4, 4:2:2, and 4:2:0.

� Chroma Parity: For 4:2:0, select odd if the f irst line of video contains chroma
information. Chroma parity is only used for 4:2:0 data.

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 33

PG012 April 24, 2012

CORE Generator GUI

� Interlaced: This box should be checked for interlaced video. The default is progressive
video. For interlaced video, it is assumed the number of rows is the same for each f ield.

� Field Parity: For interlaced video, select odd if the odd (or top) f ield comes f irst. Select
even if the even (or bottom) field comes first.

� Filter Type Selection:

° User Defined Filter : Users can program the f ilter coefficients through the AXI4-Lite
interface (option not available with the Constant Interface). Filters are initialized
with the coeff icients used for the Fixed Coefficient Low Pass Filtering option.

- Number of Horizontal Taps: The number of DSP48 multipliers that may be
used in the system for the horizontal f ilter. Maximum is 24. The drop down
menu will limit the number of taps to even or odd based on the conversion
selected.

Here is the possible number of horizontal taps based on conversion type:

- 4:4:4 to 4:2:2: 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23

- 4:2:2 to 4:4:4: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24

- 4:2:2 to 4:2:0: 0 (vertical f ilter only)

- 4:2:0 to 4:2:2: 0 (vertical f ilter only)

- 4:4:4 to 4:2:0: 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23

- 4:2:0 to 4:4:4: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24

- Number of Vertical Taps: Number of DSP48 multipliers that can be used in the
system for the vertical f ilter. Maximum is 8. The drop down menu will limit the
number of taps to be even.

Here is the possible number of vertical taps based on conversion type:

- 4:4:4 to 4:2:2: 0 (horizontal f ilter only)

- 4:2:2 to 4:4:4: 0 (horizontal f ilter only)

- 4:2:2 to 4:2:0: 2, 4, 6, 8

- 4:2:0 to 4:2:2: 2, 4, 6, 8

- 4:4:4 to 4:2:0: 2, 4, 6, 8

- 4:2:0 to 4:4:4: 2, 4, 6, 8

- Fixed Coefficient Low Pass Filtering: Filters are pre-defined and not
programmable. The filters use only power of two coefficients. So no DSP48s are

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 34

PG012 April 24, 2012

Generating the EDK pCore

necessary. Linear interpolation is employed for the low pass f ilters used for
anti-aliasing and interpolation. The default coefficients are described in the
Implementation in Chapter 4.

- Drop/Replicate Samples: Using the drop option results in down conversion
with no f ilter. Some samples are passed directly to the output, but others are
dropped entirely, as appropriate. This occurs on a line-by-line basis and on a
pixel-by-pixel basis.

The replicate option is available in all up converters. It applies in both vertical
and horizontal domains as appropriate. Using the replicate option results in up
conversion with no filter. Replication of the previous input sample occurs instead.

Generating the EDK pCore

Definitions of the EDK GUI controls are identical to the corresponding CORE Generator GUI
functions described in CORE Generator GUI, page 31.

X-Ref Target - Figure 3-2

Figure 3-2: EDK pCore GUI

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 35

PG012 April 24, 2012

Parameter Values in the XCO File

Parameter Values in the XCO File

Table 3-1 defines valid entries for the XCO parameters. Parameters are not case sensitive.
Xilinx strongly suggests that XCO parameters are not manually edited in the XCO file;
instead, use the CORE Generator tool GUI to configure the core and perform range and
parameter value checking.

Output Generation

CORE Generator will output the core as a netlist that can be inserted into a processor
interface wrapper or instantiated directly in an HDL design. The output is placed in
<project directory>.

File Details

The CORE Generator output consists of some or all the f iles listed in Table 3-2.

Table 3-1: XCO Parameters

XCO parameter Default Valid Values

component_name chroma_resampler ASCII text using characters: a..z,
0..9 and "_" starting with a letter.

Note: "v_cresample_v2_00_a" is
not allowed.

s_axis_video_data_width 8 8, 10, 12

s_axis_video_format 2 3, 2, 1

m_axis_video_format 3 3, 2, 1

has_axi4_lite false true, false

has_intc_if false true, false

has_debug false true, false

active_cols 1920 32 – 7680

active_rows 1080 32 - 7680

max_cols 1920 32 - 7680

chroma_parity odd odd, even

interlaced false true, false

field_parity odd odd, even

convert_type 1 0, 1, 2

num_h_taps 2 0 – 24

num_v_taps 0 0 - 8

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 36

PG012 April 24, 2012

Output Generation

Table 3-2: Files generated by CORE Generator

Name Description

<component_name>.xco CORE Generator input file containing the
parameters used to generate a core.

<component_name>.ngc Binary Xilinx implementation netlist f iles
containing the information required to implement
the module in a Xilinx FPGA.

<component_name>.vho

<component_name>.veo

Template f iles containing code that can be used as
a model for instantiating.

<component_name>.vhd

<component_name>.v

Structural simulation model.

/doc/pg012_v_cresample.pdf

/doc/v_cresample_v2_00_a_vinfo.html

Core documents.

<component_name>.asy Graphical symbol information f ile. Used by the ISE
tools and some third party tools to create a symbol
representing the core.

<component_name>_xmdf.tcl ISE Project Navigator interface f ile. The ISE tool
uses this f ile to determine how the f iles output by
CORE Generator for the core can be integrated into
the ISE project.

<component_name>.gise

<component_name>.xise

ISE Project Navigator support f iles. These are
generated f iles and should not be edited directly.

<component_name>_readme.txt Readme file for the IP core.

<component_name>_flist.txt Text f ile listing all of the output f iles produced
when a customized core was generated in the
CORE Generator.

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 37

PG012 April 24, 2012

Chapter 4

Designing with the Core

This chapter includes guidelines and additional information to make designing with the
core easier.

Sub-sampled Video Formats

The sub-sampling scheme is commonly expressed as a three part ratio J:a:b (for example,
4:2:2), that describes the number of luminance and chrominance samples in a conceptual
region that is J pixels wide, and 2 pixels high. The parts are (in their respective order):

� J: Horizontal sampling reference (width of the conceptual region). This is usually 4.

� a: Number of chrominance samples (Cr, Cb) in the f irst row of J pixels.

� b: Number of (additional) chrominance samples (Cr, Cb) in the second row of J pixels.

To illustrate the most common sub-sampling schemes, Figure 4-1 introduces a graphical
notation of sampling grid pixels.

4:4:4

Similar to RGB, the 4:4:4 format is used for image capture and display purposes. Cb and Cr
channels are sampled at the same rate as luminance. Hence, all pixel locations have luma

X-Ref Target - Figure 4-1

Figure 4-1: Notation

�฀ ,UMA฀/NLY฀0IXEL

�฀ #HROMA฀/NLY฀0IXEL฀�#R฀AND฀#B	

�฀ #OSITED฀,UMA฀AND฀#HROMA฀PIXEL
8�����

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 38

PG012 April 24, 2012

Sub-sampled Video Formats

and chroma data co-sited, as shown in Figure 4-2.

4:2:2

This format contains horizontally sub-sampled chroma. For every two luma samples, there
is an associated pair of Cb and Cr samples. The sub-sampled chroma locations are co-sited
with alternate luma samples, as shown in Figure 4-3.

4:2:0 (MPEG2, MPEG-4 Part 2 and H.264)

The version of 4:2:0 that is used for MPEG2, MPEG-4 Part 2 and H.264 encoding contains
horizontally and vertically sub-sampled chroma. Additionally, the chroma sampling
locations are not co-sited with the luma pixels. In fact, vertical interpolation is used to
create the chroma samples, and their effective location puts them directly between
alternate pairs of original scanlines. Horizontal chroma positions are co-sited with alternate
luma samples.

The sampling positions of a progressive picture are shown in Figure 4-4.

X-Ref Target - Figure 4-2

Figure 4-2: 4:4:4 Format

X-Ref Target - Figure 4-3

Figure 4-3: 4:2:2 Format

X-Ref Target - Figure 4-4

Figure 4-4: : 4:2:0 Progressive Format

,INE฀�

,INE฀�

,INE฀�
8�����

,INE฀�

,INE฀�

,INE฀�
8�����

,INE฀�

,INE฀�

,INE฀�

,INE฀�

)NTERPOLATED฀CHROMA฀@PIXEL�

8�����

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 39

PG012 April 24, 2012

Sub-sampled Video Formats

The sampling positions of an interlaced picture are shown in Figure 4-5.

Implementation

Between the three supported sub-sampling formats (4:4:4, 4:2:2, 4:2:0), there are six
conversions available. Conversion is achieved using a FIR f ilter approach. Some require
f iltering in only the horizontal dimension or only in the vertical dimension, and in some
cases in both the horizontal and the vertical dimensions. These are detailed in Table 4-1
along with default f ilter information.

Three implementation options are offered for each conversion operation:

� DSP48 based f ilter with programmable coeff icients and programmable number of taps.
The maximum number of vertical taps is 8. The maximum number of horizontal taps is
24. 2D filters must be separable. Coefficients are in the range [-2, 2), represented in
16-bit signed, f ixed-point format with 2 integer bits and 14 fractional bits.

