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We use the soft fundamental measure theory ~SFMT! to investigate a system of classical particles

interacting with the pair potential of star polymers in solution. To that end we calculate liquid and

solid structural properties, as well as freezing, solid-to-solid, and remelting phase transitions. Even

subtle physical effects, like deviations from Gaussian crystal peaks and an anomalous peak

broadening upon increasing density as well as a reasonable vacancy concentration are captured

correctly. Good overall quantitative agreement with simulation data is found, however, with a

tendency to overestimate the structural correlations. Furthermore, we demonstrate that all recent

developments of its hard core counterpart can be incorporated systematically into SFMT. © 2001

American Institute of Physics. @DOI: 10.1063/1.1349092#

I. INTRODUCTION

The understanding of classical many-body systems has

received a boost by the development of density functional

theory ~DFT!.1 The density functional of a given system is an

extremely powerful object, from which a complete under-

standing of an equilibrium system can be gained. The ther-

modynamics and correlation functions up to an arbitrary or-

der are accessible in principle. Moreover, this is not only true

for the bulk but also for situations where an arbitrary influ-

ence that can be modeled by an external potential energy, is

acting on the system. Apart from externally caused spatial

inhomogeneities, DFT also accounts for self-sustained

density-waves that are present in a crystal. Thus, it is able to

describe the liquid and solid phases on an equal footing, and

hence gives a physical explanation of the existence of the

freezing phase transition.

As the free energy density functional ~DF! is such a

powerful object, it may become obvious that it is unknown

for most realistic systems. To construct an approximation to

the exact DF, the common strategy is to require that the

approximative DF yields the correct behavior in situations

where one can solve the system, at least approximatively.

The more conventional approach uses the homogeneous liq-

uid phase as this starting point, and requires that the approxi-

mative DF reproduces known results from liquid state

theory, like the equation of state and correlation functions.

These quantities can be considered as input to the theory.

A newer approach utilizes situations of reduced spatial

dimensionality as limiting cases that are captured correctly.

There one has the advantage that the system can be solved

exactly in dimensions as low as one or even zero, so no

approximations enter at that stage. The Rosenfeld hard-

sphere functional2 can be derived in this way,3 and improved

versions of it can be systematically obtained,4,5 as well as

functionals for parallel hard cubes.6,7 The approximation one

has to do is to construct a ‘‘functional interpolation’’ 5 be-

tween spatial dimensions. The fundamental measure func-

tionals yield the Percus–Yevick direct correlation function

and equation of state for the bulk hard sphere liquid, give

excellent results for the coexistence densities and describe

the crystal structure up to close-packing excellently,8 as well

as the vanishingly small vacancy concentration.9 We note

that recently a similar approach was used to find a DFT for

adhesive hard spheres.10

The idea that a three-dimensional functional can be con-

structed by imposing its correct dimensional crossover to

lower dimensions is not limited to hard interactions. It can be

applied to penetrable spheres,11,12 the Asakura–Oosawa

colloid-ideal polymer mixture,13 and has been exploited to

derive a DFT for arbitrary soft pair interactions14,15 and ad-

ditive mixtures.16 This so-called soft fundamental measure

theory ~SFMT! was demonstrated to predict the properties of

the homogeneous liquid phase. The fluid equation of state

and pair correlation function are an output of the theory.

In this work we apply the SFMT to a system of star

polymers in a good solvent, which has attracted a lot of

recent interest.17–22,24,25 The logarithmic pair interaction17

present in this system leads to an anomalous liquid

structure18 and to a rich phase diagram19,20 with various solid

phases and reentrant melting upon increasing density. Pair21

and triplet22 interactions have been investigated. Besides

computer simulations, liquid integral equations17,18 and

Einstein-crystal perturbation theory19,20 have been employed.

It is of great interest to investigate the system from the uni-

fying viewpoint that DFT provides. In addition, because of

the richness of physical phenomena, star polymers provide a

severe test to any DFT.
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Our results show that the SFMT stands this test. In par-

ticular, the predicted bulk pair correlations are in good agree-

ment with simulations over the whole range from hard-

sphere-like to ultrasoft behavior. The DFT yields

thermodynamically stable face-centered cubic ~fcc! and

body-centered cubic ~bcc! crystals and reentrant melting. We

find that the lattice peaks have broader wings than Gauss-

ians. A peculiar decreasing of the Lindemann parameter

upon increasing the density is captured correctly.

