
Text Classification by Bootstrapping with
Keywords, EM and Shrinkage

Andrew M c C a l l u m tt

mccallum@justresearch.com

S Just Research

4616 Henry Street

Pittsburgh, PA 15213

K a m a l N igam t

knigam@cs.cmu.edu

tSchool of Computer Science

Carnegie Mellon University

Pittsburgh, PA 1 5 2 1 3

A b s t r a c t

When applying text classification to com-

plex tasks, it is tedious and expensive

to hand-label the large amounts of train-

ing data necessary for good performance.

This paper presents an alternative ap-

proach to text classification that requires

no labeled documentsi instead, it uses a

small set of keywords per class, a class

hierarchy and a large quantity of easily-

obtained unlabeled documents. The key-

words are used to assign approximate la-

bels to the unlabeled documents by term-

matching. These preliminary labels be-

come the starting point for a bootstrap-

ping process that learns a naive Bayes clas-

sifier using Expectation-Maximization and

hierarchical shrinkage. When classifying a

complex data set of computer science re-

search papers into a 70-leaf topic hierar-

chy, the keywords alone provide 45% accu-

racy. The classifier learned by bootstrap-

ping reaches 66% accuracy, a level close to

human agreement.

1 I n t r o d u c t i o n

When provided with enough labeled training exam-

ples, a variety of text classification algorithms can

learn reasonably accurate classifiers (Lewis, 1998;

Joachims, 1998; Yang, 1999; Cohen and Singer,

1996). However, when applied to complex domains

with many classes, these algorithms often require ex-

tremely large training sets to provide useful classifi-

cation accuracy. Creating these sets of labeled data

is tedious and expensive, since typically they must

be labeled by a person. This leads us to consider

learning algorithms that do not require such large

amounts of labeled data.

While labeled data is difficult to obtain, un-

labeled data is readily available and plentiful.

Castelli and Cover (1996) show in a theoretical

framework that unlabeled data can indeed be used

to improve classification, although it is exponentially

less valuable than labeled data. Fortunately, unla-

beled data can often be obtained by completely auto-

mated methods. Consider the problem of classifying

news articles: a short Perl script and a night of au-

tomated Internet downloads can fill a hard disk with

unlabeled examples of news articles. In contrast, it

might take several days of human effort and tedium

to label even one thousand of these.

In previous work (Nigam et al., 1999) it has been

shown that with just a small number of labeled docu-

ments, text classification error can be reduced by up

to 30% when the labeled documents are augmented

with a large collection of unlabeled documents.

This paper considers the task of learning text clas-

sifiers with no labeled documents at all. Knowledge

about the classes of interest is provided in the form

of a few keywords per class and a class hierarchy.

Keywords are typically generated more quickly and

easily than even a small number of labeled docu-

ments. Many classification problems naturally come

with hierarchically-organized classes. Our algorithm

proceeds by using the keywords to generate prelim-

inary labels for some documents by term-matching.

Then these labels, the hierarchy, and all the unla-

beled documents become the input to a bootstrap-

ping algorithm that produces a naive Bayes classi-

fier.

The bootstrapping algorithm used in this paper

combines hierarchical shrinkage and Expectation-

Maximization (EM) with unlabeled data. EM is an

iterative algorithm for maximum likelihood estima-

tion in parametric estimation problems with missing

data. In our scenario, the class labels of the docu-

ments are treated as missing data. Here, EM works

by first training a classifier with only the documents

52

Computer Science
computer, university, science, system, paper

Software Programming OS Artificial ... Hardware & HC1 Information

Engineering programming distributed Intelligence Architecture computer Retrieval

software language system learning circuits system information

design logic systems university design multimedia text

engineering university network computer computer university documents

tools programs time based university paper classification

Semantics Garbage Compiler" " NLP Machine Planning Knowledge ... Interface Cooperative Multimedia

semantics Collection Design language Learning planning Representation Design collaborative multimedia

denotationel garbage compiler natural learning temporal knowledge interface cscw real

language collection code processing a l g o r i t h m reason ing representation design work time

construction memory parallel information algorithms plan language user provide data

types optimization data text university problems system sketch group media

region language networks natural interfaces

Figure 1: A subset of Cora's topic hierarchy. Each node contains its title, and the five most probable words, as
calculated by naive Bayes and shrinkage with vertical word redistribution (Hofmann and Puzicha, 1998). Words
among the initial keywords for that class are indicated in plain font; others are in italics.

preliminarily-labeled by the keywords, and then uses

the classifier to re-assign probahilistically-weighted

class labels to all the documents by calculating the

expectation of the missing class labels. It then trains

a new classifier using all the documents and iterates.