X-Ref Target - Figure 4-5

Figure 4-5: 4:2:0 Interlaced Format

Table 4-1: Filter Summary

Converter Filter Configuration Default FIR Size Notes

4:4:4 to 4:2:2 Horizontal anti-aliasing 3 Horizontal Taps

4:4:4 to 4:2:0 Separable 2D anti-aliasing 2 Vertical Taps x 3 Horizontal
Taps

4:2:2 to 4:4:4 Horizontal Interpolation 2 Horizontal Taps Only phase1 needed

4:2:2 to 4:2:0 Vertical anti-aliasing 2 Vertical Taps 2 phases

4:2:0 to 4:4:4 Separable 2D Interpolation 2 Horizontal Taps by 2
Vertical Taps

4:2:0 to 4:2:2 Vertical Interpolation 2 Horizontal Taps by 2
Vertical Taps

2 phases

8�����

&IELD฀. &IELD฀.��

,INE฀�

,INE฀;�=

,INE฀�

,INE฀;�=

,INE฀�

,INE฀;�=

,INE฀�

,INE฀;�=

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 40

PG012 April 24, 2012

Sub-sampled Video Formats

� Pre-defined fixed coeff icient, non-programmable f ilter with power of two coefficients
(using only shifts and additions for f iltering therefore no DSP48s are used). Default
coeff icients implement linear interpolation for the interpolation and anti-aliasing low
pass f ilters.

� The simplest, lowest footprint solution is to simply drop (decimation) or replicate
(interpolation) samples. For down sampling, some samples are passed directly to the
output, but others are dropped entirely as appropriate. For up converters, replication
of the previous input sample occurs.

Convert 4:2:2 to 4:4:4

This conversion is a 1:2 horizontal interpolation operation, implemented using a two-phase
polyphase FIR filter. One of the two output pixels is co-sited with one of the input sample.
The ideal output is achieved simply by replicating this input sample. Therefore, for phase 0,
no coefficients are needed because the input sample is replicated.

In order to evaluate output pixel ox,y , the FIR f ilter in the core convolves COEFk_HPHASEpx
, where k is the coeff icient index, ix,y are pixels from the input image, p is the interpolation
phase (0 or 1, depending on x) and []Mm represents rounding with clipping at M, and
clamping at m.

Equation 4-1

In phase 1, COEF00_HPHASE1 is the coeff icient applied to the most recent input sample in
the filter aperture. Figure 4-6 illustrates coefficient use for a four tap f ilter example, with
simplif ied nomenclature a= COEF00_HPHASE1, b= COEF01_HPHASE1, c=
COEF02_HPHASE1, and d= COEF03_HPHASE1.

For the default two-tap polyphase f ilter, for the second phase, the default coeff icients are
[0.5 0.5].

Convert 4:4:4 to 4:2:2

This conversion is a horizontal 2:1 decimation operation, implemented using a low-pass FIR
f ilter to suppress chroma aliasing. In order to evaluate output pixel ox,y , the FIR filter in the

X-Ref Target - Figure 4-6

Figure 4-6: 4:2:2 to 4:4:4 Coefficient Configuration

ox y,
ix k y,–

COEFk_HPHASEpx

k 0=

Ntaps 1–


0

2
DW

1–

=

#OEFS฀� D

4ARGET฀OUTPUT฀PIXEL฀
FOR THIS APERTURE฀
��ND �NON
COSITED	฀PHASE	

C B A

�฀)NPUT฀SAMPLE

8�����

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 41

PG012 April 24, 2012

Sub-sampled Video Formats

core convolves COEFk_HPHASE0 , where k is the coeff icient index, ix,y are pixels from the
input image, and []Mm represents rounding with clipping at M, and clamping at m.

Equation 4-2

In phase 0, COEF00_HPHASE0 is the coeff icient applied to the most recent input sample in
the filter. Figure 4-7 illustrates coeff icient use for a 5 tap f ilter example, with simplif ied
nomenclature a= COEF00_HPHASE0, b= COEF01_HPHASE0, c= COEF02_HPHASE0, d=
COEF03_HPHASE0, and e= COEF04_HPHASE0.

The default coeff icients are [0.25 0.5 0.25].

Convert 4:2:0 to 4:2:2

This conversion is a 1:2 vertical interpolation operation, implemented using a 2-phase
polyphase FIR filter. In order to evaluate output pixel ox,y , the FIR f ilter in the core convolves
COEFk_VPHASEp, where k is the coeff icient index, py is the interpolation phase, ix,y are
pixels from the input image, and []Mm represents rounding with clipping at M, and clamping
at m.

Equation 4-3

In phase 0, COEF00_VPHASE0 is the coefficient applied to the most recent input sample in
the filter Figure 4-8 illustrates coeff icient use for a four tap filter example, with simplif ied
nomenclature a= COEF00_VPHASE0, b= COEF01_VPHASE0, c= COEF02_VPHASE0, and d=
COEF03_VPHASE0.

X-Ref Target - Figure 4-7

Figure 4-7: 4:4:4 to 4:2:2 Coefficient Configuration

ox y,
ix k y,–

COEFk_HPHASE0

k 0=

Ntaps 1–


0

2
DW

1–

=

#OEFS฀� D

4ARGET฀OUTPUT฀PIXEL฀
FOR THIS APERTURE฀

C B AE

�฀)NPUT฀SAMPLE

8�����

ox y,
ix k y,–

COEFk_VPHASEpy

k 0=

Ntaps 1–


0

2
DW

1–

=

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 42

PG012 April 24, 2012

Sub-sampled Video Formats

For progressive video, the default coeff icients for phase 0 are [0.25 0.75], for phase 1 are
[0.75 0.25].

For interlaced video, the default coefficients

� For the odd field, phase 0 defaults are [3/8 5/8], for phase1 are [7/8 1/8].

� For the even field, phase 0 defaults are [1/8 7/8], for phase1 are [5/8 3/8].

For the even field of interlaced data, the coefficients for phase 0 and phase 1 are swapped,
and the filter coeff icients for each f ilter are reversed.

Convert 4:2:2 to 4:2:0

This conversion is a vertical 2:1 decimation operation, implemented using a low-pass FIR
f ilter to suppress chroma aliasing. In order to evaluate output pixel ox,y , the FIR filter in the
core convolves COEFk_VPHASE0 , where k is the coefficient index, ix,y are pixels from the
input image, and []Mm represents rounding with clipping at M, and clamping at m.

Equation 4-4

In phase 0, COEF00_VPHASE0 is the coefficient applied to the most recent input sample in
the filter. Figure 4-9 illustrates coeff icient use for a four tap f ilter example, with simplif ied

X-Ref Target - Figure 4-8

Figure 4-8: 4:2:0 to 4:2:2 Coefficient Configuration
A

B
C

D

�฀)NPUT฀SAMPLE

4ARGET฀OUTPUT฀PIXELS฀
FOR฀THIS฀APERTURE฀
�� PHASES	

8�����

ox y,
ix k y,–

COEFk_VPHASE0

k 0=

Ntaps 1–


0

2
DW

1–

=

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 43

PG012 April 24, 2012

Sub-sampled Video Formats

nomenclature a= COEF00_VPHASE0, b= COEF01_VPHASE0, c= COEF02_VPHASE0, and d=
COEF03_VPHASE0.

For progressive video, the default coeff icients are [0.5 0.5]. For interlaced video, the default
coeff icients are [0.25 0.75] for the odd f ield. For the even field, the default coeff icients are
reversed: [0.75 0.25].

Convert 4:2:0 to 4:4:4

This conversion performs interpolation both vertically and horizontally. This is equivalent
to a 2D separable f ilter implemented by cascading the 4:2:0 to 4:2:2 block and the 4:2:2 to
4:4:4 block. Quantized vertical f ilter results are f iltered by the horizontal f ilter, which in turn
quantizes results back to the [0 - 2DW-1] range.

Intermediate 4:2:2 chroma values are computed using Equation 4-3. The resulting
computation is shown in Equation 4-5.

Equation 4-5

Next, the values are f iltered according to Equation 4-1. The resulting computation is shown
in Equation 4-6.

Equation 4-6

Default coeff icients are the same as defined in Convert 4:2:0 to 4:2:2 and Convert 4:2:2 to
4:4:4.

X-Ref Target - Figure 4-9

Figure 4-9: 4:2:2 to 4:2:0 Coefficient Configuration

8�����

A
B

C
D

�฀)NPUT฀SAMPLE

4ARGET฀OUTPUT฀PIXEL฀
FOR฀THIS฀APERTURE฀

tx y,
ix y, k–

COEFk_VPHASEpy

k 0=

NVtaps 1–


0

2
DW

1–

=

ox y,
tx k y,–

COEFk_HPHASE0

k 0=

NHtaps 1–


0

2
DW

1–

=

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 44

PG012 April 24, 2012

Sub-sampled Video Formats

For the default two-tap polyphase f ilter, for the second phase, the default horizontal phase
1 coeff icients are [0.5 0.5].

For progressive video, the default vertical coeff icients for phase 0 are [0.25 0.75], for phase
1 are [0.75 0.25].

For interlaced video, the default vertical coeff icients

� For the odd field, phase 0 defaults are [3/8 5/8], for phase1 are [7/8 1/8].

� For the even field, phase 0 defaults are [1/8 7/8], for phase1 are [5/8 3/8].

For the even field of interlaced data, the coefficients for phase 0 and phase 1 are swapped,
and the filter coeff icients for each f ilter are reversed.

Convert 4:4:4 to 4:2:0

This conversion performs decimation by 2 both vertically and horizontally. This is
equivalent to a 2D separable f ilter implemented by cascading the 4:4:4 to 4:2:2 block and
the 4:2:2 to 4:2:0 block. Quantized horizontal f ilter results are f iltered by the vertical f ilter,
which in turn quantizes results back to the [0 - 2DW-1] range.

Intermediate 4:2:2 chroma values are computed using . The resulting computation is shown
in Equation 4-7.

Equation 4-7

Next, these values are f iltered according to Equation 4-4. The resulting computation is
shown in Equation 4-8.

Equation 4-8

Default coeff icients are the same as defined in Convert 4:4:4 to 4:2:2 and Convert 4:2:2 to
4:2:0.

