
18 http:/ /www.smartaccessnewsletter.comSmart Access February 2001

Build Gantt Charts
with MS Graph
Doug Den Hoed

Smart Access

The MS Graph engine that powers charts in Access and Excel

is extremely flexible, but it often requires some t inkering.

Doug Den Hoed shares his techniques for building Gantt

charts, and he reveals some tricks to help you make your

charts look more professional.

A
 picture is worth a thousand words. Fortunately,

you can deliver one for considerably less than that,

thanks to the MS Graph library that’s behind

Access and Excel. Recently, my most demanding client

(me) posed a new challenge: Build a Gantt chart using MS

Graph. I opened a form in design view and fearlessly

clicked the Insert | Chart menu choice. The Chart Wizard

popped up and asked me for a datasource. I paused as the

truth sunk in. I didn’t even know what my Gantt chart

data should look like! So, for once, I abandoned Access.

In case of emergency, break rules

Instead, I opened Excel. When I clicked Insert | Chart in

Excel, a much friendlier, four-step wizard appeared.

The first panel offered me a smorgasbord of charts

on two tabs: Standard Types and Custom Types. The

latter had an entry called “Floating Bars” that sounded

promising. Its description read, “Requires two series—

first specifies beginning of bars, second specifies length

of bars.” I reread it a few times and… Aha! I realized

that this was the solution to my problem: I’d create an

invisible bar in front of each real bar that would push the

real bars into the right position!

Now I knew what my data had to look like. I canceled

the wizard and entered the sample data shown in Figure

1. I called the column for the invisible bars “Offset” to

indicate how far (for example, in days) from the left edge

of the chart each bar should be pushed. I knew that I

wanted to show certain tasks being extended, so I also

added both “OriginalBudget” and “RevisedBudget”

columns. And to keep my bars straight, I created a “Task”

column and numbered each task in order of execution.

I selected all of my sample data, clicked Insert |

Chart again, and returned to the Chart Wizard. When I

previewed the Floating Bars type, it looked a bit odd—

and too 3D-ish, as well. I chose “Bar” from the Standard

Types tab because it had a horizontal orientation (I

wanted the bars to stretch over time). Six chart subtypes

appeared for Bar charts: Clustered, Stacked, and 100%

Stacked, in either 2D or 3D. I chose “Stacked, 2D” and

previewed. It wasn’t great, but the orientation was what I

wanted, so I clicked Next.

The second form in the wizard offered two tabs to

choose my Data Range and Series. Since I’d already

highlighted my data, the Data Range was filled in. When I

switched from “Series in Rows” to “Series in Columns,”

my graph preview improved dramatically. The bars had

the progression that I expected, although the bars went

from longest to shortest as I looked down the chart. This

made the chart seem upside down. On the Series tab, the

chart had plotted the task numbers as values, which

wasn’t what I’d intended, either, so I removed the Task

series. Everything else looked fine.

The third form in the wizard covered formatting:

Titles, Axes, Gridlines, Legend, Data Labels, and Data

Tables. Since I knew I could adjust my real chart in Access

later, I skipped them. The fourth form simply asked

where I wanted to put the chart. I placed it underneath

my sample data, and the wizard closed.

It took me a while to find the last few tricks I needed.

I clicked an Offset bar, which selected the whole series,

then right-clicked and chose Format Series. On the

Patterns tab, I set the Border property and Area to None.

That made the Offset bars invisible. However, the “Offset”

label was still in the legend. I considered Nulling the

column name out, but I knew that wouldn’t be allowed in

Access: Every column in a SQL SELECT statement has to

20002000

Figure 1. Gantt chart sample data.

http:/ /www.smartaccessnewsletter.com 19Smart Access February 2001

have a name. So I cheated. I renamed the Offset column

header to “Start Date” and changed its border to a dashed

line. This had the pleasant effect of guiding my eye to

each bar, and it made Start Date look like it belonged in

the legend.

