TERFOUR

CHAPTER FOUR

PROGRESS SELF-TEST

9. $\triangle MNP$ below has vertices M = (-2, 0), N = (5, -1), and P = (-3, 4). Give the vertice of the reflection image of $\triangle MNP$ over the x-axis.

10. $\triangle ABC$ below was reflected over line *m*, then its image was reflected over line *n*. What angle of $\triangle JKL$ has the same measure as $\angle C$?

11. In the figure below, $\triangle X' Y' Z'$ is the image of $\triangle XYZ$ under a glide reflection. Line *m* is the glide-reflecting line. Trace the figure and draw the translation vector.

12. Trace the figure below. Draw the image and describe the transformation $\mathbf{r}_i \circ \mathbf{r}_s(\triangle PQR)$.

PROGRESS SELF-TEST

HA

- 13. In the drawing below, $\ell // m$.
 - a. Draw $\mathbf{r}_{\ell} \circ \mathbf{r}_{m}(\triangle ABC)$.
 - b. Name the composite transformation and describe its magnitude and direction.
 - A en ma s' 2 cm, right B C C C
- 14. To rotate $\triangle WIN 50^{\circ}$ about a point Q, you can successively reflect it over two lines that form an angle of 25° whose vertex is \square .
- 15. In the figure below, ℓ / m and $\ell \perp n$. Describe the transformation $r_{\ell} \circ r_{m}$.

16. In the figure below, $r_{\overrightarrow{PR}}(Q) = S$. If QR = 11, find RS.

19. Trace the diagram of the miniature-golf hole below. Draw the path a ball at G must take if it is to bounce off of x and then y and go into the hole at H.

In 20 and 21, name the type of isometry that maps Figure I onto Figure II.