The default horizontal coefficients are [0.25 0.5 0.25].

For progressive video, the default vertical coeff icients are [0.5 0.5]. For interlaced video, the
default vertical coefficients are [0.25 0.75] for the odd f ield. For the even f ield, the default
vertical coefficients are reversed: [0.75 0.25].

tx y,
ix k y,–

COEFk_HPHASE0

k 0=

NHtaps 1–


0

2
DW

1–

=

ox y,
tx y k–,

COEFk_VPHASE0

k 0=

NVtaps 1–


0

2
DW

1–

=

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 45

PG012 April 24, 2012

Resampling Filters

Computation Bit Width Growth

Full precision (DATA_WIDTH+16+log2(NTaps) bits) is maintained during the FIR convolution
operation.

FIR f ilter outputs are rounded to DATA_WIDTH bits by adding half an output LSB in the full
precision domain prior to truncation. Clipping and clamping of the output data prevents
overflows and underflows. Data is clipped and clamped at 2DATA_WIDTH - 1 and 0.

Edge Padding

The edge pixels of images are replicated prior to filtering to avoid image artifacts.

Resampling Filters

The upsampling and downsampling performed during the chroma format conversion is
implemented with low pass f ilters for the interpolation and anti-aliasing.

The Chroma Resampler core offers a horizontal f ilter with a maximum of 24 taps and two
phases, as well as a vertical f ilter with a maximum of eight taps and two phases. For
conversions requiring up/down sampling in both horizontal and vertical directions, 2D
separable f ilters are offered.

The number of taps used is defined in the GUI. The GUI will limit the number of taps to be
even or odd depending on the preferred f ilter length for each conversion type. Only a
subset of the coeff icients will be used depending on the conversion type and f ilter size
selected.

Each coefficient has 16 bits: 2 integer bits (one sign bit) and 14 fractional bits. The sign bit
is the MSB. For example, a coeff icient with a value of 1 is represented with this bit vector
[0100000000000000].

The coefficients should sum to exactly 1 to achieve unity gain. If they sum to less than 1,
some loss of dynamic range is observed. The valid range of coefficient values is [-2,2).

The default f ilter coefficients are defined in Implementation, page 39.

General Design Guidelines

The Chroma Resampler core converts between chroma sub-sampling formats of 4:4:4, 4:2:2,
and 4:2:0. The core processes samples provided via an AXI4-Stream slave interface, outputs
pixels via an AXI4-Stream master interface, and can be controlled via an optional AXI4-Lite

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 46

PG012 April 24, 2012

Clock, Enable, and Reset Considerations

interface. The Chroma Resampler block cannot change the input/output image sizes, the
input and output pixel clock rates, or the frame rate. It is recommended that the Chroma
Resampler is used in conjunction with the Video Input and Video Timing Controller cores.
The Video Timing Controller core measures the timing parameters, such as number of
active scan lines, number of active pixels per scan line of the image sensor. The Video Input
core formats couples the sensor data interface to AXI4-Stream.

Clock, Enable, and Reset Considerations

This section details the clocking considerations when designing with the core.

ACLK

The master and slave AXI4-Stream video interfaces use the ACLK clock signal as their shared
clock reference, as shown in Figure 4-10.

The ACLK pin is also shared between the AXI4-Lite and AXI4-Stream interfaces, the Chroma
Resampler does not contain optional clock-domain crossing logic. If in the user system the
AXI4-Lite Control interface clock (CLK_LITE) is different from the AXI4-Stream clock
(CLK_STREAM), and

� (FCLK_STREAM > FCLK_LITE) then clock-domain crossing logic needs to be inserted in front
of the AXI4-Lite Control interface and the Chroma Resampler can be clocked at the
AXI4-Stream clock via ACLK,

� (FCLK_STREAM < FCLK_LITE) then clock-domain crossing logic needs to be inserted before
the AXI4-Stream interface, and the Chroma Resampler needs to be clocked at the
AXI4-Lite clock via the ACLK pin, as shown in Figure 4-11. Alternatively, if FCLK_LITE
greater than of the FMAX of the Chroma Resampler, clock domain crossing logic can be
inserted in front of the AXI4-Lite Control interface.

X-Ref Target - Figure 4-10

Figure 4-10: Example of ACLK Routing in an ISP Processing Pipeline

#HROMA฀
2ESAMPLER

S?AXIS?VIDEO?TDATA

S?AXIS?VIDEO?TVALID

S?AXIS?VIDEO?TREADY

S?AXIS?VIDEO?TLAST

M?AXIS?VIDEO?TDATA

M?AXIS?VIDEO?TVALID

M?AXIS?VIDEO?TREADY

M?AXIS?VIDEO?TLAST

ACLK

6IDEO฀)0฀h3INKv

S?AXIS?VIDEO�?TDATA

S?AXIS?VIDEO�?TVALID

S?AXIS?VIDEO�?TREADY

S?AXIS?VIDEO�?TLAST

M?AXIS?VIDEO�?TDATA

M?AXIS?VIDEO�?TVALID

M?AXIS?VIDEO�?TREADY

M?AXIS?VIDEO�?TLAST

ACLKEN
ARESETN

6IDEO฀)0฀h3OURCEv

S?AXIS?VIDEO?TDATA

S?AXIS?VIDEO?TVALID

S?AXIS?VIDEO?TREADY

S?AXIS?VIDEO?TLAST

S?AXIS?VIDEO?TUSER

M?AXIS?VIDEO?TDATA

M?AXIS?VIDEO?TVALID

M?AXIS?VIDEO?TREADY

M?AXIS?VIDEO?TLAST

M?AXIS?VIDEO?TUSER

ACLK

ACLKEN

ARESETN

ACLK

ACLKEN

ARESETN

ACLK

ACLKEN

ARESETN

S?AXIS?VIDEO?TUSER M?AXIS?VIDEO?TUSER S?AXIS?VIDEO�?TUSER M?AXIS?VIDEO�?TUSER

8�����

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 47

PG012 April 24, 2012

Clock, Enable, and Reset Considerations

In either case, Xilinx System Integrator tools, such as EDK, can automatically infer
clock-domain crossing logic using the AXI interconnect core, when the tool detects that the
master / slave side of AXI4 interfaces operate on different CLK rates. For manual
instantiation of clock-domain crossing logic, HDL users can take advantage of the FIFO
Generator IP core, as shown in Figure 4-11.

ACLKEN

The Chroma Resampler has two enable options: the ACLKEN pin (hardware clock enable),
and the software reset option provided via the AXI4-Lite control interface (when present).

ACLKEN is by no means synchronized internally to AXI4-Stream frame processing therefore
de-asserting ACLKEN for extended periods of time may lead to image tearing.

The ACLKEN pin facilitates:

� Multi-cycle path designs (high speed clock division without clock gating),

� Standby operation of subsystems to save on power

� Hardware controlled bring-up of system components

Note: When ACLKEN (clock enable) pins are used (toggled) in conjunction with a common clock
source driving the master and slave sides of an AXI4-Stream interface, to prevent transaction errors
the ACLKEN pins associated with the master and slave component interfaces must also be driven by
the same signal (Figure 3-2).

Note: When two cores connected via AXI4-Stream interfaces, where only the master or the slave
interface has an ACLKEN port, which is not permanently tied high, the two interfaces should be
connected via the AXI4-Stream Interconnect or AXI-FIFO cores to avoid data corruption (Figure 3-3).

X-Ref Target - Figure 4-11

Figure 4-11: Chroma Resampler Top-Level Signaling Interface

!8)�
3TREAM฀
3OURCE

M?AXIS?VIDEO�?TDATA

M?AXIS?VIDEO�?TLAST

M?AXIS?VIDEO�?TUSER

ACLK

ACLKEN

ARESETN

!SYNC฀&)&/

DATA?WR DATA?RD

#HROMA฀
2ESAMPLER

S?AXIS?VIDEO?TDATA

S?AXIS?VIDEO?TLAST

S?AXIS?VIDEO?TUSER

ACLK

ACLKEN

ARESETN

M?AXIS?VIDEO�?TVALID

M?AXIS?VIDEO�?TREADY

WE

FULL

EMPTY

RE

S?AXIS?VIDEO?TVALID

S?AXIS?VIDEO?TREADY

CLK?WR CLK?RD

#,+?342%!-

#,+?,)4%

!8)�
,ITE

!8)�
,ITE฀#ONTROL฀)&

8�����

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 48

PG012 April 24, 2012

System Considerations

ARESETn

The Chroma Resampler has two reset source: the ARESETn pin (hardware reset), and the
software reset option provided via the AXI4-Lite control interface (when present).

Note: ARESETn is by no means synchronized internally to AXI4-Stream frame processing, therefore
de-asserting ARESETn while a frame is being process will lead to image tearing.

The external reset pulse needs to be held for 32 ACLK cycles to reset the core.

Note: When a system with multiple-clocks and corresponding reset signals are being reset, the reset
generator has to ensure all reset signals are asserted/de-asserted long enough that all interfaces and
clock-domains in all IP cores are correctly reinitialized.

System Considerations

When using the Chroma Resampler, it needs to be configured for the actual image
frame-size to operate properly. To gather the frame size information from the image, it can
be connected to the Video In to AXI4-Stream input and the Video Timing Controller. The
timing detector logic in the Video Timing Controller will gather the image timing signals.
The AXI4-Lite control interface on the Video Timing Controller allows the system processor
to read out the measured frame dimensions, and program all downstream cores, such as the
Chroma Resampler, with the appropriate image dimensions.