To fix my upside-down issue, I selected the vertical

axis by clicking the left edge of the chart, right-clicked,

and then chose Format Axis. On the Scale tab, I enabled

“Categories in reverse order.” At last, my graph

looked like a Gantt chart (see Figure 2). I’ve included

GANTT.XLS in this month’s Source Code file at

www.smartaccessnewsletter.com.

Resume next

Bolstered by my success in Excel, I confidently returned

to Access and created the table tblTask to hold the data

for my Gantt chart. I kept it similar to my sample data in

Excel, except for two changes: I added a StartDate column

with dates to coincide with the Offset integers, and I

added a Task column for short descriptions of each task.

I excluded both of these columns from my chart’s

Rowsource query (called “qselGantt, Order By TaskID”),

but I knew the data would be a helpful reference. With

the table loaded with data, I created rptGantt, bound it

to tblTask, and painted the Task ID, Start Date, Task,

Original Budget, and Revised Budget in the detail section

of the report. There was only one thing left: the chart.

Armed with my datasource, I tried the Access Chart

Wizard again. In the wizard, I clicked Queries, selected

qselGantt, and clicked the Next button. On the next form,

I moved all four fields in qselGantt from the “Available

Fields” list box on the left to the “Fields for Chart” list box

on the right. I clicked Next and was pleased to see a

selection of chart types, just as Excel had offered. I chose

Bar Chart and hoped that the next panel would offer me a

chance to narrow it to a specific subtype. It didn’t.

Instead, the wizard presented a form where I could

drag and drop my fields and preview my report.

Although I’d used this form on other occasions, I still

found it cumbersome. After some experimentation, I

settled on Axis set to Task ID and Data set to Original

Budget and Revised Budget. I knew I wanted one series

(stacked), but, paradoxically, it looked most accurate

when I left Series set to nothing.

The next form in the wizard surprised me again.

Because I’d already set a Rowsource for rptGantt for

the fields I’d painted in the detail section, the wizard

offered me a way of linking report fields to chart fields.

This would have the report data “drive” the chart. I

guessed that this would make sense if I’d painted the

chart in the detail section of the report, and made the

chart smaller. However, since I wanted to show the chart

once, right at the start of the report, in its own report

group, I didn’t need to link any fields to the chart. I

blanked the fields out on the form (later, I confirmed

that this panel only appears for bound reports).

The last panel invited me to name my chart’s title,

show or hide the legend, and get help with customizing

the chart (which I declined). I clicked the Finish button,

which closed the wizard and brought me back to rptGantt

and my new, rather plain chart, which I christened

objChartGantt and saved.

In Figure 3, you can see my result (rptGantt), which

loads when you open the GANTT.MDB database, also

included in this month’s Source Code file.

Professional touches

I spent a lot of time formatting what I now consider

“my look” for charts. I suspect you’ll also choose to

create your own look (aesthetics are always subjective).

However, to get you started, I’ve listed most of the

features that I used to achieve the look of the sample

application. Note, though, that these are MS Graph tips

rather than Access tips. I set these options after I’d

double-clicked the objChartGantt (or right-clicked and

selected Chart Object | Edit), which invokes MS Graph. I

Figure 2. Gantt chart prototype in Excel. Figure 3. Finished Gantt chart in Access.

20 http:/ /www.smartaccessnewsletter.comSmart Access February 2001

used the shortcut menus to manipulate the features, so

I’ve prefaced each tip with the object that you must select

to find the feature. You can also use MS Graph’s menus

and toolbars to achieve the same results.

Datasheet Window: Sample Data

MS Graph offered some default data for me in its

datasheet, but it wasn’t a good fit for a Gantt chart.

To help me visualize my final product, I replaced that

default data with my own, as shown in Figure 1.

Chart Area: ChartType

For my Gantt chart to work, I needed to stack the bars. I

clicked the chart once, near the top left corner. Handles

appeared, and the ToolTip text said “Chart Area.” I

right-clicked, chose “Chart Type…” and was happy to

see the first form from the Excel wizard, with the subtype

options. There are nearly 100 different charts available. I

chose Stacked Bar.

