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A b s t r a c t  

When applying text classification to com- 

plex tasks, it is tedious and expensive 

to hand-label the large amounts of train- 

ing data necessary for good performance. 

This paper presents an alternative ap- 

proach to text classification that requires 

no labeled documentsi instead, it uses a 

small set of keywords per class, a class 

hierarchy and a large quantity of easily- 

obtained unlabeled documents. The key- 

words are used to assign approximate la- 

bels to the unlabeled documents by term- 

matching. These preliminary labels be- 

come the starting point for a bootstrap- 

ping process that learns a naive Bayes clas- 

sifier using Expectation-Maximization and 

hierarchical shrinkage. When classifying a 

complex data set of computer science re- 

search papers into a 70-leaf topic hierar- 

chy, the keywords alone provide 45% accu- 

racy. The classifier learned by bootstrap- 

ping reaches 66% accuracy, a level close to 

human agreement. 

1 I n t r o d u c t i o n  

When provided with enough labeled training exam- 

ples, a variety of text classification algorithms can 

learn reasonably accurate classifiers (Lewis, 1998; 

Joachims, 1998; Yang, 1999; Cohen and Singer, 

1996). However, when applied to complex domains 

with many classes, these algorithms often require ex- 

tremely large training sets to provide useful classifi- 

cation accuracy. Creating these sets of labeled data 

is tedious and expensive, since typically they must 

be labeled by a person. This leads us to consider 

learning algorithms that do not require such large 

amounts of labeled data. 

While labeled data is difficult to obtain, un- 

labeled data is readily available and plentiful. 

Castelli and Cover (1996) show in a theoretical 

framework that unlabeled data can indeed be used 

to improve classification, although it is exponentially 

less valuable than labeled data. Fortunately, unla- 

beled data can often be obtained by completely auto- 

mated methods. Consider the problem of classifying 

news articles: a short Perl script and a night of au- 

tomated Internet downloads can fill a hard disk with 

unlabeled examples of news articles. In contrast, it 

might take several days of human effort and tedium 

to label even one thousand of these. 

In previous work (Nigam et al., 1999) it has been 

shown that with just a small number of labeled docu- 

ments, text classification error can be reduced by up 

to 30% when the labeled documents are augmented 

with a large collection of unlabeled documents. 

This paper considers the task of learning text clas- 

sifiers with no labeled documents at all. Knowledge 

about the classes of interest is provided in the form 

of a few keywords per class and a class hierarchy. 

Keywords are typically generated more quickly and 

easily than even a small number of labeled docu- 

ments. Many classification problems naturally come 

with hierarchically-organized classes. Our algorithm 

proceeds by using the keywords to generate prelim- 

inary labels for some documents by term-matching. 

Then these labels, the hierarchy, and all the unla- 

beled documents become the input to a bootstrap- 

ping algorithm that produces a naive Bayes classi- 

fier. 

The bootstrapping algorithm used in this paper 

combines hierarchical shrinkage and Expectation- 

Maximization (EM) with unlabeled data. EM is an 

iterative algorithm for maximum likelihood estima- 

tion in parametric estimation problems with missing 

data. In our scenario, the class labels of the docu- 

ments are treated as missing data. Here, EM works 

by first training a classifier with only the documents 
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Figure 1: A subset of Cora's topic hierarchy. Each node contains its title, and the five most probable words, as 
calculated by naive Bayes and shrinkage with vertical word redistribution (Hofmann and Puzicha, 1998). Words 
among the initial keywords for that class are indicated in plain font; others are in italics. 

preliminarily-labeled by the keywords, and then uses 

the classifier to re-assign probahilistically-weighted 

class labels to all the documents by calculating the 

expectation of the missing class labels. It then trains 

a new classifier using all the documents and iterates. 

We further improve classification by incorporating 

shrinkage, a statistical technique for improving pa- 

rameter estimation in the face of sparse data. When 

classes are provided in a hierarchical relationship, 

shrinkage is used to estimate new parameters by us- 

ing a weighted average of the specific (but unreli- 

able) local class estimates and the more general (but 

also more reliable) ancestors of the class in the hier- 

archy. The optimal weights in the average are cal- 

culated by an EM process that  runs simultaneously 

with the EM that is re-estimating the class labels. 