If the target system uses only f ixed image sources with sensor aperture values f ixed (no
Pan-Tilt-Zoom, or cropping function), video format fixed (progressive vs interlaced, chroma
parity, and f ield parity), and pre-defined resampling f ilters, the user may choose to create
a constant configuration by removing the AXI4-Lite interface. This option allows reducing
the core Slice footprint.

Programming Sequence

If processing parameters such as the image size needs to be changed on the fly, or the
system needs to be reinitialized, it is recommended that pipelined Xilinx IP video cores are
disabled/reset from system output towards the system input, and programmed/enabled
from system input to system output. STATUS register bits allow system processors to
identify the processing states of individual constituent cores, and successively disable a
pipeline as one core after another is f inished processing the last frame of data.

Error Propagation and Recovery

Parameterization and/or configuration registers define the dimensions of video frames
video IP should process. Starting from a known state, based on these configuration settings
the IP can predict when the beginning of the next frame is expected. Similarly, the IP can

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 49

PG012 April 24, 2012

System Considerations

predict when the last pixel of each scan line is expected. SOF detected before it was
expected (early), or SOF not present when it is expected (late), EOL detected before
expected (early), or EOL not present when expected (late), signals error conditions
indicative of either upstream communication errors or incorrect core configuration.

When SOF is detected early, the output SOF signal is generated early, terminating the
previous frame immediately. When SOF is detected late, the output SOF signal is generated
according to the programmed values. Extra lines / pixels from the previous frame are
dropped until the input SOF is captured.

Similarly, when EOL is detected early, the output EOL signal is generated early, terminating
the previous line immediately. When EOL is detected late, the output EOL signal is
generated according to the programmed values. Extra pixels from the previous line are
dropped until the input EOL is captured.

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 50

PG012 April 24, 2012

Chapter 5

Constraining the Core

Required Constraints

The ACLK pin should be constrained at the pixel clock rate desired for your video stream.

Device, Package, and Speed Grade Selections

There are no device, package, or speed grade requirements for the Chroma Resampler core.
This core has not been characterized for use in low power devices.

Clock Frequencies

The pixel clock frequency is the required frequency for the Chroma Resampler core. See
Maximum Frequencies in Chapter 2.

Clock Management

There is only one clock for the Chroma Resampler core.

Clock Placement

There are no specific Clock placement requirements for the Chroma Resampler core.

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 51

PG012 April 24, 2012

Banking

Banking

There are no specific Banking rules for the Chroma Resampler core.

Transceiver Placement

There are no Transceiver Placement requirements for the Chroma Resampler core.

I/O Standard and Placement

There are no specific I/O standards and placement requirements for the Chroma Resampler
core.

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 52

PG012 April 24, 2012

Chapter 6

Detailed Example Design

No example design is available at the time for 14.1.

Demonstration Test Bench

A demonstration test bench is provided which enables core users to observe core behavior
in a typical use scenario. The user is encouraged to make simple modif ications to the test
conditions and observe the changes in the waveform.

Test bench structure

The top-level entity, tb_main.v, instantiates the following modules:

� DUT

The Chroma Resampler core instance under test.

� axi4lite_mst

The AXI4-Lite master module, which initiates AXI4-Lite transactions to program core
registers.

� axi4s_video_mst

The AXI4-Stream master module, which opens the stimuli TXT file and initiates
AXI4-Stream transactions to provide stimuli data for the core

� axi4s_video_slv

The AXI4-Stream slave module, which opens the result TXT f ile and verif ies AXI4-Stream
transactions from the core

� ce_gen

Programmable Clock Enable (ACLKEN) generator

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 53

PG012 April 24, 2012

Running the Simulation

Running the Simulation

� Simulation using ModelSim for Linux:
From the console, Type “source run_mti.sh”.

� Simulation using iSim for Linux:
From the console, Type "source run_isim.sh".

� Simulation using ModelSim for Windows:
Double-click on “run_mti.bat” f ile.

� Simulation using iSim:
Double-click on “run_isim.bat” f ile.

Directory and File Contents

The directory structure underneath the top-level folder is:

� expected:
Contains the pre-generated expected/golden data used by the test bench to compare
actual output data.

� stimuli:
Contains the pre-generated input data used by the test bench to stimulate the core
(including register programming values).

� Results:
Actual output data will be written to a file in this folder.

� Src:
Contains the VHD simulation f iles and the XCO CORE Generator parameterization f ile of
the core instance. The VHD file is a netlist generated using CORE Generator. The XCO
file can be used to regenerate a new netlist using CORE Generator.

The available core C-model can be used to generate stimuli and expected results for any
user YUV image. For more information, refer to Appendix E, C-Model Reference.

The top-level directory contains packages and Verilog modules used by the test bench, as
well as:

� isim_wave.wcfg:
Waveform configuration for ISIM

� mti_wave.do:
Waveform configuration for ModelSim

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 54

PG012 April 24, 2012

Directory and File Contents

� run_isim.bat :
Runscript for iSim in Windows

� run_isim.sh:
Runscript for iSim in Linux

� run_mti.bat:
Runscript for ModelSim in Windows

� run_mti.sh:
Runscript for ModelSim in Linux

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 55

PG012 April 24, 2012

Appendix A

Verification, Compliance, and
Interoperability

Simulation

A highly parameterizable test bench was used to test the Chroma Resampler core. Testing
included the following:

� Register accesses

� Processing multiple frames of data

� AXI4-Stream bidirectional data-throttling tests

� Testing detection, and recovery from various AXI4-Stream framing error scenarios

� Testing different ACLKEN and ARESETn assertion scenarios

� Testing of various frame sizes

� Varying parameter settings

Hardware Testing

The Chroma Resampler core has been validated in hardware at Xilinx to represent a variety
of parameterizations, including the following:

� A test design was developed for the core that incorporated a MicroBlaze™ processor,
AXI4-Lite interconnect and various other peripherals. The software for the test system
included pre-generated input and output data along with live video stream. The
MicroBlaze processor was responsible for:

° Initializing the appropriate input and output buffers

° Initializing the Chroma Resampler core

° Launching the test

° Comparing the output of the core against the expected results

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 56

PG012 April 24, 2012

Interoperability

° Reporting the Pass/Fail status of the test and any errors that were found

Interoperability

The core slave (input) and master (output) AXI4-Stream interface can work directly with any
Xilinx Video core that generates or consumes YCbCr 4:4:4, 4:2:2, or 4:2:0 data.

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 57

PG012 April 24, 2012

Appendix B

Migrating

From version v1.0 to v2.00.a of the Chroma Resampler, the following signif icant changes
took place:

� XSVI interfaces were replaced by AXI4-Stream interfaces.

� Since AXI4-Stream does not carry video timing data, the timing detector and timing
generator modules were trimmed.

� The pCore and General Purpose Processor and Constant modes became obsolete and
were removed.

� Native support for EDK have been added - the Chroma Resampler appears in the EDK
IP Catalog.

� Debugging features have been added.

� The AXI4-Lite control interface register map is standardized between Xilinx video cores.

� For YCbCr 4:4:4 video format, the order of Cb and Cr has been swapped in the video
data bus. See Figure 2-2, page 18.

Because of the complex nature of these changes, replacing a v1.0 version of the core in a
customer design is not trivial. An existing EDK pCore or Constant Chroma Resampler
instance can be converted from XSVI to AXI4-Stream using components from XAPP521
(v1.0), Bridging Xilinx Streaming Video Interface with the AXI4-Stream Protocol.

A v1.0 pCore instance in EDK can be replaced from v2.00.a directly from the EDK IP Catalog.
However, the application software needs to be updated for the changed functionality and
addresses of the IRQ_ENABLE, STATUS, ERROR, timing, and coeff icient registers. Consider
replacing a legacy Chroma Resampler pCore from EDK with a v2.00.a instance without
AXI4-Lite interface to save resources.

For an ISE design using the General Purpose Processor interface, all of the following steps
might be necessary:

� Timing detection, generation using the Video Timing Controller Core

� Replacing XSVI interfaces with conversion modules described in XAPP521 or trying to
use the Video In to AXI4-Stream core

� Updating the Chroma Resampler instance to v2.00.a with or without AXI4-Lite interface

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 58

PG012 April 24, 2012

The INTC interface and debug functionality are new features for v2.00.a. When migrating an
existing design, these functions may be disabled.

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 59

PG012 April 24, 2012

Appendix C

Debugging

It is recommended to prototype the system with the AXI4-Lite interface enabled, so status
and error detection, reset, and dynamic size programming can be used during debugging.

The following steps are recommended to bring-up/debug the core in a video/imaging
system:

1. Bringing up the AXI4-Lite Interface

2. Bringing up the AXI4-Stream Interfaces

° (Optional) Balancing throughput

Once the core is working as expected, the user may consider 'hardening' the configuration
by replacing the Chroma Resampler with an instance where GUI default values are set to the
established ACTIVE_SIZE, FIELD_PARITY and CHROMA_PARITY values, but the
AXI4-Lite interface is disabled. This configuration reduces the core slice footprint.

Bringing up the AXI4-Lite Interface

Table C-1 describes how to troubleshoot the AXI4-Lite interface.

Table C-1: Troubleshooting the AXI4-Lite Interface

Symptom Solution

Readback value for the
VERSION_REGISTER is different
from expected default values

Does the core receive ACLK?

Is the core enabled? Set ACLKEN=1

Is the core in reset? Set ARESETn=1.

The address maps between software and hardware could get out of
sync. Regenerate addresses in EDK, make sure the MHS file in EDK
and the xparameters.h in the SDK project are up to date.

Readback values from values are
stuck, and cannot be overwritten.

Is the target address writable?

The interface is unreliable.

Subsequent reads from the same
address return different value,
readback values differ from values
written to the same address.