In Sec. II the SFMT functional is described. We also

give its refinements according to the latest developments in

FMT for hard spheres, and discuss briefly its properties. Sec-

tion III defines the theoretical model for star polymer solu-

tions and gives explicit expressions for the quantities in-

volved in SFMT. In Sec. IV we present results for the liquid

and solid structure as well as the phase diagram. The present

approach is discussed in the concluding Sec. V.

II. THE DENSITY FUNCTIONAL

A. Definition

The SFMT is a weighted density approximation. It em-

ploys a set of weight functions which are independent of the

density profile. The free energy density is a function of the

weighted densities and is analytically given.

The excess free energy is expressed as

Fexc~T ,@r~r!# !5kBTE dxF~$na~T ,x!%!, ~1!

where T is the temperature, and kB is Boltzmann’s constant.

The integrand is a reduced free energy density F depending

on a set of weighted densities $na% indexed by a. Each

weighted density is given by a convolution of its

temperature-dependent weight function wa with the density

profile,

na~T ,x!5E drr~r!wa~T ,x2r!. ~2!

Within the set of weight functions there is a hierarchy,

w2~r !52

]w3~r !

]r
, ~3!

w
v2~r !5w2~r !r/r , ~4!

ŵt2~r !5w
v2~r !r/r , ~5!

w1~r !5w2~r !/~4pr !, ~6!

w
v1~r !5w1~r !r/r , ~7!

w0~r !5w1~r !/r , ~8!

where w2 , w1 , w0 are scalar quantities, w
v1 , w

v2 are vec-

tors, and ŵt2 is a second rank tensor given by a dyadic prod-

uct of a vector density and a unit spatial vector. The intro-

duction of the tensorial weight ŵt2 is justified below. The

‘‘generating’’ weight function w3 is determined so that a

deconvolution of the Mayer bond f (r)5exp@2bV(r)#21,

where b51/kBT , is generated,

2
1
2 f ~r !5w0*w31w1*w22w

v1*w
v2 , ~9!

where the convolution product, denoted by *, also implies

scalar products between vectors.

The free energy density is given by F5F11F21F3 ,

with the contributions

F152n0 ln~12n3!, ~10!

F25

n1n22n
v1•n

v2

12n3

. ~11!

The third term exists in various refined forms,

F3
FMT1

5

1

24p

n2
3~12~n

v2 /n2!2!3

~12n3!2 , ~12!

F3
FMT2

5

9

8p

det n̂t2

~12n3!2 , ~13!

F3
FMT3

5

n
v2•n̂t2•n

v22n2n
v2•n

v22tr~ n̂t2
3 !1n2 tr~ n̂t2

2 !

~16p/3!~12n3!2 ,

~14!

where tr denotes the trace, and det is the determinant of a

second-rank tensor.

FMT1 ~Ref. 3! is the form that first gave a freezing

transition for hard spheres and was used in the proposal of

SFMT14 FMT2 ~Ref. 8, 4! produces a far better description

of the hard sphere solid, but gives less accurate direct corre-

lations for the liquid. FMT3 ~Ref. 5! is the latest improve-

ment combining the power of both ancestors. Each of these

forms is taken over from the corresponding hard sphere func-

tional. Our modification is the replacement of the hard

sphere weight functions with those for the soft potential.

This requires the introduction of a tensorial soft weight, done

in Eq. ~5!. The form of ŵt2 is unique in the current frame-

work. This can be seen as follows. The numerator of F3
FMT2

and F3
FMT3 is of third order in weighted densities. Hence a

single weighted density has to have the dimension of inverse

length to give an overall inverse volume, which is the dimen-

sion of the free energy density. Hence the tensorial weight

carries the index t2. The simplest way to construct such a

weight function, so that the hard sphere case is respected, is

by multiplying w
v2 by a spatial unit vector, and Eq. ~5! is

obtained.