Experimental evaluation of this bootstrapping ap- 

proach is performed on a data set of thirty-thousand 

computer science research papers. A 70-leaf hier- 

archy of computer science and a few keywords for 

each class are provided as input. Keyword matching 

alone provides 45% accuracy. Our bootstrapping al- 

gorithm uses this as input and outputs a naive Bayes 

text classifier that  achieves 66% accuracy. Inter- 

estingly, this accuracy approaches estimated human 

agreement levels of 72%. 

The experimental domain in this paper originates 

as part  of the Ra research project, an effort to build 

domain-specific search engines on the Web with ma- 

chine learning techniques. Our demonstration sys- 

tem, Cora, is a search engine over computer science 

research papers (McCallum et al., 1999). The boot- 

strapping classification algorithm described in this 

paper is used in Corn to place research papers into 

a Yahoo-like hierarchy specific to computer science. 

The-search engine, including this hierarchy, is pub- 

licly available at www. cora.justresearch, com. 

2 Generating Preliminary Labels 

with Keywords 

The first step in the bootstrapping process is to use 

the keywords to generate preliminary labels for as 

many of the unlabeled documents as possible. Each 

class is given just a few keywords. Figure 1 shows 

examples of the number and type of keywords given 

in our experimental domain-- the human-provided 

keywords are shown in the nodes in non-italic font. 

In this paper, we generate preliminary labels from 

the keywords by term-matching in a rule-list fashion: 

for each document, we step through the keywords 

and place the document in the category of the first 

keyword that  matches. Finding enough keywords to 

obtain broad coverage while simultaneously finding 

sufficiently specific keywords to obtain high accuracy 

is very difficult; it requires intimate knowledge of the 

data and a lot of trial and error. 

As a result, classification by keyword matching is 

both an inaccurate and incomplete. Keywords tend 

to provide high-precision and low-recall; this brittle- 

ness will leave many documents unlabeled. Some 

documents will match keywords from the wrong 

class. In general we expect the low recall of the key- 

words to be the dominating factor in overall error. 

In our experimental domain, for example, 59% of the 

unlabeled documents do not contain any keywords. 

Another method of priming bootstrapping with 

keywords would be to take each set of keywords as a 
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labeled mini-document containing just a few words. 

This could then be used as input to any standard 

learning algorithm. Testing this, and other keyword 

labeling approaches, is an area of ongoing work. 

3 The Bootstrapping Algorithm 

The goal of the bootstrapping step is to generate 

a naive Bayes classifier from the inputs: the (inac- 

curate and incomplete) preliminary labels, the un- 

labeled data  and the class hierarchy. One straight- 

forward method would be to simply take the unla- 

beled documents with preliminary labels, and treat  

this as labeled data in a standard supervised set- 

ting. This approach provides only minimal benefit 

for three reasons: (1) the labels are rather noisy, 

(2) the sample of preliminarily-labeled documents 

is skewed from the regular document distribution 

(i.e. it includes only documents containing key- 

words), and (3) data  are sparse in comparison to 

the size of the feature space. Adding the remain- 

ing unlabeled data  and running EM helps counter 

the first and second of these reasons. Adding hier- 

archical shrinkage to naive Bayes helps counter the 

first and third of these reasons. We begin a detailed 

description of our boots trapping algorithm with a 

short overview of standard naive Bayes text classi- 

fication, then proceed by adding EM to incorporate 

the unlabeled data, and conclude by explaining hi- 

erarchical shrinkage. An outline of the entire algo- 

ri thm is presented in Table 1. 

3.1 T h e  na ive  B a y e s  f r a m e w o r k  

We build on the framework of multinomial naive 

Bayes text classification (Lewis, 1998; McCallum 

and Nigam, 1998). It  is useful to think of naive 

Bayes as estimating the parameters  of a probabilis- 

tic generative model for text documents. In this 

model, first the class of the document is" selected. 