Clock domain crossing issues between the host processor and the
peripheral. HDL users need to make sure the AXI4-Lite Master is in
the same clock domain as the AXI4-Lite Slave. If not, proper
clock-domain crossing logic, such as asynchronous FIFOs need to
be inserted.

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 60

PG012 April 24, 2012

Bringing up the AXI4-Stream Interfaces

Assuming the AXI4-Lite interface works, the second step is to bring up the AXI4-Stream
interfaces.

Bringing up the AXI4-Stream Interfaces

Table C-2 describes how to troubleshoot the AXI4-Stream interface.

Table C-2: Troubleshooting AXI4-Stream Interface

Symptom Solution

Bit 0 of the ERROR
register reads back
set.

Bit 0 of the ERROR register, EOL_EARLY, indicates the number of pixels received
between the latest and the preceding End-Of-Line (EOL) signal was less than the
value programmed into the ACTIVE_SIZE register. If the value was provided
by the Video Timing Controller core, read out ACTIVE_SIZE register value
from the VTC core again, and make sure that the TIMING_LOCKED flag is set in
the VTC core. Otherwise, using the ChipScope ™ tool, measure the number of
active AXI4-Stream transactions between EOL pulses.

Bit 1 of the ERROR
register reads back
set.

Bit 1 of the ERROR register, EOL_LATE, indicates the number of pixels received
between the last End-Of-Line (EOL) signal surpassed the value programmed
into the ACTIVE_SIZE register. If the value was provided by the Video Timing
Controller core, read out ACTIVE_SIZE register value from the VTC core
again, and make sure that the TIMING_LOCKED flag is set in the VTC core.
Otherwise, using the ChipScope analyzer, measure the number of active
AXI4-Stream transactions between EOL pulses.

Bit 2 or Bit 3 of the
ERROR register reads
back set.

Bit 2 of the ERROR register, SOF_EARLY, and bit 3 of the ERROR register
SOF_LATE indicate the number of pixels received between the latest and the
preceding Start-Of-Frame (SOF) differ from the value programmed into the
ACTIVE_SIZE register. If the value was provided by the Video Timing
Controller core, read out ACTIVE_SIZE register value from the VTC core
again, and make sure that the TIMING_LOCKED flag is set in the VTC core.
Otherwise, using the ChipScope analyzer, measure the number EOL pulses
between subsequent SOF pulses.

s_axis_video_tready
stuck low, the
upstream core cannot
send data.

During initialization, line-, and frame-flushing, the Chroma Resampler keeps its
s_axis_video_tready input low. Afterwards, the core should assert
s_axis_video_tready automatically.

Is m_axis_video_tready low? If so, the Chroma Resampler cannot send data
downstream, and the internal FIFOs are full.

m_axis_video_tvalid
stuck low, the
downstream core is
not receiving data

1. No data is generated during the f irst two lines of processing.

2. If the programmed active number of pixels per line is radically smaller than
the actual line length, the core drops most of the pixels waiting for the
(s_axis_video_tlast) End-of-line signal. Check the ERROR register.

Generated SOF signal
(m_axis_video_tuser0)
signal misplaced.

Check the ERROR register.

Generated EOL signal
(m_axis_video_tla
st) signal misplaced.

Check the ERROR register.

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 61

PG012 April 24, 2012

Debugging Features

If the AXI4-Stream communication is healthy, but the data seems corrupted, the next step is
to find the correct configuration for the Chroma Resampler.

Debugging Features

The Chroma Resampler is equipped with optional debugging features which aim to
accelerate system bring-up, optimize memory and data-path architecture and reduce time
to market. The optional debug features can be turned on/off via the Include Debug

Features checkbox on the GUI when an AXI4-Lite interface is present. Turning off debug
features reduces the core Slice footprint.

Built in Test-Pattern Generator

The optional built-in test-pattern generator facilitates to temporarily feed the output
AXI4-Stream master interface with a predefined pattern.

Flag TEST_PATTERN (bit 5 of the CONTROL register) can turn test-pattern generation on (1)
or off, when the core instance Debugging Features were enabled at generation. Within the
IP this switch controls multiplexers in the AXI4-Stream path, switching between the regular
core processing output and the test-pattern generator. When enabled, a set of counters
generate 256 scan-lines of color-bars, each color bar 64 pixels wide, repetitively cycling
through Black, Red, Green, Yellow, Blue, Magenta, Cyan, and White colors till the end of

Data samples lost
between Upstream
core and the Chroma
Resampler.
Inconsistent EOL and/
or SOF periods
received.

1. Are the Master and Slave AXI4-Stream interfaces in the same clock
domain?

2. Is proper clock-domain crossing logic instantiated between the
upstream core and the Chroma Resampler (Asynchronous FIFO)?

3. Did the design meet timing?

4. Is the frequency of the clock source driving the Chroma Resampler
ACLK pin lower than the reported Fmax reached?

Data samples lost
between Downstream
core and the Chroma
Resampler.
Inconsistent EOL and/
or SOF periods
received.

1. Are the Master and Slave AXI4-Stream interfaces in the same clock
domain?

2. Is proper clock-domain crossing logic instantiated between the
upstream core and the Chroma Resampler (Asynchronous FIFO)?

3. Did the design meet timing?

4. Is the frequency of the clock source driving the Chroma Resampler
ACLK pin lower than the reported Fmax reached?

Table C-2: Troubleshooting AXI4-Stream Interface

Symptom Solution

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 62

PG012 April 24, 2012

Debugging Features

each scan-line. After the Color-Bars segment, the rest of the frame is f illed with a
monochrome horizontal and vertical ramp.

Starting a system with all processing cores set to test-pattern mode, then by turning
test-pattern generation off from the system output towards the system input allows
successive bring-up and parameterization of subsequent cores.

Core Bypass Option

The bypass option facilitates establishing a straight through connection between input
(AXI4-Stream slave) and output (AXI4-Stream master) interfaces bypassing any processing
functionality.

The BYPASS flag (bit 4 of the CONTROL register) turns bypass on (1) or off (0) when the core
instance debugging features were enabled at generation. Within the IP core, this switch
controls multiplexers in the AXI4-Stream path.

In bypass mode, the Chroma Resampler core processing function is bypassed, and the core
repeats AXI4-Stream input samples on its output. In bypass mode, YCbCr 4:4:4 to 4:2:2 (or
4:2:0) conversion passes the Y and Cb components of the YCbCr 4:4:4 input to the output.
For 4:2:2 (or 4:2:0) to 4:4:4 conversion, the input is passed to the output and the top Cr
output component is set to zero. Starting a system with all processing cores set to bypass,
then by turning bypass off from the system input towards the system output allows
verif ication of subsequent cores with known good stimuli.

Throughput Monitors

Throughput monitors enable the user to monitor processing performance within the core.
This information can be used to help debug frame-buffer bandwidth limitation issues, and
if possible, allow video application software to balance memory pathways.

Often times video systems, with multi-port access to a shared external memory, have
different processing islands. For example a pre-processing sub-system working in the input
video clock domain may clean up, transform, and write a video stream, or multiple video
streams, to memory. The processing sub-system may read the frames out, process, scale,
encode, then write frames back to the frame buffer, in a separate processing clock domain.
Finally, the output sub-system may format the data and read out frames locked to an
external clock.

Typically, access to external memory using a multi-port memory controller involves
arbitration between competing streams. However, to maximize the throughput of the
system, different memory ports may need different specific priorities. To fine tune the
arbitration and dynamically balance frame rates, it is beneficial to have access to
throughput information measured in different video data paths.

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 63

PG012 April 24, 2012

Debugging Features

The SYSDEBUG0 (0x0014), or Frame Throughput Monitor, register indicates the number of
frames processed since power-up or the last time the core was reset. The SYSDEBUG1
(0x0018), or Line Throughput Monitor, register indicates the number of lines processed
since power-up or the last time the core was reset. The SYSDEBUG2 (0x001C), or Pixel
Throughput Monitor, register indicates the number of pixels processed since power-up or
the last time the core was reset.

Priorities of memory access points can be modified by the application software dynamically
to equalize frame, or partial frame rates.

Evaluation Core Timeout

The Chroma Resampler hardware evaluation core times out after approximately eight hours
of operation. The output is driven to zero. This results in a dark-green screen for YUV color
systems.

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 64

PG012 April 24, 2012

Appendix D

Application Software Development

This chapter contains information on programming the Chroma Resampler.

Programmer’s Guide

The software API is provided to allow easy access to the Chroma Resampler AXI4-Lite
registers defined in Table 3-1. To utilize the API functions, the following two header f iles
must be included in the user C code:

#include “cresample.h”

#include “xparameters.h”

The hardware settings of your system, including the base address of the Chroma Resampler,
are defined in the xparameters.h f ile. The cresample.h f ile contains the macro
function definitions for controlling the Chroma Resampler pCore.

For examples on API function calls and integration into a user application, the drivers
subdirectory of the pCore contains a file, example.c, in the cresample_v2_00_a/
examples subfolder. This f ile is a sample C program that demonstrates how to use the
Chroma Resampler pCore API.

Table D-1: Chroma Resampler Driver Function Definitions

Function name and parameterization Description

CRESAMPLE_Enable

(uint32 BaseAddress)

Enables a Chroma Resampler instance.

CRESAMPLE_Disable

(uint32 BaseAddress)

Disables a Chroma Resampler instance.

CRESAMPLE_Reset

(uint32 BaseAddress)

Immediately resets a Chroma Resampler instance. The core stays in
reset until the RESET flag is cleared.

CRESAMPLE_ClearReset

(uint32 BaseAddress)

Clears the reset flag of the core, which allows it to re-sync with the
input video stream and return to normal operation.