B. Properties

The density functional defined above is exact in two ex-

treme limiting cases, the zero-dimensional ~0D! and the low-

density limit. The 0D limit is a an extremely confined situa-

tion, represented by r(r)5hd(r). We note that as the excess

free energy functional does not depend on the external po-

tential Vext , there is no need to specify a Vext that causes the

0D distribution. Nevertheless it might be useful to think of a

small cavity that immobilizes a particle. There can be at most

one particle, because the pair interaction diverges at the ori-

gin. The free energy can be calculated exactly.3 The SFMT

reproduces this solution.14

In the low-density limit, the functional becomes exact up

to second order in the virial expansion. The reason is that the

weight functions restore the Mayer function upon convolu-

tion. Details of the calculation can be found in Ref. 14.
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III. STAR POLYMERS

Star polymers are macromolecular entities consisting of

a functional center to which f polymeric arms are attached.

The arm-number or functionality f is an integer ranging from

2 to values as high as 256. When soluted in a good solvent,

star polymers can be regarded as colloidal particles on a

mesoscopic length scale, that is much larger than the micro-

scopic scale of individual monomers building up the arms.

The colloidal picture involves an effective pair21 or even

triplet22 interaction between the stars, which arises from en-

tropic effects due to reduction of the number of accessible

states if the stars are very close to each other. The resulting

interaction is repulsive with a logarithmic law. For large dis-

tances it decays faster and a hybrid between logarithmic and

a Yukawa form was proposed17 and validated by

simulations.21 The arm-number governs the softness ranging

from ultra-soft for small f to practically hard spheres for

large f.

A. The potential

As a model interaction between star polymers we use the

modified potential of Ref. 14 given by

bV~r !55
22q ln~r/R !1lnS 2q

q D 0<r,R

fq~r !1lnS 2q

q D R<r,2R

0 2R<r

, ~15!

where (q
2q) is the binomial coefficient. The crossover func-

tion between small and large distances is given by

fq~r !52ln@~11j !2q
2jq11Bq 2

3F1~1,12q;21q;2j !# , ~16!

where j5(r/R)21, Bq52G(112q)G21(q)G21(21q), G
is the Euler gamma function, and 2F1 is the hypergeometric

function. For integer q the crossover function can be simpli-

fied to a polynomial, fq(r)52ln@(11j)2q
2(j50

q (j
2q)jq#. The

parameters q and R are related to the arm-number f and

length scale s of the log-Yukawa potential17 via q

5(5/36) f 3/2, and R/s5exp@(11Af /2)21
2(2q)21 ln(q

2q)#.

We define a dimensionless density r*5(2R)3N/V . The re-

lation h*5(p/6)(2R/s)23r* holds, where h* is the den-

sity of Ref. 17.

The log-hypergeometric form ~15! for the potential is not

chosen on physical grounds. It only simplifies the actual cal-

culations, because the weight functions can be obtained ana-

lytically. This makes the numerical work easier, as no inac-

curacies enter at that stage. We plot both interactions in Fig.

1. The force F52dV/dr as well as the potential itself are

shown for both functional forms and are compared to the

simulation data by Jusufi et al.21,26 Both functions are math-

ematically identical for r/R,1. On the scale of the plot,

however, both forces coincide for larger distances up to

r/R'1.5, where the cusp in the log-Yukawa force appears.

The cusp is absent in the present case of the hypergeometric

crossover. However, it falls off too quickly for larger dis-

tances and even vanishes for r/R.2. There the simulations

indicate a finite force that is well described by the log-

Yukawa potential. Nevertheless, we conclude that the gross

features are the same for both models and the use of the

log-hypergeometric potential is justified for our investiga-

tions.

B. Setting up the density functional

The weight functions for star polymers are obtained by

solution of the deconvolution Eq. ~9!, and are explicitly

given by

w3~r !5u~R2r !@12~r/R !q# , ~17!

w2~r !5u~R2r !qrq21/Rq, ~18!

w
v2~r !5u~R2r !@qrq21/Rq# r̂, ~19!