The words of the document are then generated based 

on the parameters  for the class-specific multinomial 

(i.e. unigram model). Thus, the classifier parame- 

ters consist of the class prior probabilities and the 

class-conditioned word probabilities. For formally, 

each class, cj, has a document frequency relative to 

all other classes, written P(cj).  For every word 

wt in the vocabulary V, P(wtlcj) indicates the fre- 

quency that  the classifier expects word wt to occur 

in documents in class cj. 

In the standard supervised setting, learning of the 

parameters  is accomplished using a set of labeled 

training documents, 79. To estimate the word prob- 

ability parameters,  P (wt I cj), we count the frequency 

with which word wt occurs among all word occur- 

rences for documents in class cj. We supplement 

• Inputs :  A collection 79 of unlabeled documents, a 
class hierarchy, and a few keywords for each class. 

• Generate preliminary labels for as many of the unla- 
beled documents as possible by term-matching with 
the keywords in a rule-list fashion. 

• Initialize all the Aj's to be uniform along each path 
from a leaf class to the root of the class hierarchy. 

• Iterate the EM algorithm: 

• (M-step)  Build the maximum likelihood 
multinomial at each node in the hierarchy 
given the class probability estimates for each 
document (Equations 1 and 2). Normalize all 
the Aj's along each path from a leaf class to the 
root of the class hierarchy so that they sum to 
1. 

• (E-step)  Calculate the expectation of the 
class labels of each document using the clas- 
sifter created in the M-step (Equation 3). In- 
crement the new )~j's by attributing each word 
of held-out data probabilistically to the ances- 
tors of each class. 

•" Outpu t :  A naive Bayes classifier that takes an un- 
labeled document and predicts a class label. 

Table 1: An outline of the bootstrapping algorithm de- 
scribed in Sections 2 and 3. 

this with Laplace smoothing that  primes each esti- 

mate  with a count of one to avoid probabilities of 

zero. Let N(wt,di)  be the count of the number of 

times word we occurs in document di, and define 

P(cj[di) E {0, 1}, as given by the document 's  class 

label. Then, the estimate of the probability of word 

wt in class cj is: 

1 + ~ a , ~ v  N(wt,  di)P(cjldi ) 
P(wtlc~) = 

IVl + N(w., di)e(cjldi ) " 
(1) 

The class prior probability parameters  are set in the 

same way, where ICI indicates the number of classes: 

P(cj) = 1 + Ea,  ev  P(cjldi) 
ICl + IVl (2) 

Given an unlabeled document and a classifier, we 

determine the probability that  the document be- 

longs in class cj using Bayes' rule and the naive 

Bayes assumpt ion- - tha t  the words in a document 

occur independently of each other given the class. If 

we denote Wd~,k to be the kth word in document di, 

then classification becomes: 
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P(cjld~) c (P(c j )P(d i l c j )  

Id, I 

(X P(Cj) H P(Wd'. ~lcj)" (3) 
k ~ l  

Empirically, when given a large number of train- 

ing documents, naive Bayes does a good job of 

classifying text documents (Lewis, 1998). More 

complete presentations of naive Bayes for text 

classification are provided by Mitchell (1997) and 

McCallum and Nigam (1998). 

3.2 Adding  unlabe led  d a t a  wi th  E M  

In the standard supervised setting, each document 

comes with a label. In our bootstrapping sce- 

nario, the preliminary keyword labels are both in- 

complete and inaccurate--the keyword matching 

leaves many many documents unlabeled, and la- 

bels some incorrectly. In order to use the entire 

data set in a naive Bayes classifier, we use the 

Expectation-Maximization (EM) algorithm to gen- 

erate probabilistically-weighted class labels for all 

the documents. This results in classifier parameters 

that are more likely given all the data. 

EM is a class of iterative algorithms for maximum 

likelihood or maximum a posteriori parameter esti- 

mation in problems with incomplete data (Dempster 

et al., 1977). Given a model of data generation, and 

data with some missing values, EM iteratively uses 

the current model to estimate the missing values, 

and then uses the missing value estimates to im- 

prove the model. Using all the available data, EM 

will locally maximize the likelihood of the parame- 

ters and give estimates for the missing values. In 

our scenario, the class labels of the unlabeled data 

are the missing values. 