Chart Area: Chart Options

I right-clicked the Chart Area again and chose “Chart

Options…” The third form from the Excel wizard

appeared. I set my Titles, Axes, Gridlines, Legend, Data

Labels, and Data Tables preferences there.

Chart Area: Format Chart Area

I right-clicked the Chart Area one final time and chose

“Format Chart Area…” On the Patterns tab, I set Border to

None and then clicked the Fill Effects button to choose a

shaded gradient—a fast way to make the chart more

appealing. The Font tab on this dialog box applies to all

text on the chart. Normally, I use the Onyx font for my

look: It’s skinny, but legible. For the demo, I chose the

Tahoma font, which is bigger. Later, I overrode some of

these default font settings for certain fields (for example,

Title color, Legend border) by double-clicking and

formatting them individually.

Plot Area: Format Chart Area

I clicked the chart near the bars (but not on them) until

handles appeared and the ToolTip text said “Plot Area.” I

right-clicked and chose “Format Plot Area…” For my

look, I set the same gradient as on the Chart Area, but in

the reverse direction. Gradients subtly guide the user’s

eyes to bars and make comparisons easier. I used to

choose more colorful gradients, but they turned out too

dark on black and white printers.

Category Axis: Format Axis

I clicked the left edge of the chart Plot Area until handles

appeared and the ToolTip text said “Category Axis.” I

right-clicked and chose “Format Axis…” This exposed

tabs to set the Axis’ Pattern, Scale, Font, Number, and

Alignment formats. As in my Excel prototype, I checked

“Categories in reverse order” to give the bars a top-left-to-

bottom-right progression. Unfortunately, when I reversed

the categories, the horizontal Value Axis moved to the top

of the Plot Area, just as you see in Figure 2. I wanted that

at the bottom, so I checked the “Value (Y) axis crosses at

maximum value” option, which moved them there.

Series: Format Series

I found it hard to select a series. I clicked around inside

one of the Offset bars, but the handles were around a

single bar rather than all of the bars. I clicked closer to the

center of the bar, and two handles appeared around each

data label in each bar in the Offset series, but that was just

the series’ text. I clicked just right of center, and, finally,

one handle appeared on each of the other Offset bars, and

the ToolTip text said “Series ‘Offset’ Value…”

Another trick I learned is to temporarily inflate a

value: It makes it obvious which series you’re hitting.

Either way, I right-clicked, then chose “Format

Axis…” and set the Patterns (in the case of the Offset

series, that was Border to Dashed and Area to None). I

skipped the Axis tab, since my only series was already

plotted on the Primary Axis by default. I also skipped

the Y-Error Bars, since they weren’t applicable. On the

Data Labels tab, I chose “None” for the Offset series and

“Show values” for the other two series. On the Options

tab, I set the Overlap to 100 percent and the Gap width

to 0, giving the aligned, touching bars that I wanted for

my look.

Value Axis: Format Axis

I chose to leave my Value Axis in days, showing the

cumulative effect of the tasks. I’ll leave it to you to try to

show them as dates.

Chart Window: Sizes

I wanted the Chart’s overall size to fit the space I’d

reserved in objChartGantt. I learned to watch the bottom

left corner of the chart in Access in the background while I

resized the edges of the Chart Window, the Chart Area,

and the Plot Area in MS Graph. I also learned to think

twice before reopening a chart in MS Graph once I’d sized

it properly. MS Graph has a maddening habit of shrinking

the chart slightly whenever you open it, whether you

change anything or not!

objChartGantt: Other Properties

Back in Access, I also set the objChartGantt’s Rowsource

to qselGantt, since the wizard transformed it, and I made

the borders transparent. I also set the SizeMode to Clip,

although I usually use Zoom. I previewed rptGantt and

created Figure 3 for my article.