CRESAMPLE_FSync_Reset

(uint32 BaseAddress)

Resets a Chroma Resampler instance at the end of the current frame
being processed, or immediately if the core is not currently processing
a frame.

CRESAMPLE_ReadReg

(uint32 BaseAddress, uint32

RegOffset)

Returns the 32-bit unsigned integer value of the register. Read the
register selected by RegOffset (defined in Table 3-4).

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 65

PG012 April 24, 2012

Programmer’s Guide

Software Reset

Software reset reinitializes registers of the AXI4-Lite control interface to their initial value,
resets FIFOs, forces m_axis_video_tvalid and s_axis_video_tready to 0.
CRESAMPLE_Reset() and CRESAMPLE_FSync_Reset () reset the core immediately if
the core is not currently processing a frame. If the core is currently processing a frame
calling CRESAMPLE_Reset(), or setting bit 30 of the CONTROL register to 1 will cause
image tearing. After calling CRESAMPLE_Reset(), the core remains in reset until
CRESAMPLE_ClearReset() is called.

Calling CRESAMPLE_FSync_Reset() automates this reset process by waiting until the
core finishes processing the current frame, then asserting the reset signal internally,
keeping the core in reset only for 32 ACLK cycles, then deasserting the signal automatically.
After calling CRESAMPLE_FSync_Reset(), it is not necessary to call
CRESAMPLE_ClearReset() for the core to return to normal operating mode.

Note: Calling CRESAMPLE_FSync_Reset() does not guarantee prompt, or real-time resetting of
the core. If the AXI4-Stream communication is halted mid frame, the core will not reset until the
upstream core f inishes sending the current frame or starts a new frame.

Double Buffering

Coefficient registers, ACTIVE_SIZE, and ENCODING are double-buffered to ensure no
image tearing happens if values are modified during frame processing. Values from the
AXI4-Lite interface are latched into processor registers immediately after writing, and
processor register values are copied into the active register set at the Start Of Frame (SOF)
signal. Double-buffering decouples AXI4-Lite register updates from the AXI4-Stream
processing, allowing software a large window of opportunity to update processing
parameter values without image tearing.

If multiple register values are changed during frame processing, simple double buffering
would not guarantee that all register updates would take effect at the beginning of the
same frame. Using a semaphore mechanism, the RegUpdateEnable() and
RegUpdateDisable() functions allows synchronous commitment of register changes.
The Chroma Resampler core will start using the updated coeff icient, ACTIVE_SIZE,
FIELD_PARITY, and CHROMA_PARITY values only if the REGUPDATE flag of the CONTROL

CRESAMPLE_WriteReg

(uint32 BaseAddress, uint32

RegOffset, uint32 Data)

Write the register selected by RegOffset (defined in Table 3-4. Data is
the 32-bit value to write to the register.

CRESAMPLE_RegUpdateEnable

(uint32 BaseAddress)

Enables copying double buffered registers at the beginning of the
next frame. Refer to Double Buffering for more information.

CRESAMPLE_RegUpdateDisable

(uint32 BaseAddress)

Disables copying double buffered registers at the beginning of the
next frame. Refer to Double Buffering for more information.

Table D-1: Chroma Resampler Driver Function Definitions

Function name and parameterization Description

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 66

PG012 April 24, 2012

Programmer’s Guide

register is set (1), after the next Start-Of-Frame signal (s_axis_video_tuser) is received.
Therefore, it is recommended to disable the register update before writing multiple
double-buffered registers, then enable register update when register writes are completed.

Reading and Writing Registers

Each software register that is defined in Table 3-4 has a constant that is defined in
cresample.h which is set to the offset for that register listed in Table D-2. It is
recommended that the application software uses the predefined register names instead of
register values when accessing core registers, so future updates to the Chroma Resampler
drivers which may change register locations will not affect the application dependent on
the Chroma Resampler driver.

Table D-2: Predefined Constants Defined in cresample.h

Constant Name Definition Value Target Register

CRESAMPLE_CONTROL 0x0000 CONTROL

CRESAMPLE_STATUS 0x0004 STATUS

CRESAMPLE_ERROR 0x0008 ERROR

CRESAMPLE_IRQ_ENABLE 0x000C IRQ_ENABLE

CRESAMPLE_VERSION 0x0010 VERSION

CRESAMPLE_SYSDEBUG0 0x0014 SYSDEBUG0

CRESAMPLE_SYSDEBUG1 0x0018 SYSDEBUG1

CRESAMPLE_SYSDEBUG2 0x001C SYSDEBUG2

CRESAMPLE_ACTIVE_SIZE 0x0020 ACTIVE_SIZE

CRESAMPLE_ENCODING 0x0028 ENCODING

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 67

PG012 April 24, 2012

Appendix E

C Model Reference

The Chroma Resampler core has a bit accurate C model designed for system modeling.

Features

� Bit-accurate with the Chroma Resampler v2.00.a core

� Statically linked library (.lib for Windows)

� Dynamically linked library (.so for Linux)

� Available for 32-bit and 64-bit Windows platforms and 32-bit and 64-bit Linux
platforms

� Supports all features of the Chroma Resampler core that affect numerical results

� Designed for rapid integration into a larger system model

� Example C code showing how to use the function is provided

� Example application C code wrapper file supports 8-bit YUV and BIN

Overview

The Chroma Resampler core has a bit-accurate C model for 32-bit and 64-bit Windows
platforms and 32-bit and 64-bit Linux platforms. The model’s interface consists of a set of C
functions residing in a statically linked library (shared library).

See Using the C Model, page 69 for full details of the interface. A C code example of how to
call the model is provided in C Model Example Code, page 75.

The model is bit accurate, as it produces exactly the same output data as the core on a
frame-by-frame basis. However, the model is not cycle accurate, and it does not model the
core's latency or its interface signals.

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 68

PG012 April 24, 2012

User Instructions

The latest version of the model is available for download on the Chroma Resampler product
page at:

http://www.xilinx.com/products/intellectual-property/EF-DI-CHROM-RESAMP.htm

User Instructions

Unpacking and Model Contents

Unzip the v_cresample_v2_00_a_bitacc_model.zip f ile, containing the bit accurate
model for the Chroma Resampler core. This produces the directory structure and files
shown in Table E-1.

Table E-1: Directory Structure and Files of Bit-Accurate Model

File Name Contents

README.txt Release Notes

doc/pg012_v_cresample.pdf Chroma Resampler Product Guide

v_cresample_v2_00_a_bitacc_cmodel.h Model header file

parsers.h Header file for reading configuration file

video_utils.h

video_fio.h

yuv_utils.h

rgb_utils.h

bmp_utils.h

Header files declaring the generalized image/
video container type, I/O and support functions

run_bitacc_cmodel.c Example code calling the C model

parsers.c Code for reading configuration f ile

/examples Example input files used by C model

cresample.cfg Sample configuration f ile containing the core
parameter settings

input_image.yuv Sample test image

input_image.hdr Sample test image header file

/lin32 Precompiled bit-accurate ANSI C reference model
for simulation on 32-bit Linux platforms

libIp_v_cresample_v2_00_a_bitacc_cmodel.so Model shared object library

libstlport.so.5.1 STL library, referenced by
libIp_v_cresample_v2_00_a_bitacc_cmodel.so

/lin64 Precompiled bit-accurate ANSI C reference model
for simulation on 64-bit Linux platforms

libIp_v_cresample_v2_00_a_bitacc_cmodel.so Model shared object library

http://www.xilinx.com
http://www.xilinx.com/products/intellectual-property/EF-DI-CHROM-RESAMP.htm

Chroma Resampler v2.00.a www.xilinx.com 69

PG012 April 24, 2012

Using the C Model

Installation

For Linux systems, ensure that libIp_v_cresample_v2_00_a_bitacc_cmodel.so
and libstlport.so.5.1 are located is in the $LD_LIBRARY_PATH environment variable.

Software Requirements

The Chroma Resampler C models were compiled and tested with the software shown in
Table E-2.

Using the C Model

The bit-accurate C model is accessed through a set of functions and data structures
declared in the header file v_cresample_v2_00_a_bitacc_cmodel.h.

Before using the model, the structures holding the inputs, generics and output of the
Chroma Resampler instance have to be defined:

struct xilinx_ip_v_cresample_v2_00_a_generics cresample_generics;

struct xilinx_ip_v_cresample_v2_00_a_inputs cresample_inputs;

struct xilinx_ip_v_cresample_v2_00_a_outputs cresample_outputs;

libstlport.so.5.1 STL library, referenced by
libIp_v_cresample_v2_00_a_bitacc_cmodel.so

/nt32 Precompiled bit-accurate ANSI C reference model
for simulation on 32-bit Windows platforms

libIp_v_cresample_v2_00_a_bitacc_cmodel.dll

lib_Ip_v_cresample_v2_00_a_bitacc_cmodel.lib

stlport.5.1.dll

Precompiled library file for nt32 compilation

/nt64 Precompiled bit-accurate ANSI C reference model
for simulation on 64-bit Windows platforms

libIp_v_cresample_v2_00_a_bitacc_cmodel.dll

lib_Ip_v_cresample_v2_00_a_bitacc_cmodel.lib

stlport.5.1.dll

Precompiled library file for nt64 compilation

Table E-2: Compilation Tools for Bit Accurate C Models

Platform C Compiler

32-bit and 64-bit Linux GCC 4.1.1

32-bit and 64-bit Windows Microsoft Visual Studio 2005

Table E-1: Directory Structure and Files of Bit-Accurate Model (Cont’d)

File Name Contents

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 70

PG012 April 24, 2012

Using the C Model

Declaration of these structs can be found in
v_cresample_v2_00_a_bitacc_cmodel.h.

