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Abstract—We consider energy minimization by speed-scaling
of an open shop multiprocessor with n jobs and m machines. The
paper studies the complexity of a primal-dual solution algorithm
of [4], which was an open question in that paper. We prove that in
a neighbourhood of the solution the complexity of the algorithm
is O(mn log 1

ε
) if n �= m and ε is the roundoff error of the

computer.
The paper demonstrates how linearization can be used to in-

vestigate the complexity of an algorithm close to the optimum. An
estimate of the size of the neighbourhood where the linearization
error is smaller than the computer’s roundoff error is also given.

I. INTRODUCTION

Multiprocessor scheduling involving energy minimization is

a rapidly emerging research area. Energy minimization can

be done in many different ways. In [3] the author considers

feasibility together with energy-awareness in multiprocessor

scheduling of periodic tasks with identical processors. The

processors have variable speed, and the power consumption

as a function of the speed is assumed to be increasing and

strictly convex. Here energy is minimized among all feasile

schedules, which is proven to be an NP-hard problem in the

strong sense. In [5] a review over state-of-the-art energy-

efficient scheduling on dynamic voltage scaling platforms

is provided. Heuristics for the same platform are developed

in [11], among other things slack in non-critical processors are

energy reduced by lowering the speed. In [9], also considering

a dynamic voltage scaling platform, a goal function is defined

that performs a trade-off between quality of schedules and

energy consumption. Overviews over recent research in speed-

scaling can be found in [1] and [2].

In [6] a polynomial time algorithm is provided that mini-

mizes the makespan of an open-shop scheduling problem. This

is close to the present paper, which concerns open-shop speed-

scaling where energy is minimized by adjusting the speeds for

the processors.

Related work. The primal-dual interior point method for

convex programming has a long history; an overview is

provided in [12]. It has recently been extensively used for

various applications such as queing networks, economics and

image analysis. In [8], Kuhn presented the so called Hungarian

method, which is a primal-dual algorithm for a matching

problem, later modified in [7] to find market equilibrium when

utitities for goods are linear. The combinatorial algorithm

of [7] is proven to be of polynomial time complexity, which is

the first such algorithm. It is not strongly polynomial, which

however is achieved by the algorithm in [10] by using a

different termination criterion.

Multiprocessor scheduling and primal-dual solution algo-

rithms come together in the paper [4]. Here power consumtion

is, as is common, assumed to be described by the function sα

for a processor speed s, where α > 1 is a machine dependent

constant. This allows an explicit convex optimization problem

to be formulated.

Problem formulation. The speed-scaling preemptive open-

shop problem involves a set of n jobs J = {J1, , ..., Jn}
and a set of m processors M = {M1, , ...,Mm} . Each job

consists of operations that have to run on different processors.

Operations of the same job cannot be executed simultaneously.

The operation Oij of the job Jj has to be executed on

processor Mi and has an amount of work wij ≥ 0. So

wij = 0 is allowed, in which case there is no operation

for that pair (i, j). We will use the notation Oij ∈ Jj to

denote that operation Oij belongs to Jj for a certain j, and

Oij ∈ Mi denotes that Oij is to be executed on processor

Mi. The operations may be preempted, i.e. interrupted and

continued later. The goal is to minimize the total energy

consumed such that all operations are completed before a given

deadline d. In [4] this energy minimizing scheduling problem

is formulated as a non-linear optimization problem. A primal-

dual solution algorithm is presented, and the convergence to

the unique solution is proven. However, the complexity of

the algorithm is not known, which is formulated as an open

problem in [4].

Contribution of this paper. The present paper provides a

partial answer to the open problem of [4] by establishing

local linear convergence in both n and m if n �= m, i.e. the

algorithm has linear complexity in n and in m separately in

some neighbourhood of the solution (Theorem 1). This is in

well accordance with experiments presented in [4]. For n = m
we have no complexity result, and experiments show very slow

or no convergence in this case. An estimate of the size of the

neighbourhood is also provided, as well as estimates of the

error due to the linearization outside this neighbourhood.



II. THE CONVEX PROBLEM AND THE PRIMAL-DUAL

ALGORITHM

A. The convex problem

If operation Oij has speed sij and work wij , the completion

time is
wij

sij
and the power sαij means that the corresponding

energy required, to be minimized, is
wij

sij
sαij = wijs

α−1
ij . The

minimization problem in the variables sij is then

min
∑

i:Oij∈Jj

∑

j:Oij∈Mi

wijs
α−1
ij

∑

j:Oij∈Mi

wijs
−1
ij ≤ d, 1 ≤ i ≤ m

∑

i:Oij∈Jj

wijs
−1
ij ≤ d, 1 ≤ j ≤ n

sij ≥ 0, Oij ∈ Jj , Oij ∈ Mi.

which is a non-linear and convex minimization problem.

