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ABSTRACT

Behavioural aspects ot
into account in a lot of Conceptual Models. However, the
behavioural concepts of these MNodels have rarely been fully
implesented in DBMS.

RUBIS is an extended
extended relational schema (including event and operation
concepts) and automatic contro! ot the dynamic aspects of
Applications, i.e event recognition, operation triggering and
time handling.

After a short presentation of the basic concepts and the
specification language used for the extended Schemwa, we focus on
two internal mechanisms :

- the Temporal Processor, which sanages the temporal
aspects of specifications and recognizes tempora! events,
- the Event Processor, which manages events treatment and
synchronization.
These two mechanisas permit an automatic execution ot the
extended schema and so provide rapid prototyping capabilities.

INTRODUCTION

The dynamic aspect of data is increasingly taken into
account by Conceptual Models and by Relational DBMS.

Numerous Semantic Data Hodels (SDM (HAMN78], TAXIS (MYLGGOI,
(SMIT771,..) are only concerned with data structure.

Hore recent Models also permit the modelling of data behaviour
(ACM/PCH (BRODB2}, CIAM (BUBEBZ], REMORA (ROLLSZ), (CKISLI,
[BORGES).,

Finally, Object Oriented MHodels are now frequently encountered
in Data Base works. The spirit of such models is also a mixed
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representation of the stucturat tstatic’ amd betaviourat
tdynamic) aspects  of knowledge (SEMBASE  [KINGB6),  GODEL
[KERS861). But there are few realizations of DBMS wich fully
support the dynamic concepts of these Models.

On the other hand, there are regular trials for integrating
dynamic capabilities into existing DBMS.

There vas first the notion of trigger in System R [ESWA76]
and alerter in Daisy (BUNE79]; then, other trials were made
[LIN 84), [MELK83], (CHAN81l,..) but =nn real complete
integration of these sechanises in a global model has been
accomplished.

The ain of the RUBIS System is to provide a complete dynamic
Model, tuliy supported by a Relational DBMS.

Uur Model is based on REMORA (ROLL82]; the static objects are
model led by relations, while operations t(elementary actions on
an object) and events telementary state changes triggering one
or several operations) permit the modeliing of the dynaaic
aspects of the objects. The Conceptual Schema is called the R-
Schema (RUEIS-Schema). In this schema, the temporal aspects of
the Application are also taken into account; they are modeiled
using the time types provided by the RUBIS Model.

In this paper, we are only concerned with :

- the R-5chema, which is specitfied using our Specification
Language cailed PROQUEL {PROgramming QUEry Language).

The possibilities of this language will be demonstrated
by the examples given in the first section.

- physical thandling of the dynamic concepts. This is
achieved by the Temporal FProcessor, which manages
temporal aspects of the specification; and by the Event
Processor, which manages  event  recognition  and
synchronization.

These two mechanises will be described in section Il.

I THE R-SCHEMA
1.1 UNDERLYING CONCEPTS

The R-Schema is based upon three kinds of elesents which alliow
a complete description of a Database Application :
a) Relations represent entity types or relationship types froa
the real world (e.g CUSTONERS, BANKS, LOANS,...).
b) Events represent special situations in the Database life

cycle, in which one or several operations acting on the
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Database must be triggered.
There are three kinds of events :

¥ an internal event describes a "noticeable state change"

of one and only one celation ‘e.g..an account becomes a

debit account; an employee salary becomes greater than his
sanager's,...). The "noticeable state change" is specified

in the event predicate and generally concerns two
suecessive atates : sam &' also-catied ObP anc NEW) of 2
relation tuple.

For instance : "the balance of an account was positive or
nil (s.,BALANCE >= 0) and is now negative (s'.BALANCE < 0}".
Bn internal eévent is thus said to "ascertain™ its
associated relation, because it ascertains the relation
state changes.

¥ an external event describes the arrival of a message fros
the real world (e.g "loan requiresent arrivai®", "cheque
arrivai®,..). The external event predicate describes the
acceptance condition of the amessage f{e.g "the date of the
cheque is valid®s.

* a temporal event describes a situation with reference to
time. This situation can be either an absolute reference
te.g 25/10/87), or a periodic reference (e.g the thirteenth
day of each wmonth), or a reference to another event te.g 3
days after the occurrence of the "cheque arrival® event).