The generic parameters and default values are listed in Table E-3. For an actual instance of
the core, these parameters can only be set during generation through the CORE Generator
interface.

Table E-3: Model Generic Parameters and Default Values

Generic Variable Type
Default
Value

Range Description

S_AXIS_VIDEO_FORMAT Int 2 1, 2, 3 1=4:2:0, 2 = 4:2:2, 3=4:4:4

M_AXIS_VIDEO_FORMAT Int 3 1, 2, 3 1=4:2:0, 2 = 4:2:2, 3=4:4:4

INTERLACED Int 0 0, 1 0 = progressive, 1 = interlaced

NUM_H_TAPS Int 2 0 to 24 Allowed values depend on conversion

� 4:4:4 to 4:2:2: 3, 5, 7, 9, 11, 13, 15, 17, 19,
21, 23

� 4:2:2 to 4:4:4: 2, 4, 6, 8, 10, 12, 14, 16, 18,
20, 22, 24

� 4:2:2 to 4:2:0: 0 (vertical f ilter only)

� 4:2:0 to 4:2:2: 0 (vertical f ilter only)

� 4:4:4 to 4:2:0: 3, 5, 7, 9, 11, 13, 15, 17, 19,
21, 23

� 4:2:0 to 4:4:4: 2, 4, 6, 8, 10, 12, 14, 16, 18,
20, 22, 24

NUM_V_TAPS Int 0 0 to 8 Allowed values depend on conversion

� 4:4:4 to 4:2:2: 0 (horizontal f ilter only)

� 4:2:2 to 4:4:4: 0 (horizontal f ilter only)

� 4:2:2 to 4:2:0: 2, 4, 6, 8

� 4:2:0 to 4:2:2: 2, 4, 6, 8

� 4:4:4 to 4:2:0: 2, 4, 6, 8

� 4:2:0 to 4:4:4: 2, 4, 6, 8

CONVERT_TYPE Int 1 0, 1, 2 0 = User Defined Filter

1 = Fixed Coefficient Filter

2 = Drop/Replicate

S_AXIS_VIDEO_DATA_WIDTH Int 8 8,10,12 Data width of each component Y, Cb, Cr

ACTIVE_COLS Int 1920 32 to
7680

Number of pixels per scan line

ACTIVE_ROWS Int 1080 32 to
7680

Number of scan lines per frame

FIELD_PARITY Int odd odd,
even

� Odd/top field

� Even/bottom field

CHROMA_PARITY Int odd odd,
even

� Chroma information on odd/first line

� Even lines

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 71

PG012 April 24, 2012

Using the C Model

Calling xilinx_ip_v_cresample_v2_00_a_get_default_generics(&cresample_generics)
initializes the generics structure with the defaults, listed in Table E-3.

Filter coeff icients can also be set dynamically through theAXI4-Lite interface; therefore this
value is passed as an input to the core, along with the actual test image, or video sequence,
as shown in Table E-4.

The structure cresample_inputs defines the values of run-time parameters and the actual
input image.

Calling xilinx_ip_v_cresample_v2_00_a_get_default_inputs(&cresample_generics,
&cresample_inputs) initializes the input structure with the default values, as described in
Table E-4.

Note: The video_in variable is not initialized, because the initialization depends on the actual test
image to be simulated. Chroma Resampler Input and Output Video Structure, page 72 describes the
initialization of the video_in structure.

After the inputs are defined the model can be simulated by calling the function:

int xilinx_ip_v_cresample_v2_00_a_bitacc_simulate(

struct xilinx_ip_v_cresample_v2_00_a_generics* generics,

struct xilinx_ip_v_cresample_v2_00_a_inputs* inputs,

struct xilinx_ip_v_cresample_v2_00_a_outputs* outputs).

Results are provided in the outputs structure, which contains only one member of type
video_struct.

Table E-4: Core Generic Parameters and Default Values

Input Variable Type
Default
Value

Range Description

video_in video_struct null N/A Container to hold input image or video
data(1).

coefs_hphase0 float 0 [-2,2) Array of coeff icients used for phase 0 of
the horizontal f ilter. Coeff icient values
should be quantized to 16 bits (14
fractional bits).

coefs_hphase1 float 0 [-2,2) Array of coeff icients used for phase 1 of
the horizontal f ilter. Coeff icient values
should be quantized to 16 bits (14
fractional bits).

coefs_vphase0 float 0 [-2,2) Array of coeff icients used for phase 0 of
the vertical f ilter. Coeff icient values
should be quantized to 16 bits (14
fractional bits).

coefs_vphase1 float 0 [-2,2) Array of coeff icients used for phase 1 of
the vertical f ilter. Coeff icient values
should be quantized to 16 bits (14
fractional bits).

1. For the description of the input structure, see Initializing the Chroma Resampler input video structure, page 73.

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 72

PG012 April 24, 2012

Using the C Model

After the outputs are evaluated and/or saved, dynamically allocated memory for input and
output video structures are released by calling the function

void xilinx_ip_v_cresample_v2_00_a_destroy(

struct xilinx_ip_v_cresample_v2_00_a_inputs *input,

struct xilinx_ip_v_cresample_v2_00_a_outputs *output).

Successful execution of all provided functions, except for the destroy function, return value
0. Otherwise, a non-zero error code indicates that problems were encountered during
function calls.

Chroma Resampler Input and Output Video Structure

Input images or video streams can be provided to the Chroma Resampler reference model
using the video_struct structure, defined in video_utils.h:

struct video_struct{ int frames, rows, cols, bits_per_component, mode;

uint16*** data[5]; };

Table E-5 details the variables of the video structure.

Table E-6 details the modes and representations.

Table E-5: Member Variables of the Video Structure

Member variable Designation

frames Number of video/image frames in the data structure.

rows Number of rows per frame.

This variable pertains to the image plane with the most rows and columns,
such as the luminance channel for YUV data. Frame dimensions are assumed
constant through the all frames of the video stream. However different
planes, such as y,u and v, may have different dimensions.

cols Number of columns per frame.

This variable pertains to the image plane with the most rows and columns,
such as the luminance channel for YUV data. Frame dimensions are assumed
constant through the all frames of the video stream. However different
planes, such as y,u and v, may have different dimensions.

bits_per_component Number of bits per color channel / component.

All image planes are assumed to have the same color/component
representation. Maximum number of bits per component is 16.

mode Contains information about the designation of data planes.

Named constants to be assigned to mode are listed in Table E-6.

data Set of f ive pointers to three dimensional arrays containing data for image
planes.

Data is in 16-bit unsigned integer format accessed as
data[plane][frame][row][col].

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 73

PG012 April 24, 2012

Using the C Model

The Chroma Resampler C model supports the following modes:

� FORMAT_C444

� FORMAT_C422

� FORMAT_C420

Initializing the Chroma Resampler input video structure

The easiest way to assign stimuli values to the input video structure is to initialize it with an
image or video. The yuv_utils.h and video_utils.h header files packaged with the
bit-accurate C models contain functions to facilitate file I/O.

YUV Image/Video Files

The header yuv_utils.h declares functions that help access f iles in standard YUV format.
It operates on images with 3 planes (Y, U, and V). Functions int write_yuv8(FILE *outfile,
struct yuv8_video_struct *yuv8_video); and int read_yuv8(FILE *infile, struct
yuv8_video_struct *yuv8_video); operate on arguments of type yuv8_video_struct, which is
defined in yuv_utils.h.

Exchanging data between yuv8_video_struct and general video_struct type frames/videos is
facilitated by the following functions:

� int copy_yuv8_to_video(struct yuv8_video_struct* yuv8_in, struct video_struct*
video_out);

Table E-6: Named Video Modes with Corresponding Planes and Representations

Mode Planes Video Representation

FORMAT_MONO 1 Monochrome – Luminance only.

FORMAT_RGB 3 RGB image/video data

FORMAT_C444 3 4:4:4 YUV, or YCrCb image/video data

FORMAT_C422 3 4:2:2 format YUV video (u,v chrominance channels horizontally
sub-sampled)

FORMAT_C420 3 4:2:0 format YUV video (u,v sub-sampled both horizontally and
vertically)

FORMAT_MONO_M 3 Monochrome (Luminance) video with Motion

FORMAT_RGBA 4 RGB image/video data with alpha (transparency) channel

FORMAT_C420_M 5 4:2:0 YUV video with Motion

FORMAT_C422_M 5 4:2:2 YUV video with Motion

FORMAT_C444_M 5 4:4:4 YUV video with Motion

FORMAT_RGBM 5 RGB video with Motion

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 74

PG012 April 24, 2012

Using the C Model

� int copy_video_to_yuv8(struct video_struct* video_in, struct yuv8_video_struct*
yuv8_out);

All image/video manipulation utility functions expect both input and output structures
initialized either as static or dynamic variables (for example, pointing to a structure which
has been allocated in memory). Moreover, the input structure has to have the dynamically
allocated container (data[] or y[], u[], v[]) structures already allocated and initialized with the
input frame(s). If the output container structure is pre-allocated at the time of the function
call, the utility functions verify and throw an error if the output container size does not
match the size of the expected output. If the output container structure is not pre-allocated,
the utility functions will create the appropriate container to hold the results.

Binary Image/Video Files

The header video_utils.h declares functions that help load and save generalized video
f iles in raw, uncompressed format (BIN f iles). Functions int read_video(FILE* infile, struct
video_struct* in_video); and int write_video(FILE* outfile, struct video_struct* out_video);
effectively serialize the video_struct structure. The corresponding f ile contains a small, plain
text header defining, “Mode”, “Frames”, “Rows”, “Columns”, and “Bits per Component”. The
plain text header is followed by binary data that is 16 bits per component in scan line
continuous format. Subsequent frames contain as many component planes as defined by
the video mode value selected. In addition, the size (rows, columns) of component planes
may differ within each frame as defined by the actual video mode selected.