We further improve classification by incorporating

shrinkage, a statistical technique for improving pa-

rameter estimation in the face of sparse data. When

classes are provided in a hierarchical relationship,

shrinkage is used to estimate new parameters by us-

ing a weighted average of the specific (but unreli-

able) local class estimates and the more general (but

also more reliable) ancestors of the class in the hier-

archy. The optimal weights in the average are cal-

culated by an EM process that runs simultaneously

with the EM that is re-estimating the class labels.

Experimental evaluation of this bootstrapping ap-

proach is performed on a data set of thirty-thousand

computer science research papers. A 70-leaf hier-

archy of computer science and a few keywords for

each class are provided as input. Keyword matching

alone provides 45% accuracy. Our bootstrapping al-

gorithm uses this as input and outputs a naive Bayes

text classifier that achieves 66% accuracy. Inter-

estingly, this accuracy approaches estimated human

agreement levels of 72%.

The experimental domain in this paper originates

as part of the Ra research project, an effort to build

domain-specific search engines on the Web with ma-

chine learning techniques. Our demonstration sys-

tem, Cora, is a search engine over computer science

research papers (McCallum et al., 1999). The boot-

strapping classification algorithm described in this

paper is used in Corn to place research papers into

a Yahoo-like hierarchy specific to computer science.

The-search engine, including this hierarchy, is pub-

licly available at www. cora.justresearch, com.

2 Generating Preliminary Labels

with Keywords

The first step in the bootstrapping process is to use

the keywords to generate preliminary labels for as

many of the unlabeled documents as possible. Each

class is given just a few keywords. Figure 1 shows

examples of the number and type of keywords given

in our experimental domain-- the human-provided

keywords are shown in the nodes in non-italic font.

In this paper, we generate preliminary labels from

the keywords by term-matching in a rule-list fashion:

for each document, we step through the keywords

and place the document in the category of the first

keyword that matches. Finding enough keywords to

obtain broad coverage while simultaneously finding

sufficiently specific keywords to obtain high accuracy

is very difficult; it requires intimate knowledge of the

data and a lot of trial and error.

As a result, classification by keyword matching is

both an inaccurate and incomplete. Keywords tend

to provide high-precision and low-recall; this brittle-

ness will leave many documents unlabeled. Some

documents will match keywords from the wrong

class. In general we expect the low recall of the key-

words to be the dominating factor in overall error.

In our experimental domain, for example, 59% of the

unlabeled documents do not contain any keywords.

Another method of priming bootstrapping with

keywords would be to take each set of keywords as a

53

labeled mini-document containing just a few words.

This could then be used as input to any standard

learning algorithm. Testing this, and other keyword

labeling approaches, is an area of ongoing work.

3 The Bootstrapping Algorithm

The goal of the bootstrapping step is to generate

a naive Bayes classifier from the inputs: the (inac-

curate and incomplete) preliminary labels, the un-

labeled data and the class hierarchy. One straight-

forward method would be to simply take the unla-

beled documents with preliminary labels, and treat

this as labeled data in a standard supervised set-

ting. This approach provides only minimal benefit

for three reasons: (1) the labels are rather noisy,

(2) the sample of preliminarily-labeled documents

is skewed from the regular document distribution

(i.e. it includes only documents containing key-

words), and (3) data are sparse in comparison to

the size of the feature space. Adding the remain-

ing unlabeled data and running EM helps counter

the first and second of these reasons. Adding hier-

archical shrinkage to naive Bayes helps counter the

first and third of these reasons. We begin a detailed

description of our boots trapping algorithm with a

short overview of standard naive Bayes text classi-

fication, then proceed by adding EM to incorporate

the unlabeled data, and conclude by explaining hi-

erarchical shrinkage. An outline of the entire algo-

ri thm is presented in Table 1.

3.1 T h e na ive B a y e s f r a m e w o r k

We build on the framework of multinomial naive

Bayes text classification (Lewis, 1998; McCallum

and Nigam, 1998). It is useful to think of naive

Bayes as estimating the parameters of a probabilis-

tic generative model for text documents. In this

model, first the class of the document is" selected.

The words of the document are then generated based

on the parameters for the class-specific multinomial

(i.e. unigram model). Thus, the classifier parame-

ters consist of the class prior probabilities and the

class-conditioned word probabilities. For formally,

each class, cj, has a document frequency relative to

all other classes, written P(cj). For every word

wt in the vocabulary V, P(wtlcj) indicates the fre-

quency that the classifier expects word wt to occur

in documents in class cj.