ŵt2~r !5u~R2r !@qrq21/Rq# r̂r̂, ~20!

w1~r !5u~R2r !qrq22/~4pRq!, ~21!

w
v1~r !5u~R2r !@qrq22/~4pRq!# r̂, ~22!

w0~r !5u~R2r !qrq23/~4pRq!, ~23!

where r̂5r/r is a unit vector, and u is the Heaviside step

function. The weight functions do not depend on tempera-

ture, because the pair interaction, Eq. ~15!, is of entropic

origin, hence V(r)/kBT is constant with respect to tempera-

ture. As a quasithermodynamic quantity the softness param-

eter q tunes the shape of the interaction and of the weight

functions.

C. Computer simulation

To provide data for comparison with the DFT results, we

have carried out Monte Carlo ~MC! computer simulations of

the log-hypergeometric pair potential, Eq. ~15!. Canonical

simulations with 108–864 particles and 105 – 106 MC moves

per particle were performed. We collect data for the pair

correlation function in the fluid state and crystal density dis-

FIG. 1. Comparison of two functional forms for the star polymer pair inter-

actions. The main plot shows the scaled force FR/(kBT), the inset indicates

the scaled potential V/(kBT) itself. Both are plotted as a function of the

scaled distance r/R . The solid lines represent the log-Yukawa potential by

Likos et al. ~Ref. 17!, the dotted lines indicate where the log-

hypergeometric potential used in this work differs. The symbols are the

computer simulation results by Jusufi et al. ~Ref. 21!, Fig. 3~b! therein ~Ref.

26!. From top to bottom the arm number changes as f 550, 30, 18, corre-

sponding to q549.1, 22.8, 10.6.
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tributions. For the latter the usual subtraction of the center-

of-mass movement was done. The actual data presented are

from a system with 256 particles. We checked that the finite

size dependence is negligible at one state point, q5100,

r*5A2.

IV. RESULTS

A. Liquid structure

The SFMT has the ability to predict the properties of the

homogeneous liquid. The thermodynamics and correlation

functions can be derived from the functional and are not put

in by hand, say from liquid state theory. In the following, we

calculate the bulk liquid free energy and pair distribution

functions. The latter are compared to simulations.

For a liquid state with homogeneous density r(r)5r ,

the weighted densities become na5jar , where the soft fun-

damental measures ja are given by ja54p*0
`drr2wa(r).

We obtain ja5ja
HSq/(q1a), where the fundamental mea-

sures of a hard sphere of radius R are the Euler characteristic

j0
HS

51, integral mean curvature j1
HS

5R , surface area j2
HS

54pR2, and volume j3
HS

54pR3/3. For the star polymers

the Euler characteristic remains unity, ja51, the other fun-

damental measures are j15Rq/(q11), j254pR2q/(q

12), j35(4p/3)R3q/(q13). We emphasize that the flex-

ibility contained in ja , a51,2,3 cannot be obtained by a

mapping onto a reference hard sphere system.

The vector densities vanish, n
v15n

v250, and (n̂t2) i j

5d i jn2/3. The excess free energy is

bFexc

V
52n0 ln~12n3!1

n1n2

12n3

1

n2
3

24p~12n3!2 ~24!

in all three approximations for F3 . The liquid equation of

state is easily derived by differentiation and reduces to the

hard sphere Percus–Yevick compressibility result for

q→` .

To calculate pair correlations from a density functional

there are various ways to go. They differ in the number of

test particles that one inserts. A test particle corresponds to

an external potential coinciding with the pair potential itself.

For one test particle the pair correlations are proportional to

the density profile itself. This is a widely used approach; the

profile depends on the radial coordinate. Without a test par-

ticles, g(r) can be computed via the direct correlation func-

tion given by the second functional derivative of the excess

free energy using the Ornstein–Zernike relation. We employ

this strategy because we consider it as the tougher test for the

functional itself, as no oscillating density profile is mini-

mized.

We will investigate the crossover behavior of the pair

correlations from soft to hard sphere behavior for the density

r*53/p50.955. The ultrasoft case, q53, was already con-

sidered in Ref. 14. In Fig. 2 the theoretical results are shown

together with simulation data for different softness param-

eters q56,12,24. We observe that the phase and amplitude

of the oscillations are reproduced nicely by the DFT. The

only deficiencies are an overshooting of the first peak for q

56 and negative values for small distances for all q. On

physical grounds, these values may be disregarded, as g(r)

is a non-negative function. They present a shortcoming of

the current approach, but incorporating the feature g(r)>0

on the level of the density functional itself is not an easy

task. Of course, one could get rid of the negative values

using the test-particle method where the ideal gas free energy

ensures non-negative results.

