Contents

Foreword by Carmen Whitman, Series Editor $x i$
How to Use This Resource xiii
Correlations to the Common Core State Standards xvii
SECTION I Qualitative Graphs
Overview 2
LESSON 1.1 Prices in Washington 4
Given a sentence, choose a graph
LESSON 1.2 Value of a Portrait 8Given a graph, choose a sentence; draw graphs
LESSON 1.3 Temperature for Tuesday 11
Interpret and draw graphs; incorporate units of measurement
LESSON $1.4 \quad$ Population in Terms of Time 14
Learn different ways to increase
LESSON 1.5 Weather in Stony Creek, Rockville, and Boulder 19
Learn different ways to decrease
LESSON 1.6 Owning a Home 24
Recognize and draw increasing functions with specified rates of change
LESSON 1.7 Cars and Walking to School 27
Recognize and draw decreasing functions with specified rates of change
LESSON 1.8 Distance and Population 30
Recognize and draw graphs with specified rates of change
LESSON 1.9 An Antique, a Jewel, and a Car 33Compare and contrast values; create multiple graphs on oneset of axes
LESSON 1.10 Distance to a Bench 37
Compare and contrast linear graphs
LESSON 1.11 At the Beach 42
Compare and contrast distance-versus-time graphs
Further Practice
further practice 1.a Value, Population, and Distance over Time 45
Practice writing sentences describing graphs (Can be done any time after Lesson 1.2)
further practice 1.B Your Choice and Animals at the Zoo 48
Practice rates of change with increasing functions(Can be done any time after Lesson 1.4)
further practice 1.C More Your Choice 50
Practice with varying rates of change
(Can be done any time after Lesson 1.8)
SECTION II Quantitative Graphs
Overview 54
LESSON 2.1 Numbers on a Line 56
Estimate points and tick marks along axes given certain values
LESSON 2.2 Height of a Person 60Estimate scales along axes given height as a function of time
LESSON 2.3 Value of a Car 65Read and interpret a quantitative graph of a decreasingfunction
LESSON 2.4 Rising Real Estate Prices 68
Interpret a quantitative graph of an increasing function with adecreasing rate of change
LESSON 2.5 Perimeter of a Square 71
Use the graph of the linear function $y=4 x$
LESSON 2.6 Area of a Square 76
Use the graph of the quadratic function $y=x^{2}$
LESSON 2.7 A Rumor in the Classroom 81
Interpret a graph with a point of inflection
LESSON 2.8 Using a Motion Detector 85
Interpret a quantitative graph of a decreasing function with a decreasing rate of change
LESSON 2.9 Mark's Distance from the Cafeteria 90
Work with a distance-versus-time graph
LESSON 2.10 Value of a Boat 95Work with a decreasing function with an increasing rate ofchange
LESSON 2.11 Rocket in the Air 100
Work with a quadratic function that models the height of arocket in terms of time
SECTION III Including Tables with Graphs
Overview 108
LESSON $3.1 \quad$ Spread of a Virus 110
Lesson similar to Section II, table introduced at the end
LESSON 3.2 Distance from a Dock 114
Table and graph for a constant function
LESSON 3.3 Distance from a Motion Detector 117
Given a table, answer questions, and produce a graph
LESSON $3.4 \quad$ Value of an Antique 120
Given a table, consider rate of change and graph
LESSON $3.5 \quad$ Value of a Motorcycle 124
Given a linear relationship, produce a table and a graph
LESSON 3.6 Distance from a House 129
Given a graph, choose a table; given a table, choose a sentence
LESSON 3.7 The Height of a Projectile 133
Given a quadratic function, answer questions. and producea table
LESSON $3.8 \quad$ Throwing a Grapefruit! 137
Further work with quadratic functions
further practice 3.a Your Choice 141
Create your own example (Can be done any time after Lesson 3.5)
SECTION IV Adding in Equations
Overview 144
LESSON 4.1 Value of a Computer 146
Work from description, to table, to graph, to equation
LESSON 4.2 Purchase of a Jewel 150Work from graph, to description, to table, to equation for anincreasing linear function
LESSON 4.3 Distance from a Building 153
Work from graph, to description, to table, to equation for a decreasing linear function
LESSON 4.4 Stan Is Waiting 157Work with a constant function
LESSON 4.5 Mary and the Pool 160
Put it all together with an increasing linear function
LESSON 4.6 The Cost of Pasta 163
Work from description, to table, to graph, to equation for a costfunction
LESSON 4.7 Carl at the Gate 166
Put it all together with a decreasing linear function
LESSON 4.8 A Rocket in the Air 169
Work from equation, to description, to graph, to table for aquadratic function
LESSON $4.9 \quad$ Another Rocket in the Air 174
Understand quadratic functions
Index 179

A Rumor in the Classroom

Interpret a graph with a point of inflection.