For such problems, the Karush-Kuhn-Tucker conditions

provide a solution. We thus introduce Lagrange multipliers

βi ,1 ≤ i ≤ m, for the conditions (1), and γj ,1 ≤ j ≤ n,

for the conditions (1). In [4] is is shown that the stationarity

conditions imply that

sαij =
βi + γj
α− 1

, Oij ∈ Jj , Oij ∈ Mi. (1)

It is typical for a non-linear problem to obtain a direct

relationship between primal and dual variables. This allows

us to eliminate the primal variables, and find a solution only

in terms of the dual variables. Intuitivelty, each β i denotes the

contribution of processor Mi to the speed of corresponding

operations, and γj is the contribution from the job Jj .

B. The complementary problem

The problem can now be defined entirely in terms of the

βi’s and the γj’s since it turns out that the dual variables

corrisponding to the inequalities sij ≥ 0 are all zero. Using

(1) to eliminate sij , the complementary slackness conditions

becomes

βi

⎛

⎝

∑

Oij∈Mi

wij

α

√

βi+γj

α−1

− d

⎞

⎠ = 0, 1 ≤ i ≤ m (2)

γj

⎛

⎝

∑

Oij∈Jj

wij

α

√

βi+γj

α−1

− d

⎞

⎠ = 0, 1 ≤ j ≤ n, (3)

which together with the feasibility conditions

∑

Oij∈Mi

wij

α

√

βi+γj

α−1

≤ d, 1 ≤ i ≤ m

∑

Oij∈Jj

wij

α

√

βi+γj

α−1

≤ d, 1 ≤ j ≤ n.

define the complementary problem. Any solution in β i’s and

γj’s to this problem gives by (1) the unique solution in the

variables sij . Note that different solutions in βi’s and γj’s may

give the same sij-solution.

C. The primal-dual algorithm

The primal-dual algorithm by [4] solves the complementary

problem by starting with all βi = 0 and all γj given the

maximal value (α− 1)
(

∑

Oij∈Mi
wij/d

)α

. This is obtained

from (1) with βi = 0, and for each γj the corresponding

feasibility condition (4).

With this initialization one can expect some processors

to be infeasible, i.e. some of the 2-conditions are violated.

Then the next step of the algorithm is to increase the β i’s

corresponding to infeasible conditions so also these processors

become feasible, and at the limit of being unfeasible.

After this step some machines may not be tight, i.e. some of

the 3-conditions are violated. So the next step is to decrease

all γj’s corresponding to untight machines, except all γ j’s that

are zero. Thus these become tight γj’s at the border of untight.

These two steps constitute one round of the algorithm. They

are repeated until there are no unfeasible processors, and all

machines with γj > 0 are tight, i.e. the error is smaller than

the round-off error of the computer. The convergence is proved

in [4].

As described, the rate of convergence of this primal-dual

algorithm is the focus of the present report. The experimental

results presented in [4] show rapid convergence for m �= n,

and no large change in convergence rate as we come closer to

the optimum. If m = n, experiments have shown either very

slow convergence, or the computation has been cancelled due

to long processing time. These experimental observations are

both strongly in line with the results in this paper.

III. MAIN RESULTS

Suppose that {Bi}
m
i=1 and {Γj}

n
j=1 is the solution to the

problem. Denote by Sij =
(

Bi+Γj

α−1

)1/α

the optimal speed

of each operation and by ∆sij = (sαij − Sα
ij)

1

α the deviation

of the speed from the optimal as the algorithm searches the

optimal speed. We also denote the minimum speed by Smin =
mini,j {Sij : Sij > 0} . Suppose that the roundoff error in the

computer is δ, and that the maximum error for accepting a

point as a solution is ε. It is natural to assume ε = δ.

The following theorem is the main result of the paper.

Theorem 1: Denote ∆smin = δ
1

2αS
1

2α2
+ 1

α

min and suppose that

m �= n. Then if all |∆sij | ≤ ∆smin, the number of floating

point operations needed to reach a solution is O(mn ln 1
ε ).

The theorem is proven in Section III-C. In that section the

size of a neighborhood in which there is no difference between

the original and the linearized problem is provided (Lemma 4).

Section III-A linearizes the problem around the (unknown)

solution, and in Section III-B the complexity of the linearized

problem is found to be O(mn ln 1
ε ) (Theorem 3).