B. Solid structure

A general crystalline density has the form,

r~r!5(
R

rD~r2R! ~25!

with identical lattice peaks rD(r) centered at the lattice sites

$R%. A corresponding decomposition is induced for the

weighted densities,

na~r!5(
R

nD
~a !~r2R! ~26!

with

nD
~a !~r!5E d3r8rD~r8!wa~r2r8!. ~27!

In the following we assume spherical density peaks rD(r)

5rD(r), but, for the time being, do not restrict their shape

further, in contrast to the common approximation by

Gaussians.1 For the scalar weight functions this leads to

nD
~a !

5

2p

r
E

0

`

dr8r8rD~r8!E
ur2r8u

r1r8
dr12r12wa~r12!. ~28!

Since the second integral can easily be performed for our

polynomial weight functions only a one-dimensional numeri-

cal integration is necessary to compute the weighted densi-

ties. Similar, slightly more complex expressions result for

the vector and tensor weighted densities.

Usually rD(r) is zero ~or negligible small! for distances

r beyond a cutoff rc , which implies an upper cutoff for

FIG. 2. Pair distribution function g(r) as a function of the scaled distance

r/(2R). Results for various softness parameters are shown, q56, 12, 24

~from top to bottom! and density r*53/p50.955. The lines are the DFT

results, the symbols are Monte Carlo data. The curves are shifted upwards

one unit for reasons of clarity. For small distances the theoretical result

becomes negative ~indicated by a dashed line!.
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nD
(a)(r) at r5R1rc . ~In contrast to the hard sphere case

there is no lower cutoff.! Therefore only a few lattice sites R

contribute in Eq. ~26! to the full weighted densities at any

point. For the determination of the free energy we have em-

ployed two different numerical methods, depending on the

width of the density profile. Method I applies to narrow pro-

files, for which only either one or two lattice sites contribute

at every point. By taking advantage of the resulting symme-

tries the integration in Eq. ~1! can be reduced to a one- and a

two-dimensional numerical integral. Details can be found in

Ref. 8. In method II we perform a full three-dimensional

integration over an asymmetric unit, i.e., the smallest region

with which space can be filled by applying the space group

symmetries. For fcc and bcc crystals this corresponds to 1/48

of the Wigner–Seitz cell. For a given profile width we first

make a list of the relevant lattice sites whose distance to the

integration region is smaller than R1rc . This approach fails

for too narrow peaks because then the integration routine

cannot reliably sample the integrand which takes on consid-

erable values only in a narrow quasi-two-dimensional subset

of the integration region.

The functional derivative dFexc/dr(r) is determined as

demonstrated for hard spheres in Ref. 8, using analytical ex-

pressions for dnD
(a)(r8)/drD(r) and the same integration

method as for the functional itself. In order to solve the sta-

tionarity equation

rD~r !5

exp$2~1/4pr2!d f exc/drD~r !%

4p*dr8r8
2 exp$2~1/4pr2!d f exc/drD~r8!%

~29!

with f exc
5bFexc/N the profile is discretized over a mesh in

r. Then Eq. ~29! is iterated starting from a reasonable initial

guess until the maximum relative change of rD(r) in one

iteration is less than 1025.

In Fig. 3 we show the results for different softness pa-

rameters q at a fixed density r*5& , equal to the close

packing density for hard spheres. As expected the profiles

become wider when the interaction potential softens. The

shape remains essentially the same; if distance is scaled by q

~and correspondingly density by q23) all curves practically

coincide, as shown in the inset. Using a logarithmic plot of r
vs r2 moreover demonstrates that the peaks are almost