In the standard supervised setting, learning of the

parameters is accomplished using a set of labeled

training documents, 79. To estimate the word prob-

ability parameters, P (wt I cj), we count the frequency

with which word wt occurs among all word occur-

rences for documents in class cj. We supplement

• Inputs : A collection 79 of unlabeled documents, a
class hierarchy, and a few keywords for each class.

• Generate preliminary labels for as many of the unla-
beled documents as possible by term-matching with
the keywords in a rule-list fashion.

• Initialize all the Aj's to be uniform along each path
from a leaf class to the root of the class hierarchy.

• Iterate the EM algorithm:

• (M-step) Build the maximum likelihood
multinomial at each node in the hierarchy
given the class probability estimates for each
document (Equations 1 and 2). Normalize all
the Aj's along each path from a leaf class to the
root of the class hierarchy so that they sum to
1.

• (E-step) Calculate the expectation of the
class labels of each document using the clas-
sifter created in the M-step (Equation 3). In-
crement the new)~j's by attributing each word
of held-out data probabilistically to the ances-
tors of each class.

•" Outpu t : A naive Bayes classifier that takes an un-
labeled document and predicts a class label.

Table 1: An outline of the bootstrapping algorithm de-
scribed in Sections 2 and 3.

this with Laplace smoothing that primes each esti-

mate with a count of one to avoid probabilities of

zero. Let N(wt,di) be the count of the number of

times word we occurs in document di, and define

P(cj[di) E {0, 1}, as given by the document 's class

label. Then, the estimate of the probability of word

wt in class cj is:

1 + ~ a , ~ v N(wt, di)P(cjldi)
P(wtlc~) =

IVl + N(w., di)e(cjldi) "
(1)

The class prior probability parameters are set in the

same way, where ICI indicates the number of classes:

P(cj) = 1 + Ea, ev P(cjldi)
ICl + IVl (2)

Given an unlabeled document and a classifier, we

determine the probability that the document be-

longs in class cj using Bayes' rule and the naive

Bayes assumpt ion- - tha t the words in a document

occur independently of each other given the class. If

we denote Wd~,k to be the kth word in document di,

then classification becomes:

54

P(cjld~) c (P(c j)P(d i l c j)

Id, I

(X P(Cj) H P(Wd'. ~lcj)" (3)
k ~ l

Empirically, when given a large number of train-

ing documents, naive Bayes does a good job of

classifying text documents (Lewis, 1998). More

complete presentations of naive Bayes for text

classification are provided by Mitchell (1997) and

McCallum and Nigam (1998).

3.2 Adding unlabe led d a t a wi th E M

In the standard supervised setting, each document

comes with a label. In our bootstrapping sce-

nario, the preliminary keyword labels are both in-

complete and inaccurate--the keyword matching

leaves many many documents unlabeled, and la-

bels some incorrectly. In order to use the entire

data set in a naive Bayes classifier, we use the

Expectation-Maximization (EM) algorithm to gen-

erate probabilistically-weighted class labels for all

the documents. This results in classifier parameters

that are more likely given all the data.

EM is a class of iterative algorithms for maximum

likelihood or maximum a posteriori parameter esti-

mation in problems with incomplete data (Dempster

et al., 1977). Given a model of data generation, and

data with some missing values, EM iteratively uses

the current model to estimate the missing values,

and then uses the missing value estimates to im-

prove the model. Using all the available data, EM

will locally maximize the likelihood of the parame-

ters and give estimates for the missing values. In

our scenario, the class labels of the unlabeled data

are the missing values.

In implementation, EM is an iterative two-step

process. Initially, the parameter estimates are set

in the standard naive Bayes way from just the

preliminarily labeled documents. Then we iter-

ate the E- and M-steps. The E-step calculates

probabilistically-weighted class labels, P(cjldi), for

every document using the classifier and Equation 3.

The M-step estimates new classifier parameters us-

ing all the documents, by Equations 1 and 2, where

P(cjldi) is now continuous, as given by the E-step.

We iterate the E- and M-steps until the classifier

converges. The initialization step from the prelimi-

nary labels identifies each mixture component with

a class and seeds EM so that the local maxima that

it finds correspond well to class definitions.

In previous work (Nigam et al., 1999), we have

shown this technique significantly increases text

classification accuracy when given limited amounts

of labeled data and large amounts of unlabeled data.