In implementation, EM is an iterative two-step 

process. Initially, the parameter estimates are set 

in the standard naive Bayes way from just the 

preliminarily labeled documents. Then we iter- 

ate the E- and M-steps. The E-step calculates 

probabilistically-weighted class labels, P(cjldi), for 

every document using the classifier and Equation 3. 

The M-step estimates new classifier parameters us- 

ing all the documents, by Equations 1 and 2, where 

P(cjldi) is now continuous, as given by the E-step. 

We iterate the E- and M-steps until the classifier 

converges. The initialization step from the prelimi- 

nary labels identifies each mixture component with 

a class and seeds EM so that the local maxima that 

it finds correspond well to class definitions. 

In previous work (Nigam et al., 1999), we have 

shown this technique significantly increases text 

classification accuracy when given limited amounts 

of labeled data and large amounts of unlabeled data. 

The expectation here is that EM will both correct 

and complete the labels for the entire data set. 

3.3 Improv ing  sparse data e s t imates  wi th  

shrinkage 

Even when provided with a large pool of documents, 

naive Bayes parameter estimation during bootstrap- 

ping will suffer from sparse data because naive Bayes 

has so many parameters to estimate ([V[IC I + IC[). 

Using the provided class hierarchy, we can integrate 

the statistical technique shrinkage into the boot- 

strapping algorithm to help alleviate the sparse data 

problem. 

Consider trying to estimate the probability of the 

word "intelligence" in the class NLP. This word 

should clearly have non-negligible probability there; 

however, with limited training data we may be un- 

lucky, and the observed frequency of "intelligence" 

in NLP may be very far from its true expected value. 

One level up the hierarchy, however, the Artificial In- 
telligence class contains many more documents (the 

union of all the children). There, the probability 

of the word "intelligence" can be more reliably esti- 

mated. 

Shrinkage calculates new word probability esti- 

mates for each leaf class by a weighted average of 

the estimates on the path from the leaf to the root. 

The technique balances a trade-off between speci- 

ficity and reliability. Estimates in the leaf are most 

specific but unreliable; further up the hierarchy es- 

timates are more reliable but unspecific. We can 

calculate mixture weights for the averaging that are 

guaranteed to maximize the likelihood of held-out 

data with the EM algorithm. 

One can think of hierarchical shrinkage as a gener- 

ative model that is slightly augmented from the one 

described in Section 3.1. As before, a class (leaf) is 

selected first. Then, for each word position in the 

document, an ancestor of the class (including itself) 

is selected according to the shrinkage weights. Then, 

the word itself is chosen based on the multinomial 

word distribution of that ancestor. If each word in 

the training data were labeled with which ancestor 

was responsible for generating it, then estimating 

the mixture weights would be a simple matter of 

maximum likelihood estimation from the ancestor 

emission counts. But these ancestor labels are not 

provided in the training data, and hence we use EM 

to fill in these missing values. We use the term ver- 
tical EM to refer to this process that calculates an- 

cestor mixture weights; we use the term horizontal 
EM to refer to the process of filling in the missing 
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class (leaf) labels on the unlabeled documents. Both 

vertical and horizontal EM run concurrently, with 

interleaved E- and M-steps. 

More formally, let {pl(wt[cj), . . . ,pk(wtlcj) } be 

word probability estimates, where pl(wt[cj) is the 

maximum likelihood estimate using training data 

just in the leaf, P2(wtlcj) is the maximum likeli- 

hood estimate in the parent using the training data 

from the union of the parent's children, pk-1 (w~lcj) 
is the estimate at the root using all the training data, 

and pk(wtlcj) is the uniform estimate (Pk(wtlcj) = 
1/IVI). The interpolation weights among cj's "an- 

cestors" (which we define to include cj itself) are 

written {A}, A~,... ,  A~}, where Ea:lk Aja = 1. The 

new word probability estimate based on shrinkage, 

denoted P(wt[cj), is then 

r'(wtlc3) = AJPl(wtlc~) + . . .  + A~pk(wtlcy). (4) 

The Aj vectors are calculated by the iterations of 

EM. In the E-step we calculate for each class cj 

and each word of unlabeled held out data, ~ ,  the 

probability that the word was generated by the ith 

ancestor. In the M-step, we normalize the sum of 

these expectations to obtain new mixture weights 

,kj. Without the use of held out data, all the mix- 

ture weight would concentrate in the leaves. 