Uncharted territory

The other reason that I created my Gantt demo on a report

http:/ /www.smartaccessnewsletter.com 21Smart Access February 2001

was to warn you that it’s harder to work with a chart on a

report than on a form. I say that because (are you ready?)

the chart’s behavior changes. Surprised? So was I! So to

spare you some frustration, I’ve summarized three of my

most disconcerting discoveries in Table 1.

You can use my techniques to add professional-

looking Gantt charts to your Access (and Excel)

applications that will impress your users. I find that

getting a chart to look just right is fun and satisfying,

and it speaks volumes to my users (at least a thousand

words!). The tips and workarounds I’ve shared here

should inspire you to experiment with the MS Graph

library’s Chart object in your own applications. ▲

GANTT.ZIP at www.smartaccessnewsletter.com

Doug Den Hoed is a founder of Lumina Systems Delivery in Calgary,

Canada, which specializes in customized software solut ions using

Access, Visual Basic, InterDev, SQL Server, and Oracle. Doug drew this

art icle from The KB™ (ht tp:/ /www.thekb.com), his Access-based

commercial package for managing software development projects.

doug.denhoed@home.com.

Table 1. Chart propert ies differ on forms and reports.

Gotcha Details, advice, and workarounds

Property imparity After several hours of denial, I finally confirmed the awful t ruth: A chart painted on a form has more propert ies (61)

than the exact same chart painted on a report (42). My emphasis is on the differences. If you’re count ing on

changing some propert ies at runt ime on a report, I recommend that you enumerate the propert ies in design mode

(for example, for each prp in objChart .Propert ies debug.print prp.name…), note what ’s available, and test with

Access’s / runt ime startup opt ion.

Can’t see/change Rowsource One of the main features in my real applicat ion lets users change the chart ’s criteria on the fly. On a form’s chart, it

was t rivial: I changed the chart ’s Rowsource, and the chart obligingly repainted itself with the new data. On a

report ’s chart , however, I couldn’t even see the Rowsource property, let alone set it ! I spent several hours

superst it iously repaint ing in different ways to see whether I could get the chart to “keep” its propert ies. No luck. I

did find a workaround: Bind the chart to a working query (for example, qtmpChart), and manipulate the query’s

SQL property at runt ime. It ’s a fine line between a cool technique and cheat ing.

Can’t change ChartType The ChartType is another powerful property that disappears when you paint the chart on a report . One

workaround I can offer is to paint one chart for each type you might need, and use a Select Case to set the Visible

property of the chart that you want to display. This solut ion has its own problems, as the invisible charts take up

resources even if you use separate temporary queries and try to minimize their impact by set t ing them to

impossible condit ions (for example, giving the query a WHERE clause of 1=2). Ult imately, I abandoned this

approach and created a separate report for each chart type.

The other fields provided by the Internet Publishing

provider include the name of the parent directory

(RESOURCE_PARENTNAME) and flags indicating

whether the file is hidden or read-only, among

other information.

You can add new fields to the collection just by

referring to them. For instance, this code adds a new

field called Handled to a Record’s Fields collection and

sets it to True:

rc!Handled = True

The field that’s created will have the Variant data

type, which Microsoft’s documentation says isn’t yet

supported by ADO. The fields that are added are only

temporary unless you use the Fields collection’s Update

method, at which point, presumably, the underlying

physical entity will be updated with the new field and

its content. The Internet Publishing provider won’t

update a file or directory, so it will only let you add fields

temporarily. Calling the Update method of the Fields

collection for the Internet Publishing provider will

generate the message “Current Provider does not support

adding and deleting columns on the Record object.”

Working with files

In addition to browsing the structure of the Web site

and retrieving files, you can use the Record object to

change the files on the site by using the Record object’s

CopyRecord, DeleteRecord, and MoveRecord methods.

The DeleteRecord method is the simplest. This

method, used without a parameter, deletes the resource

specified by the Record object. This code deletes the

physical entity pointed to by the Record object:

rc.DeleteRecord

Accessing Records...
Continued from page 17