Successful testing of the event predicate means recognizing
the event: it is at this amoment that the event occurs; there
is event occurrence,

c) Operations represent the eleaentary actions triggered by the
events when they occur. An operation stands for an action type
(e.g send a warning ftetter, wmedify an account balance,...) and
can modify at_most one relation. An operation instance (i.e
operation executed in fact) can modify at most ome relation
tuple te.g modify the account n® 44532), with respect to the
elementarity principle.
The triggering of an operation can be :

- conditional, in this case, the operation is executed only
it the triggering condition is true (e.g put the order
note in the “wait" mode only if the stock is not
sufficient),

- iterative, then the triggering factor computes all the
tuples that will be used as effective parameters for the
execution of the operation (e.g the sending of a

Christmas letter to all "good" customers).

Notes:

1) Operations, conditions and factors can appear several times
in the R-Schema an operation can ve triggered by several
events and two different operations can have the same
triggering condition or factor. In the same way, a relation
can be modified and/or ascertained by several different
operations and/or events. For this reason, events, relations,
operations, conditions and  factors can be specified
independently.

Splitting update operations into "elementary action +
condition + factor® wsay seem quite restrictive but permits us
to exercise entire control over system behaviour, as will be

2
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seen below, Morover, such splitting helps avoid redundancy
and helps obtain a modular description of the processing.

3) The following notation is wused to comstruct a graphic
representation of the R-Scheaa :

: a relation the

t*ascertain”
relationship

E¥i/ : an event y

OPi the

—— : an operation "trigger”

) relationship

(1141

—3 : a conditionally

Ck triggered operation the
"nodify”

0Pi relationship

—> : an iteratively
Fj  triggered operation

b

-~

According to the definitions of operations and events. the
key concept of behaviour modeling is Dynamic Transition.
It is composed of :
- the event,
- all the operations it triggers,
- all the relations modified by these operations.
The following figure represents a dynamic transition :

Dynamic
| Transition

- - o~ - - —

Figure 1 : A Dynamic Transition

This figure highlights an important aspect of behaviour
modeling : the succedence of Dynamic Transitions. For example,
in fig. 1, the transition of EV3 follows the transition of EV2.
Most of RUBIS' work lies in the handling of these tramsitions
and of their ordering, as we will see further on.

1.2 THE TIME MODEL
1.2.1 TIME IN DATABASE APPLICATIONS

The time concept occurs at different levels during the
specification of static and dynamic aspects of data [BQLOBZJ.
# On one hand, time enables us to express some static properties
of entities or relationships (for instance, the
"OBTAINING_DATE" of the "LOAN" relation}.
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t0n the other hand, as in Historical Databases; tine is-used to
manage successive versions of data (the “timestimp rotion®
iDADAG4), (ADIBGOI) and to access these difierent versions by
asking questions like: "what was the address of the subscriber
"Jones® at 08/09/86 ?°*,

Finally, the concept of time allows automatic triggering of
some actlons according to temporal assertions (e.g "send an
acknowledgement no more than three days after the order-note
arrival®).

e an_ nuare C_ e -

dxf}erentxvgstractlon

,,,,,,,

wgdet, imprecisei SpeciIl 118es
levels :? telpozal Pspeclﬁcatlons ie

suppocted. For instance, it is possible to express "predefined
temporal types" (points, intervals, durations, periodic times)
at all abstraetion levels,

Some functions are provided for handling relationships between
times. This is necessary for specific applications like planning
systeis, where =~ TCausal”
important than precise times.

Two kinds of specifications are handied : absoiute times te.g
dates) and relative times, such as times defined relative to an
event occurrence (e.g three days after the order-note arrival)
{BARBBS}. In the following, we briefly define time types and the
primitives used in RUBIS.

[
L XY 2

2,2 TIME TYPES
Tise assertions are described using a calendar, The predefined

calendar is the comson gregorian calendar augmented with hours,

ainutes and seconds.

Tise may be specified at six ieveis of abstraction :

(19686), month (1986/12),...second (1986/12/04:23h54m03si.

congidered to be hlahnr fevel than month, which is a

year

Year is

higher level than day, and so on. Elements within a given level
are specified using only upper levels.

For each level of abstraction, the following types are defined :

- Time Point type The time point type is based on the
primitive concept of the temporal axis origin. A time point is
defined using the calendar schema. For instance, "1356/05/11"
is a valid specification at the day abstraction level.

Time Interval type : A time interval is defined by its bounds.
which are of point type. For instance, [1986/05/11-1386/05/14]
is a valid interval at the day abstraction level.

tunas  duradian
LypE. auravion

between tws points. A value from this type is defined in terms
of elementary durations taccording to the calendar schema).