Overview

Class Time: 15 minutes
Prerequisites: Students should have completed Lessons 1.1 through 1.4 and 2.1.

In this lesson, students are introduced to the concept of a point of inflection.

Teaching the Lesson

In this lesson students are introduced to the concept of a point of inflection. In addition, they again identify the units of measurement, locate values, and translate points into statements based on the application.

Homework and Assessment

For homework after finishing the recording sheet, ask students to solve these problems:

1. Suppose a class has thirty people in it, and three people start a rumor. What would that graph look like? Compare and contrast this graph with the one shown on the recording sheet.
2. A company president claimed at first that the company's debt was increasing at an increasing rate but now claims the debt is increasing at a decreasing rate. What would that graph look like compared to the graph on the recording sheet?

Answers to Lesson 2.7 Student Recording Sheet and Homework

STUDENT RECORDING SHEET

1.

a. The graph shows the relationship between time and people who have heard the rumor.
b. The units of measurement along the x-axis are minutes.
c. The units of measurement along the y-axis are numbers of people.
d. Two people start the rumor.

MATH MATTERS
Point of Inflection A point of inflection is a point where a function changes from being concave up to concave down or concave down to concave up. A curve is concave up if it is curved up like so and concave down if it is curved down as here . A point of inflection can identify a place where an increasing function with an increasing rate of change switches to an increasing function with a decreasing rate of change \longleftarrow. The arrow points at a point of inflection. It can also indicate a point where a decreasing function with a decreasing rate of change switches to a decreasing function with an increasing rate of change.
e. There are twenty-four people in the class. (Recall that the introduction to the problem says that everyone has heard the rumor within ten minutes.)
f. The function is increasing for the first 7 minutes and then remains constant. This is shown by the curve's rising and then remaining at the same level as we move along the x-axis from left to right. (A typical student answer to this question is "It goes up." Encourage students to write a more complete answer, such as, "As time passes, the y value is going up and then remaining at the same level" or "As we move from left to right along the x-axis, the curve is rising and then remaining at the same level.")
g. The point of inflection is at about $(2.5,12)$.
h. At the point of inflection, twelve people have heard the rumor.
i. At the point of inflection, it has been about two and a half minutes since the rumor started.
j. After four and a half minutes, twenty-two people have heard the rumor.
k. The y-intercept is the number of people who first heard the rumor.

HOMEWORK

1. The graph would have a y-intercept of 3 , not 2 . It would level off at 30 , not 24.
2. The graph showing the company's debt over time will also look like the graph on the recording sheet.

Extend the Learning: The population of a species of animals on an island often has the shape of the "rumor" graph. Can you
explain why? Suppose the population starts with twentyfive animals and levels off at 300 after six years. Assume the point of inflection is at $(2,150)$. Draw the graph, and use it as the basis for your explanation.
\qquad
\qquad

LESSON 2.7

A Rumor in the Classroom

Student Recording Sheet

1. A rumor is spreading quickly among the students in a classroom, and within ten minutes, everyone has heard it. The graph below shows the number of people who have heard the rumor in relation to the time that has passed since the rumor was started.

a. This graph shows the relationship between what two quantities?
b. What are the units of measurement along the x-axis?
c. What are the units of measurement along the y-axis?
d. How many people start the rumor?
e. How many people are in the class?
f. The relationship between the quantities on this graph is called a function, because each x value leads to one and only one y value. Is the function decreasing? How can you tell?
g. The function changes more and more quickly and then more and more slowly. The point at which it shifts from faster and faster to slower and slower is called the point of inflection. Find and mark the point of inflection on the curve.
h. At the point of inflection, how many people have heard the rumor?
i. At the point of inflection, how long has it been since the rumor started?
j. A point is marked on the curve. Write a sentence about the rumor based on the information provided by the coordinates of the point.
k. What does the y-intercept mean in terms of this problem?