The expectation here is that EM will both correct

and complete the labels for the entire data set.

3.3 Improv ing sparse data e s t imates wi th

shrinkage

Even when provided with a large pool of documents,

naive Bayes parameter estimation during bootstrap-

ping will suffer from sparse data because naive Bayes

has so many parameters to estimate ([V[IC I + IC[).

Using the provided class hierarchy, we can integrate

the statistical technique shrinkage into the boot-

strapping algorithm to help alleviate the sparse data

problem.

Consider trying to estimate the probability of the

word "intelligence" in the class NLP. This word

should clearly have non-negligible probability there;

however, with limited training data we may be un-

lucky, and the observed frequency of "intelligence"

in NLP may be very far from its true expected value.

One level up the hierarchy, however, the Artificial In-
telligence class contains many more documents (the

union of all the children). There, the probability

of the word "intelligence" can be more reliably esti-

mated.

Shrinkage calculates new word probability esti-

mates for each leaf class by a weighted average of

the estimates on the path from the leaf to the root.

The technique balances a trade-off between speci-

ficity and reliability. Estimates in the leaf are most

specific but unreliable; further up the hierarchy es-

timates are more reliable but unspecific. We can

calculate mixture weights for the averaging that are

guaranteed to maximize the likelihood of held-out

data with the EM algorithm.

One can think of hierarchical shrinkage as a gener-

ative model that is slightly augmented from the one

described in Section 3.1. As before, a class (leaf) is

selected first. Then, for each word position in the

document, an ancestor of the class (including itself)

is selected according to the shrinkage weights. Then,

the word itself is chosen based on the multinomial

word distribution of that ancestor. If each word in

the training data were labeled with which ancestor

was responsible for generating it, then estimating

the mixture weights would be a simple matter of

maximum likelihood estimation from the ancestor

emission counts. But these ancestor labels are not

provided in the training data, and hence we use EM

to fill in these missing values. We use the term ver-
tical EM to refer to this process that calculates an-

cestor mixture weights; we use the term horizontal
EM to refer to the process of filling in the missing

5 5

class (leaf) labels on the unlabeled documents. Both

vertical and horizontal EM run concurrently, with

interleaved E- and M-steps.

More formally, let {pl(wt[cj), . . . ,pk(wtlcj) } be

word probability estimates, where pl(wt[cj) is the

maximum likelihood estimate using training data

just in the leaf, P2(wtlcj) is the maximum likeli-

hood estimate in the parent using the training data

from the union of the parent's children, pk-1 (w~lcj)
is the estimate at the root using all the training data,

and pk(wtlcj) is the uniform estimate (Pk(wtlcj) =
1/IVI). The interpolation weights among cj's "an-

cestors" (which we define to include cj itself) are

written {A}, A~,... , A~}, where Ea:lk Aja = 1. The

new word probability estimate based on shrinkage,

denoted P(wt[cj), is then

r'(wtlc3) = AJPl(wtlc~) + . . . + A~pk(wtlcy). (4)

The Aj vectors are calculated by the iterations of

EM. In the E-step we calculate for each class cj

and each word of unlabeled held out data, ~ , the

probability that the word was generated by the ith

ancestor. In the M-step, we normalize the sum of

these expectations to obtain new mixture weights

,kj. Without the use of held out data, all the mix-

ture weight would concentrate in the leaves.

Specifically, we begin by initializing the A mixture

weights for each leaf to a uniform distribution. Let

/3~ (di,k) denote the probability that the ath ancestor

of cj was used to generate word occurrence di,k. The

E-step consists of estimating the/Ts:

ICj) (5)
 5 (di,k) = A npm(wd', IcJ) "

In the M-step, we derive new and guaranteed im-

proved weights, A, by summing and normalizing the

X~ = Ed,.~en P(c~ldi) (6)

The E- and M-steps iterate until the ~'s con-

verge. These weights are then used to calculate

new shrinkage-based word probability estimates, as

in Equation 4. Classification of new test documents

is performed just as before (Equation 3), where the

Laplace estimates of the word probability estimates

are replaced by shrinkage-based estimates.

A more complete description of hierarchical

shrinkage for text classification is presented by

McCallum et al. (1998).

4 Related Work

Other research efforts in text learning have also used

bootstrapping approaches. The co-training algo-

rithm (Blum and Mitchell, 1998) for classification

works in cases where the feature space is separable

into naturally redundant and independent parts. For

example, web pages can be thought of as the text on

the web page, and the collection of text in hyperlink

anchors to that page.