Experiments imply that the rate of convergence is not much

different outside the neighbourhood [4]. The rate of conver-

gence in the therorem is a strict, pessimistic and provable

result. It is an open question whether the non-linearity makes

the convergence slower or faster.



By using larger values of δ, the estimate ∆smin =

δ
1

2αS
1

2α2
+ 1

α

min also provides an estimate of the linearization error

outside the neighbourhood of convergence.

A. Linearization of the problem

In order to study how the algorithm works, we linearize the

system by the Taylor expansion

x−
1

α = x
−

1

α

0 −
1

α
(x− x0)x

−
1

α
−1

0 +R2(x)

around x0, where R2(x) = 1
2α (

1
α + 1)(x′ − x0)

2x
−

1

α
−2

0 for

some point x′. Suppose that m < n and that {Bi}
m
i=1 and

{Γj}
n
j=1 is a solution to the problem. Suppose further that β i

and γj are close to this solution. Hence, when defining

βi = Bi − xi and

γi = Γj + yi,

xi and yj are small, and in the algorithm βi is increasing

and γi is decreasing. Hence, both xi and yj are positive and

decreasing. Then we have the Taylor expansion

(βi + γj)
−1/α = (Bi + Γj + yj − xi)

−1/α

= (Bi + Γj)
−1/α

−
1

α
( yj − xi)(Bi + Γj)

−1/α−1

+O(y2j + x2
i ).

This turns the condition
∑

j∈J

wij(βi + γj)
−1/α ≤ d

into
∑

j∈J

wij((Bi+Γj)
−1/α−

1

α
( yj− xi)(Bi+Γj)

−1/α−1)−d ≤ 0

if the remainder term R2 is small enoúgh.

Using
∑

j∈J wij(Bi + Γj)
−1/α = d and the notation

aij = wij(Bi + Γj)
−1/α−1,

provides the inequalities
∑

j∈J

aij( yj − xi) ≥ 0.

From the condition
∑

i∈I

wij(βi + γj)
−1/α − d ≤ 0

we similarly obtain the inequalities
∑

i∈I

aij( yj − xi) ≥ 0.

We thus obtain the system
∑

j∈J

aijyj − xi

∑

j∈J

aij ≥ 0 for all 1 ≤ i ≤ m (4)

−
∑

i∈I

aijxi + yj
∑

i∈I

aij ≥ 0 for all 1 ≤ j ≤ n. (5)

This system has the obvious solution all xi = yj = 0,
but the purpose of the linearization is not to solve the new

problem, but to study the behaviour of the algorithm. Since

we do not know the solution, we do not actually know the

values of the aij :s, only that they are constant and strictly

positive.

B. Error analysis

If
∑

j∈J aijyj − xi

∑

j∈J aij < 0, condition i is

not feasible. We for simplicity define the quantity Ei =
−
∑

j∈J aijyj + xi

∑

j∈J aij > 0 as the non-feasibility of i.
Furthermore, E =

∑

i: non-feasible Ei is the total non-feasibility.

For the proof of Theorem 3, which ensures that the total

infeasibility decreases, the following simple lemma turns out

to be essential.

Lemma 2: If m < n, there are at most m − 1 γj’s in the

solution that are non-zero. Similarly, if m > n there are at

most n− 1 βi’s in the solution that are non-zero.

Proof. Assume m < n. We know that all machines have

tight processing time for an optimal distribution, so the total

processing time is md. For measuring the total processing time

in terms of jobs, denote the number of tight jobs by k. Since

all jobs have nonzero processing time, at least ε > 0, we know

that

kd+ (n− k)ε ≤ md.

It follows from this inequality that k ≤ m − 1. The second

statement is proven similarly.

Theorem 3: If the linear problem has the total non-feasibility

E, and one round of the algorithm provides the new total non-

feasibility E′, then
E′

E
≤ C < 1,

where C is dependent on α,wij , Bi and Γj only.

Proof. This proof checks the change of the non-feasibilty dur-

ing one round of the algorithm. For ease of notation we define

the index sets Ij = {i : Oij ∈ Mi} and Ji = {j : Oij ∈ Nj} ,
and also

I ′j = {i : Oij ∈ Mi : γj > 0} ,

J ′

i = {j : Oij ∈ Nj : βi > 0} .

By Lemma 2, if m < n then I ′j � Ij , and if m > n we know

that J ′

i � Ji. Suppose m > n. Initially we suppose that all

inequalities of equation 5 are satisfied, while some in 4 are

not. Consider xi0 to be non-feasible, and that it is adjusted

into x′

i0 to be feasible. Then we have
∑

j∈J

ai0jyj − xi0

∑

j∈J

aij = −Ei0 < 0.

and the condition is fulfilled if xi is decreased to x′

i, where

x′

i0 = xi0 −
Ei0

∑

j∈J ai0j
.