Gaussian but have wider wings than a Gaussian fitted to the

central part. In Fig. 4 we provide a direct comparison with

computer simulations for the same parameters. They exhibit

the same scaling behavior, but are slightly narrower ~about

30%!. Even the deviations from the Gaussian shape agree

with the density-functional result. Note that strictly speaking,

simulation and theoretical profiles differ in the following re-

spect. The theoretical profiles minimize the DFT, if radially

symmetric profiles are assumed. In principle, this is different

from a spherical average of the minimizing profile with an-

gular anisotropy. In the simulation, clearly, the equivalent of

the latter is obtained. The difference, however, is expected to

be small, because anisotropy of lattice sites is small ~see,

e.g., Ref. 23 for hard sphere results!.
Here and in the following we always used the most ad-

vanced DFT version FMT3. We checked one state point

(r*51.4127, q5100) for the older versions. The peak

width is measured by

w5F8p

3
E

0

`

drr4rD~r !G 1/2

~30!

so that for Gaussian peaks

rD~r !5

1

p3/2w3 exp@2~r/w !2# . ~31!

It differs only by 5% between FMT3 and FMT2, whereas the

FMT1 result is narrower by a factor 5. Also the shapes are

very similar for the first two cases, but a peculiar long tail

arises in FMT1.

In Fig. 5 we present the dependence of the profile width

on the nearest neighbor distance Rnn52R(&/r*)1/3 in an

fcc crystal with q5100. The lower and upper part of the

solid line are obtained by methods I and II, respectively.

There is no overlap range where both methods can be ap-

FIG. 3. Density functional results for the density peaks in an fcc crystal as

a function of the distance r from the lattice site. Results for different soft-

ness are shown, q524, 48, 100, 200, 400; at the density r*5& corre-

sponding to a close-packed hard-sphere (q→`) crystal. Note the logarith-

mic ordinate extending over eight decades in density. The inset shows the

same data scaled as (2R/q)3r as a function of the scaled and squared

distance r2q2/(2R)2.

FIG. 4. Same as Fig. 3, but obtained from Monte Carlo computer simula-

tions.
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plied, but the results connect nicely with each other. In both

cases Gaussian profiles @Eq. ~31!# were assumed. The widths

from the radial minimization, indicated by diamonds, are not

distinguishable from the Gaussians on the scale of the figure.

Upon compression from the low density side the peaks first

become narrower. However, just above Rnn52R surpris-

ingly the width increases again. This increase is found both

in simulation and theory, but is much steeper in DFT. The

same behavior occurs for smaller q, even for the bcc crystal,

but the minimum shifts towards higher Rnn and larger widths

w.

The occurrence of vacancies can be taken into account

within DFT by allowing non-normalized density peaks, i.e.,

less than one particle per lattice site on average, and treating

the normalization constant as an additional minimization pa-

rameter. The FMT is the first DFT for which this procedure

yields reasonably small vacancy concentrations9 for hard

spheres.

Determining the average occupancy number in this way

for star polymers, we find that SFMT also predicts almost

normalized density peaks. There is a tiny negative vacancy

concentration of the order of 1025 near melting. This would

mean that there are more double occupied sites than empty

ones. Whether this is an artifact of the DFT or a feature of

the peculiar logarithmic interaction of star polymers remains

an open question.

C. The phase diagram

In order to compute the phase diagram of our star poly-

mer model we determined the free energy in the Gaussian

approximation for a large number of densities and softness

parameters. Phase coexistence densities then follow by the

usual common tangent construction. Our results are dis-

played in Fig. 6. For relatively hard interactions the fluid

freezes into an fcc crystal, for soft interactions (q&4) into a

bcc crystal. Upon further compression both crystals eventu-

ally remelt. The broadening of the profile discussed in the

previous section is a precursor of this remelting transition.

Note that formally hard spheres (q5`) also remelt, because

the solid but not the liquid free energy diverges at close

packing. However, in this case the coexistence region ex-

tends into the unphysical density range beyond close pack-

ing. It must be stated that the present DFT has intrinsic limi-

tations at high density. Any density distribution, where

locally n3.1 is punished by an infinite energy cost. In real-

ity, such distributions will have large, but finite free energy.

In an intermediate softness range both fcc and bcc solids

occur with the sequence liquid–fcc–bcc–fcc–liquid. The

dotted line denotes the points where the main peak of the

liquid structure factor reaches the value 2.8. This has been

suggested as a general phenomenological freezing criterion

by Hansen and Verlet27 and lies close to the actual phase

transition for not too small q. This demonstrates the internal

consistency of the theory. For q&2.9 the solid phase disap-

pears completely.