A recent paper by Riloff and Jones (1999) boot-

straps a dictionary of locations from just a small set

of known locations. Here, their mutual bootstrap

algorithm works by iteratively identifying syntactic

constructs indicative of known locations, and identi-

fying new locations using these indicative constructs.

The preliminary labeling by keyword matching

used in this paper is similar to the seed collocations

used by Yarowsky (1995). There, in a word sense

disambiguation task, a bootstrapping algorithm is

seeded with some examples of common collocations

with the particular sense of some word (e.g. the seed

"life" for the biological sense of "plant").

5 Experimental Results

In this section, we provide empirical evidence that

bootstrapping a text classifier from unlabeled data

can produce a high-accuracy text classifier. As a test

domain, we use computer science research papers.

We have created a 70-1ear hierarchy of computer sci-

ence topics, part of which is shown in Figure 1. Cre-

ating the hierarchy took about 60 minutes, during

which we examined conference proceedings, and ex-

plored computer science sites on the Web. Select-

ing a few keywords associated with each node took

about 90 minutes. A test set was created by expert

hand-labeling of a random sample of 625 research

papers from the 30,682 papers in the Cora archive at

the time we began these experiments. Of these, 225

(about one-third) did not fit into any category, and

were discarded--resulting in a 400 document test

set. Labeling these 400 documents took about six

hours. Some of these papers were outside the area

of computer science (e.g. astrophysics papers), but

most of these were papers that with a more complete

hierarchy would be considered computer science pa-

pers. The class frequencies of the data are not too

skewed; on the test set, the most populous class ac-

counted for only 7% of the documents.

Each research paper is represented as the words

of the title, author, institution, references, and ab-

stract. A detailed description of how these seg-

ments are automatically extracted is provided else-

where (McCallum et al., 1999; Seymore et al., 1999).

56

Method
Keywo~d
NB
NB
NB+EM+S
NB
NB+S
Human

Lab

100
399

P-Lab

12,657
12,657
12,657

Unlab Acc
- - 45%
- - 3 0 %

- - 47%
18,025 66%

- - 47%
- - 6 3 %

- - 7 2 %

Table 2: Classification results with different techniques:
keyword matching, human agreement, naive Bayes (NB),
and naive Bayes combined with hierarchical shrink-
age (S), and EM. The classification accuracy (Acc),
and the number of labeled (Lab), keyword-matched
preliminarily-labeled (P-Lab), and unlabeled (Unlab)
documents used by each method are shown.

Words occurring in fewer than five documents and

words on a standard stoplist were discarded. No

stemming was used. Bootstrapping was performed

using the algorithm outlined in Table 1.

Table 2 shows classification results with different

classification techniques used. The rule-list classifier

based on the keywords alone provides 45%. (The

43% of documents in the test set containing no key-

words cannot be assigned a class by the rule~list clas-

sifter, and are counted as incorrect.) As an inter-

esting time comparison, about 100 documents could

have been labeled in the time it took to generate

the keyword lists. Naive Bayes accuracy with 100

labeled documents is only 30%. With 399 labeled

documents (using our test set in a leave-one-out-

fashion), naive Bayes reaches 47%. When running

the bootstrapping algorithm, 12,657 documents are

given preliminary labels by keyword matching. EM

and shrinkage incorporate the remaining 18,025 doc-

uments, "fix" the preliminary labels and leverage the

hierarchy; the resulting accuracy is 66%. As an in-

teresting comparison, agreement on the test set be-

tween two human experts was 72%.

A few further experiments reveal some of the

inner-workings of bootstrapping. If we build a naive

Bayes classifier in the standard supervised way from

the 12,657 preliminarily labeled documents the clas-

sifter gets 47% accuracy. This corresponds to the

performance for the first iteration of bootstrapping.

Note that this matches the accuracy of traditional

naive Bayes with 399 labeled training documents,

but that it requires less than a quarter the hu-

man labeling effort. If we run bootstrapping with-

out the 18,025 documents left unlabeled by keyword

matching, accuracy reaches 63%. This indicates that

shrinkage and EM on the preliminarily labeled doc-

uments is providing substantially more benefit than

the remaining unlabeled documents.

One explanation for the small impact of the 18,025

documents left unlabeled by keyword matching is

that many of these do not fall naturally into the

hierarchy. Remember that about one-third of the

30,000 documents fall outside the hierarchy. Most

of these will not be given preliminary labels by key-

word matching. The presence of these outlier docu-

ments skews EM parameter estimation. A more in-

clusive computer science hierarchy would allow the

unlabeled documents to benefit classification more.