Working with video_struct Containers

Header f ile video_utils.h defines the following functions to simplify access to video
data in video_struct:

� int video_planes_per_mode(int mode);

� int video_rows_per_plane(struct video_struct* video, int plane);

� int video_cols_per_plane(struct video_struct* video, int plane);

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 75

PG012 April 24, 2012

C Model Example Code

Function video_planes_per_mode returns the number of component planes defined by the
mode variable, as described in Table E-6, page 73. Functions video_rows_per_plane and
video_cols_per_plane return the number of rows and columns in a given plane of the
selected video structure. The example below demonstrates using these functions in
conjunction to process all pixels within a video stream stored in the variable in_video with
the following construct:

for (int frame = 0; frame < in_video->frames; frame++) {

 for (int plane = 0; plane < video_planes_per_mode(in_video->mode); plane++) {

 for (int row = 0; row < rows_per_plane(in_video,plane); row++) {

 for (int col = 0; col < cols_per_plane(in_video,plane); col++) {

// User defined pixel operations on

// in_video->data[plane][frame][row][col]

 }

 }

 }

}

C Model Example Code

An example C file, run_bitacc_cmodel.c, is provided and demonstrates the steps
required to run the model.

After following the compilation instructions, run the example executable. The executable
takes the path to the input f ile, the path to the output f ile, and the configuration file name
as parameters. If invoked with insufficient parameters, the following help message is
printed:

Usage: run_bitacc_cmodel file_dir config_file

file_dir : path to the location of the input/output files

config_file : path/name of the configuration file

During successful execution, the corresponding YUV or BIN output f ile is created.

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 76

PG012 April 24, 2012

C Model Example Code

Example Code Configuration File

The example code reads a configuration f ile which defines all the generic and input
variables. An example configuration f ile is given in the zip file.

###

#

cresample.cfg: Chroma Resampler example configuration file

#

###

Generic variables

CSET S_AXIS_VIDEO DATA_WIDTH=8; # allowed values: 8, 10, 12

CSET ACTIVE_COLS=720; # allowed values: 32-7680

CSET ACTIVE_ROWS=480; # allowed values: 32-7680

CSET S_AXIS_VIDEO_FORMAT = 3; # allowed values: 3=4:4:4, 2=4:2:2, 1=4:2:0

CSET M_AXIS_VIDEO_FORMAT = 2; # allowed values: 3=4:4:4, 2=4:2:2, 1=4:2:0

CSET INTERLACED=false; # false=progressive, true=interlaced

CSET FIELD_PARITY=odd; # odd=odd/top field, even=even/bottom field

CSET CONVERT_TYPE=1; # 2=Drop/Replicate, 1=Fixed Coefficient Filter, 0=User

Defined Filter

CSET NUM_H_TAPS=3; # number of horizontal taps, see product guide for allowed

values

CSET NUM_V_TAPS=0; # number of vertical taps, see product guide for allowed

values

Input Image/Video

CSET INPUT_FILE_NAME = Zoneplate_720x480.yuv; # name of input file with

extension (.yuv or .bin)

CSET OUTPUT_FILE_NAME = Zoneplate_720x480_out.yuv; # name of output file with

same extension as input file

CSET NUMBER_OF_FRAMES = 1; # number of frames

CSET NUMBER_OF_COLS = 720; # number of columns

CSET NUMBER_OF_ROWS = 480; # number of rows

Filter Coefficients

supported range of [-2 to 2) - quantized to 16 bit values with 14 fractional bits

coefficient values not defined here will default to 0

extra coefficients defined here will not be used (for example, coef05_hphase0 will not be

used if num_h_taps=3)

CSET COEF00_HPHASE0 = 0.25;

CSET COEF01_HPHASE0 = 0.5;

CSET COEF02_HPHASE0 = 0.25;

All the variables are set with a line beginning with the keyword “CSET”.

For the generic variables, there is a one-to-one mapping between the generic variables in
the configuration f ile and the generic variables in Table E-4, page 71. Any generic variables
that are not set will use the default value.

The example code will create the input video_in by reading in a YUV or BIN f ile. The
configuration f ile must specify the input image file name, the number of frames, the
number of columns, and the number of rows. The input image chroma format must match

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 77

PG012 April 24, 2012

Compiling the Chroma Resampler C Model with Example Wrapper

the generic variable S_AXIS_VIDEO_FORMAT. The example code only processes 8-bit YUV
and BIN input f iles.

Filter Coefficients can be defined in the configuration f ile. The coeff icients have an allowed
range of [-2,2). The coefficients will be quantized to 16-bit values with 14 fractional bits.
Any undefined coeff icients will default to 0. Any unnecessary extra coeff icients that are
defined will not be used. For example, COEF05_HPHASE0 will be unused when
NUM_H_TAPS=3.

Compiling the Chroma Resampler C Model with
Example Wrapper

Linux (32 and 64-bit)

To compile the example code, perform the following steps:

1. Set your $LD_LIBRARY_PATH environment variable to include the root directory where
you unzipped the model zip-file:

setenv LD_LIBRARY_PATH <unzipped_c_model_dir>:${LD_LIBRARY_PATH}

2. Copy the following f iles from the /lin32 or /lin64 directory to the root directory:

libstlport.so.5.1

libIp_v_cresample_v2_00_a_bitacc_cmodel.so

3. Then in the root directory, compile using the GNU C Compiler using the following
command:

gcc -m32 -x c++ ../run_bitacc_cmodel.c ../parsers.c -o run_bitacc_cmodel -L.

-lIp_v_cresample_v2_00_a_bitacc_cmodel -Wl,-rpath,.

gcc -m64 -x c++ ../run_bitacc_cmodel.c ../parsers.c -o run_bitacc_cmodel -L.

-lIp_v_cresample_v2_00_a_bitacc_cmodel -Wl,-rpath,.

Windows (32 and 64-bit)

Precompiled library v_cresample_v2_00_a_bitacc_cmodel.lib and top level
demonstration code run_bitacc_cmodel.c should be compiled with an ANSI C
compliant compiler under Windows. This section presents an example using Microsoft
Visual Studio.

In Visual Studio create a new, empty Console Application project. As existing items, add:

� libIp_v_cresample_v2_00_a_bitacc_cmodel.lib to the Resource Files folder
of the project

� run_bitacc_cmodel.c and parsers.c to the Source Files folder of the project

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 78

PG012 April 24, 2012

Compiling the Chroma Resampler C Model with Example Wrapper

� v_cresample_v2_00_a_bitacc_cmodel.h to Header Files folder of the project

Once the project has been created and populated, it needs to be compiled and built in
order to create an executable. To perform the build step, choose Build Solution from the
Build menu. An executable matching the project name has been created either in the Debug
or Release subdirectories under the project location based on whether Debug or Release
has been selected in the Configuration Manager under the Build menu.

In order to ease modifying and debugging the top-level demonstrator using the built-in
debugging environment of Visual Studio, the top-level command-line parameters can be
specified through the Project Property pages. In the Solution Explorer pane, right click the
project name, and select Properties from the context menu. Select Debugging on the left
pane of the Property Pages dialog box. Enter the paths and filenames to the input and
output images into the Command Arguments f ield.

http://www.xilinx.com

Chroma Resampler v2.00.a www.xilinx.com 79

PG012 April 24, 2012

Appendix F

Additional Resources

Xilinx Resources

For support resources such as Answers, Documentation, Downloads, and Forums, see the
Xilinx Support website at:

http://www.xilinx.com/support.

For a glossary of technical terms used in Xilinx documentation, see:

http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf.

For a comprehensive listing of Video and Imaging application notes, white papers,
reference designs and related IP cores, see the Video and Imaging Resources page at:

http://www.xilinx.com/esp/video/refdes_listing.htm#ref_des.

References

These documents provide supplemental material useful with this user guide:

� Xilinx AXI Reference Guide

� AMBA AXI4 Interface Protocol

Technical Support

Xilinx provides technical support at www.xilinx.com/support for this LogiCORE™ IP product
when used as described in the product documentation. Xilinx cannot guarantee timing,
functionality, or support of product if implemented in devices that are not defined in the
documentation, if customized beyond that allowed in the product documentation, or if
changes are made to any section of the design labeled DO NOT MODIFY.

http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf
http://www.xilinx.com/support
http://www.xilinx.com
http://www.xilinx.com/support
http://www.xilinx.com/esp/video/refdes_listing.htm#ref_des

Chroma Resampler v2.00.a www.xilinx.com 80

PG012 April 24, 2012

Revision History

See the IP Release Notes Guide (XTP025) for more information on this core. For each core,
there is a master Answer Record that contains the Release Notes and Known Issues list for
the core being used. The following information is listed for each version of the core:

� New Features

� Resolved Issues

� Known Issues

Revision History

The following table shows the revision history for this document.

Notice of Disclaimer
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available “AS IS” and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect,
special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage
suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had
been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to
notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display
the Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties
which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support terms contained in
a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring
fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications: http://www.xilinx.com/
warranty.htm#critapps.

© Copyright 2011-2012 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Zynq, and other designated brands
included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their
respective owners.

Date Version Revision

10/19/2011 1.0 Initial Xilinx release.

04/24/2012 2.0 Updated core to v2.00.a and ISE Design Suite v14.1. Updated the C model
parameters in Table E-3. Replaced XSVI interfaces with AXI4-Stream
interfaces. Added native support for EDK.

http://www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
http://www.xilinx.com
http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps
http://www.xilinx.com/warranty.htm#critapps