Specifically, we begin by initializing the A mixture 

weights for each leaf to a uniform distribution. Let 

/3~ (di,k) denote the probability that the ath ancestor 

of cj was used to generate word occurrence di,k. The 

E-step consists of estimating the/Ts: 

ICj) (5) 
 5 (di,k) = A npm(wd',  IcJ) " 

In the M-step, we derive new and guaranteed im- 

proved weights, A, by summing and normalizing the 

X~ = Ed,.~en P(c~ldi) (6) 

The E- and M-steps iterate until the ~'s con- 

verge. These weights are then used to calculate 

new shrinkage-based word probability estimates, as 

in Equation 4.  Classification of new test documents 

is performed just as before (Equation 3), where the 

Laplace estimates of the word probability estimates 

are replaced by shrinkage-based estimates. 

A more complete description of hierarchical 

shrinkage for text classification is presented by 

McCallum et al. (1998). 

4 Related Work 

Other research efforts in text learning have also used 

bootstrapping approaches. The co-training algo- 

rithm (Blum and Mitchell, 1998) for classification 

works in cases where the feature space is separable 

into naturally redundant and independent parts. For 

example, web pages can be thought of as the text on 

the web page, and the collection of text in hyperlink 

anchors to that page. 

A recent paper by Riloff and Jones (1999) boot- 

straps a dictionary of locations from just a small set 

of known locations. Here, their mutual bootstrap 

algorithm works by iteratively identifying syntactic 

constructs indicative of known locations, and identi- 

fying new locations using these indicative constructs. 

The preliminary labeling by keyword matching 

used in this paper is similar to the seed collocations 

used by Yarowsky (1995). There, in a word sense 

disambiguation task, a bootstrapping algorithm is 

seeded with some examples of common collocations 

with the particular sense of some word (e.g. the seed 

"life" for the biological sense of "plant"). 

5 Experimental  Results  

In this section, we provide empirical evidence that 

bootstrapping a text classifier from unlabeled data 

can produce a high-accuracy text classifier. As a test 

domain, we use computer science research papers. 

We have created a 70-1ear hierarchy of computer sci- 

ence topics, part of which is shown in Figure 1. Cre- 

ating the hierarchy took about 60 minutes, during 

which we examined conference proceedings, and ex- 

plored computer science sites on the Web. Select- 

ing a few keywords associated with each node took 

about 90 minutes. A test set was created by expert 

hand-labeling of a random sample of 625 research 

papers from the 30,682 papers in the Cora archive at 

the time we began these experiments. Of these, 225 

(about one-third) did not fit into any category, and 

were discarded--resulting in a 400 document test 

set. Labeling these 400 documents took about six 

hours. Some of these papers were outside the area 

of computer science (e.g. astrophysics papers), but 

most of these were papers that with a more complete 

hierarchy would be considered computer science pa- 

pers. The class frequencies of the data are not too 

skewed; on the test set, the most populous class ac- 

counted for only 7% of the documents. 

Each research paper is represented as the words 

of the title, author, institution, references, and ab- 

stract. A detailed description of how these seg- 

ments are automatically extracted is provided else- 

where (McCallum et al., 1999; Seymore et al., 1999). 
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Method 
Keywo~d 
NB 
NB 
NB+EM+S 
NB 
NB+S 
Human 

# Lab 

100 
399 

# P-Lab 

12,657 
12,657 
12,657 

# Unlab Acc 
- -  45% 
- -  3 0 %  

- -  47% 
18,025 66% 

- -  47% 
- -  6 3 %  

- -  7 2 %  

Table 2: Classification results with different techniques: 
keyword matching, human agreement, naive Bayes (NB), 
and naive Bayes combined with hierarchical shrink- 
age (S), and EM. The classification accuracy (Acc), 
and the number of labeled (Lab), keyword-matched 
preliminarily-labeled (P-Lab), and unlabeled (Unlab) 
documents used by each method are shown. 