However, even without a complete hierarchy, we

could use these documents if we could identify these

outliers. Some techniques for robust estimation with

EM are discussed by McLachlan and Basford (1988).

One specific technique for these text hierarchies is to

add extra leaf nodes containing uniform word dis-

tributions to each interior node of the hierarchy in

order to capture documents not belonging in any of

the predefined topic leaves. This should allow EM

to perform well even when a large percentage of the

documents do not fall into the given classification

hierarchy. A similar approach is also planned for re-

search in topic detection and tracking (TDT) (Baker

et al., 1999). Experimentation with these techniques

is an area of ongoing research.

6 C o n c l u s i o n s a n d F u t u r e W o r k

This paper has considered building a text classifier

without labeled training documents. In its place,

our bootstrapping algorithm uses a large pool of un-

labeled documents and class-specific knowledge in

the form of a few keywords per class and a class

hierarchy. The bootstrapping algorithm combines

Expectation-Maximization and hierarchical shrink-

age to correct and complete preliminary labeling

provided by keyword matching. Experimental re-

sults show that accuracies close to human agreement

can be obtained by the bootstrapping algorithm.

In future work we plan to refine our probabilis-

tic model to allow for documents to be placed in

interior hierarchy nodes, documents to have mul-

tiple class assignments, and classes to be modeled

with multiple mixture components. We are also in-

vestigating principled methods of re-weighting the

word features for "semi-supervised" clustering that

will provide better discriminative training with un-

labeled data.

A c k n o w l e d g e m e n t s

Kamal Niga~rt was supported in part by the Darpa

HPKB program under contract F30602-97-1-0215.

57

R e f e r e n c e s

D. Baker, T. Hofmann, A. McCallum, and Y. Yang.
1999. A hierarchical probabilistic model for nov-
elty detection in text. Technical report, Just Re-
search, http://www.cs.cmu.edu/~mccallum.

A. Blum and T. Mitchell. 1998. Combining labeled
and unlabeled data with co-training. In COLT
'98.

V. Castelli and T. M. Cover. 1996. The relative
value of labeled and unlabeled samples in pat-
tern recognition with an unknown mixing param-
eter. IEEE Transactions on Information Theory,
42(6):2101-2117.

W. Cohen and Y. Singer. 1996. Context-sensitive
learning methods for text categorization. In SI-
GIR '96.

A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977.
Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical
Society, Series B, 39(1):1-38.

T. Hofmann and J. Puzicha. 1998. Statistical mod-
els for co-occurrence data. Technical Report AI
Memo 1625, AI Lab, MIT.

T. Joachims. 1998. Text categorization with Sup-
port Vector Machines: Learning with many rele-
vant features. In ECML-98.

D. D. Lewis. 1998. Naive (Bayes) at forty: The
independence assumption in information retrieval.
In ECML-98.

A. McCallum and K. Nigam. 1998. A comparison
of event models for naive Bayes text classification.
In AAAL98 Workshop on Learning]or Text Cat-
egorization. Tech. rep. WS-98-05, AAAI Press.
http://www.cs.cmu.edu/Nmccallum.

A. McCallum, R. Rosenfeld, T. Mitchell, and A. Ng.
1998. Improving text clasification by shrinkage in
a hierarchy of classes. In ICML-98.

Andrew McCallum, Kamal Nigam, Jason Rennie,
and Kristie Seymore. 1999. Using machine learn-
ing techniques to build domain-specific search en-
gines. In IJCAI-99. To appear.

G.J. McLachlan and K.E. Basford. 1988. Mixture
Models. Marcel Dekker, New York.

T. M. Mitchell. 1997. Machine Learning. McGraw-
Hill, New York.

K. Nigam, A. McCallum, S. Thrun, and T. Mitchell.
1999. Text classification from labeled and unla-
beled documents using EM. Machine Learning.
To appear.

E. Riloff and R. Jones. 1999. Learning dictionaries
for information extraction using multi-level boot-
strapping. In AAAI-99. To appear.

K. Seymore, A. McCallum, and R. Rosenfeld. 1999.
Learning hidden Markov model structure for in-
formation extraction. In AAAI-99 Workshop on
Machine Learning for Information Extraction. To
appear.

Y. Yang. 1999. An evaluation of statistical ap-
proaches to text categorization. Journal of In-
formation Retrieval. To appear.

D. Yarowsky. 1995. Unsupervised word sense disam-
biguation rivaling supervised methods. In A CL-
95.

513