This causes changes in the expression on the left side of 5,

−
∑

i∈I

aijxi +
ai0jEi0

∑

j∈J aioj
+ yj

∑

i∈I

aij ,



which thus has non-tightness at most

aioj
Ei0

∑

j∈J ai0j
.

Then each yj corresponding to γj > 0, for the set J ′, need to

be modified into y ′

j so that

−
∑

i∈I

aijxi +
ai0jEi0

∑

p∈J aiop
− y′j

∑

i∈I

aij = 0,

where the name of a summation index has been changed from

j to p to avoid confusion.Thus,

y′j = yj +
ai0jEi0

∑

p∈J ai0p
∑

i∈I aij
,

which inserted in
∑

j∈J aijyj − xi

∑

j∈J aij ≥ 0 provides a

new error
∑

l∈J′

ail
ai0lEi0

∑

p∈J ai0p
∑

i∈I ail

for each i. The total sum of new non-feasibilities is then
∑

k

E′

k =
∑

k∈I

∑

l∈J′

akl
ai0lEi0

∑

p∈J ai0p
∑

i∈I ail
.

So,
∑

i E
′

i

Ei0

=
∑

k∈I

∑

l∈J′

akl
ai0l

∑

p∈J ai0p
∑

i∈I ail

=

∑

l∈J′ ai0l
∑

j∈J ai0j
< 1

since J ′ � J by Lemma 2 and all aij > 0. If we start with

more than one non-feasibilitiy, we similarly end up with a

weighted sum of the individual cases, where all quantities are

strictly smaller than 1. We thus have
∑

i E
′

i
∑

i Ei
≤ max

i0

∑

l∈J′ ai0l
∑

j∈J ai0j
< 1

for the i0 with largest infeasibility. By defining

C =

∑

l∈J′ ai0l
∑

j∈J ai0j

Theorem 3 is proved. The argument is similar in the case

m < n.

C. Proof of Theorem 1

Suppose that the roundoff error for the algorithm is δ when

running the program on a specific computer. Denote S ij =
(

Bi+Γj

α−1

)1/α

and ∆sij = (sαij − Sα
ij)

1

α . Then:

Lemma 4: The linearization is exact if all ∆sij ’s fulfill

|∆sij | < δ
1

2αS
1

2α2
+ 1

α

min

where Smin is the minimal speed of the operations.

Proof. The linearization introduces no error in the algorithm

if the error R2(yj − xi) is smaller than δ , i.e. if

1

2α
(
1

α
+ 1)(yj − xi)

2(Bi + Γj)
−1/α−2 < δ,

for all i and j. Hence

(yj − xi)
2 < δ

2α2

α+ 1
(Bi + Γj)

1/α+2.

By taking advantage of Sij =
(

Bi+Γj

α−1

)1/α

and ∆sij = (sαij−

Sα
ij)

1

α we obtain yj− xi = γj+βi−(Bi+Γj) = ∆sαij(α−1).
Inserted in the estimate provides the lemma by using the fact

that 1 <
(

2α2

(α+1)(α−1)2

)
1

2α

< 3
2 for all 2 < α < 3.

Proof of Theorem 1. From Theorem 3 it follows that

the number of rounds needed to reach error ε is bounded

by C ln 1
ǫ . Since the number of floating point operations at

each round is bounded by a constant times mn, the error

estimate in Theorem 1 follows. Finally, Lemma 4 establishes

the neighbourhood statement in Theorem 1. �

IV. CONCLUSIONS

The polynomial time convergence of the primal-dual algo-

rithm if n �= m is proven locally, i.e. close to the solution.

The power consumption function sα gives a convex non-

linear problem, whose solution algorithm can be studied close

to the unique solution by linearization. Linearization is a

general method to study the complexity of an algorithm in

the final phase of convergence, which of course is the most

important phase. The approach also provides information that

allows quantitative error estimates outside the convergence

neigbourhood.

The extremely slow convergence when n = m, but not when

for example n = m ± 1, is observed in [4] and described

as a result of all γj’s βi’s being non-zero, which forces

precision errors to play a significantly larger role. This can

be complemented by the observation implicit in the proof of

Theorem 3 that the total infeasibility at a certain step in the

algorithm must not decrease at all. Since if n = m, Lemma 2

is not valid and neither J ′ � J , so we cannot prove that the

constant C in the proof of Theorem 3 fulfills C < 1.
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