Words occurring in fewer than five documents and 

words on a standard stoplist were discarded. No 

stemming was used. Bootstrapping was performed 

using the algorithm outlined in Table 1. 

Table 2 shows classification results with different 

classification techniques used. The rule-list classifier 

based on the keywords alone provides 45%. (The 

43% of documents in the test set containing no key- 

words cannot be assigned a class by the rule~list clas- 

sifter, and are counted as incorrect.) As an inter- 

esting time comparison, about 100 documents could 

have been labeled in the time it took to generate 

the keyword lists. Naive Bayes accuracy with 100 

labeled documents is only 30%. With 399 labeled 

documents (using our test set in a leave-one-out- 

fashion), naive Bayes reaches 47%. When running 

the bootstrapping algorithm, 12,657 documents are 

given preliminary labels by keyword matching. EM 

and shrinkage incorporate the remaining 18,025 doc- 

uments, "fix" the preliminary labels and leverage the 

hierarchy; the resulting accuracy is 66%. As an in- 

teresting comparison, agreement on the test set be- 

tween two human experts was 72%. 

A few further experiments reveal some of the 

inner-workings of bootstrapping. If we build a naive 

Bayes classifier in the standard supervised way from 

the 12,657 preliminarily labeled documents the clas- 

sifter gets 47% accuracy. This corresponds to the 

performance for the first iteration of bootstrapping. 

Note that this matches the accuracy of traditional 

naive Bayes with 399 labeled training documents, 

but that it requires less than a quarter the hu- 

man labeling effort. If we run bootstrapping with- 

out the 18,025 documents left unlabeled by keyword 

matching, accuracy reaches 63%. This indicates that 

shrinkage and EM on the preliminarily labeled doc- 

uments is providing substantially more benefit than 

the remaining unlabeled documents. 

One explanation for the small impact of the 18,025 

documents left unlabeled by keyword matching is 

that many of these do not fall naturally into the 

hierarchy. Remember that about one-third of the 

30,000 documents fall outside the hierarchy. Most 

of these will not be given preliminary labels by key- 

word matching. The presence of these outlier docu- 

ments skews EM parameter estimation. A more in- 

clusive computer science hierarchy would allow the 

unlabeled documents to benefit classification more. 

However, even without a complete hierarchy, we 

could use these documents if we could identify these 

outliers. Some techniques for robust estimation with 

EM are discussed by McLachlan and Basford (1988). 

One specific technique for these text hierarchies is to 

add extra leaf nodes containing uniform word dis- 

tributions to each interior node of the hierarchy in 

order to capture documents not belonging in any of 

the predefined topic leaves. This should allow EM 

to perform well even when a large percentage of the 

documents do not fall into the given classification 

hierarchy. A similar approach is also planned for re- 

search in topic detection and tracking (TDT) (Baker 

et al., 1999). Experimentation with these techniques 

is an area of ongoing research. 

6 C o n c l u s i o n s  a n d  F u t u r e  W o r k  

This paper has considered building a text classifier 

without labeled training documents. In its place, 

our bootstrapping algorithm uses a large pool of un- 

labeled documents and class-specific knowledge in 

the form of a few keywords per class and a class 

hierarchy. The bootstrapping algorithm combines 

Expectation-Maximization and hierarchical shrink- 

age to correct and complete preliminary labeling 

provided by keyword matching. Experimental re- 

sults show that accuracies close to human agreement 

can be obtained by the bootstrapping algorithm. 

In future work we plan to refine our probabilis- 

tic model to allow for documents to be placed in 

interior hierarchy nodes, documents to have mul- 

tiple class assignments, and classes to be modeled 

with multiple mixture components. We are also in- 

vestigating principled methods of re-weighting the 

word features for "semi-supervised" clustering that 

will provide better discriminative training with un- 

labeled data. 
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