

• Fill out tables below based on project design (atmosphere and life cycle factors will be provided):

Economic Performance Indicators	Units	Code Baseline	Design Solution	Savings	% Savings	% Renewable
Annual Energy Cost	Dollars per sf					
Incremental Construction Costs	Dollars per sf					
Simple Payback						

Energy Performance Indicators	Units	Code Baseline	Design Solution	Savings	% Savings	% Renewable
Electric Consumption	kWh					
Electric Demand	kW					
Natural Gas consumption	Therms					
Purchased chiller water	Ton- hrs					
Purchased Steam	Mlbs					
Primary Energy	?					

Atmosphere Performance Indicators	Units	Code Baseline	Design Solution	Savings	% Savings	
CO2 Emissions	Tons					
SOx Emissions	Tons					
NOx Emissions	Tons					
Particulate Emissions	Tons					
Others?						

Life Cycle Assessment Indicators (Athena)	Units	Code Baseline	Design Solution	Savings	% Savings	
Primary Energy	MJ					
Solid Waste	kg					
Air Pollution Index						
Water Pollution Index						
Global Warming Potential	kg					
Weighted Resource Use	kg					

- Describe and evaluate two scenarios using renewable and distributed energy systems. Fill out a table similar to the table in item #1 for each scenario.
- List all refrigerants used in the building mechanical equipment. For each refrigerant indicate:
 Atmospheric lifetime _____ Ozone depletion potential _____ Global warming potential _____