Freezing and remelting of star polymers have been theo-

retically predicted before28 and were observed experimen-

tally in the closely related system of diblock copolymer

micelles.29,30 In the latter work bcc was observed for softer

interactions and fcc for harder interactions, in qualitative

agreement with our findings. The same trend is known for

simple liquids with inverse power potentials.31–34 The most

direct comparison is possible with the computer simulations

of the log-Yukawa potential by Watzlawek et al.19 These

authors obtained a phase diagram with exactly the same to-

pology at low and intermediate densities. However, for large

arm number the remelting is replaced by transitions to more

‘‘exotic’’ crystal structures at high densities: body-centered

orthogonal ~bco! and diamond lattices. A search for body-

centered tetragonal ~bct! and diamond crystals within the

present theory produced no thermodynamically stable states.

Especially the diamond lattice requires rather small nearest

neighbor distances in the interesting density range, which is

excluded by the following mechanism. When two neighbor-

ing sites come closer to each other the value of n3 at their

midpoint increases and eventually approaches unity, which

FIG. 5. Dependence of the width of the crystalline peaks @as defined in Eq.

~30!# on the nearest neighbor distance in a fcc solid for q5100. The solid

line is the DFT result assuming a Gaussian peak shape, obtained with meth-

ods I ~lower part! and II ~upper part! described in the text. The diamonds are

obtained by the minimization with radially symmetric peaks. The triangles

are Monte Carlo data.

FIG. 6. Phase diagram of star polymers obtained by density functional

theory as a function of the density r* and the inverse softness parameter

q21. All phase transitions are first order. The dotted line indicates the esti-

mate of the freezing density by the Hansen–Verlet criterion.
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obviously induces a divergence of the functional. For high

densities the differences between the log-hypergeometric and

the log-Yukawa potential are expected to be small, as the

logarithmic core dominates. We conclude that the absence of

the exotic structures is a shortcoming of the theory. We did

not attempt to determine the phase diagram by simulation

since this would necessitate a large number of expensive free

energy calculations. But the fcc crystal for q5100 is me-

chanically unstable for r*.1.76, slightly above the theoret-

ical remelting transition.

V. DISCUSSION

The proposal of a new DFT has to be accompanied by

examples of successful use. As a meaningful application, one

could choose a well-studied model, e.g., the inverse-power

potentials ~see, e.g., Refs. 31–34!, and let the new candidate

compete with established theories. We have postponed this

necessary work and have tackled the star polymer system,

which has a quite young history. Besides the technical ad-

vantage that we can calculate certain quantities analytically,

this system is of great actual interest.

The strategy of the SFMT is to assume a generic form of

a density functional and to impose the correct behavior in

well-defined limiting cases. In its present form, the theory

captures the virial expansion up to second order correctly, as

well as a density distribution given by a single delta peak

times an average occupation number which is called zero-

dimensional limit. The theory has deficiencies: Two delta

functions which are separated within the range of the pair

interaction are not described exactly. In this respect the

SFMT is in a poorer state than the hard sphere FMT, which

describes even three delta spikes exactly.5 Improving the

SFMT along these lines is desirable; also Sweatman’s work35

and Percus’ general rank two representation36 should be use-

ful.

We could show that the recent improvements in hard

sphere FMT using tensorial weighted densities can ~and need

to! be done in SFMT to get a good description of the crystal.

This situation is similar for hard spheres.8,9,5 No empirical

rescaling like in Ref. 14 was used in the present work in

order to highlight the power of the approach and its deficien-

cies. The deficiencies occur at high density, where the star

polymers freeze into exotic bco and diamond structures, that

are not found to be stable within our approach. Nevertheless,

intriguing high-density effects, like the broadening of density

peaks upon increasing the density and remelting are de-

scribed by SFMT. The sequence liquid–fcc–bcc–fcc upon

increasing densities is correct. From the investigation of the

star polymer model, we conclude that freezing, liquid and

crystal properties of particles with soft interactions can be

understood on the basis of a density functional that does not

need input from the homogeneous fluid phase.
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