For instance. "1 year, J wmonths, 20 days®, and "15 days" are
valid durations at the day abstraction level.

- Periodic Time type : A periodic time i5s defined by its base
(point or interval type) and its period (duration type), For
instance, *the 25th day of each sonth" is a valid perindic

time at the day abstraction level.

A periodic time may be limited by an interval, so

fortnight irom order-note arrival and until delivery"

valid periodic tise too.

na allaue anfnerances bn tha dicka

Numadinn u amas
syrv 340W5 reierence 10 ne Gisiance

vaiavavil

"every
is a

Time functions and operations. such as before, after, equal...,
are provided. Converstan 'funciions are #tso provided (when
moving from a given level of abstraction to an other). For
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I§ equlvarent to

relationships between times are wore

instance, the following specifieation + “ai menthii986/0641"
*at 1986/05%, and "after minutes(15 days)" is

LN = =
uwv -lllul.

cm ok Ao Wofkoo DI
equwalem w ailel l.l

assertions (expressed via the above
are organized tn provide a
operations will be

The vay in which temsporal
types, functions and operations)
structure for automatic triggering of
discussed in subsequent sections.

i.3 DESCRIBING THE R-SCHEMA
The description of the R-Schema can be sade incrementally :
- tirst, the static sub-schema can be described with
relation specifications tintroducedby DEFINERELATIONT.

fivnet
1R E1Y

yascian af tha duna
Version Of ne Jynamsil Sud-sene

obtained by specifying  dynamic transitions
specifications are introduced by DEFINE EVENT).

Third, the dynamic sub~schesa can be conpleted by
operation, condition and factor specifications
trespectiveiy introduced DEFINE DEFINE

- Qasand a

Second, a sic sub-schess can be

(these

by DEFINE OPERATION,
CONDITION, and DEFINE FACTOR),

The static sub-schema used in the examples (drawn from a Bank
Application) is shown below. Figure 2 presents the LOAN reiation
specification.

CUCTOMED (CUHCTE CHCTMAME CHCTAND  TVDL)
WWIIVILR \WUJiT, VWIIIWAIILy VUJIRWRy 110 k/

LOAN (LOAN®, CUST#, OBTAINING_DATE, AMOUNT, REF_NB, FREQ)
ACCOUNT (ACCH, CUST¥, BALANCE)

SAVINGS_ACCOUNT (SAV4, CUSTH, BALANCE, OPENING_DATE,RATE)
CEILINGS_HISTORIC (HDATE, CEILING)

NE DL ATINM 1 NAM
"o NLUNLIVIY LUAN

LOAN® : INTEGER KEy,
CUSTH : INTEGEK;
OBTALNING_DATE :
AMOUNT : DOLLARS;
REF_NB : INTEGER:
FREQ : DURATION );

DATE;

/% totai nusber of refunds ¥/
/% refunds frequency #/

Fig. 2 : Specification of the LOAN relation

EXAMPLE 1: INTERNAL EVENT SPECIFICATION
Figure 3 associates the textual, graphic and formal
specitications of a savings-account management rule,

» The ascertained reiation name and the type of the state-change
are introduced by ON.
t PRED contains the "noticeable state change” statement.
Here, the operator LAST helps to retrieve the CEILING that w
in etfect just before the bAVlNGS_ACCOUNT opening date.
It the predicate is complex (such as here) the final
computation of the ‘"return value" of the event predicate is

sade using ‘the RETURN operator. The predxcate can be empty if

P . A ey on

the state-change is a :Alpl: insercion

ladliam An

aba
HEI!LIUII v U'IIJHLEA

event specification, the ascertained relation
iaplicit parameter of the

In each internal
(here: SAVINGS ACCOUNT) is  the
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assertion introduced by PRED. The formal paraseter is the
relation nase, while the effective parameter, also called
"context", is composed of the tuple pair which defines two
successive states of the modified entity (here: the savings-
account state before and after its BALANCE modification),

The OLD prefix and the NEW prefix aliow us to reference (and
to differentiate) the two tuples or, to be more precise, the

old and new values of their attributes (e.g NEW.BALANCE).

The CONTEXT prefix is used (e.g CONTEXT.OPENING_DATE) whien no

differentiation has to be made (the attribute value hasn't

changed).

ITEXTUAL SPECIFICATION

¥ Each savings-account possesses a ceiling that should
not be overstepped (this ceiling depends upon the

---opening-datel:-

# It the customer also possesses a current-account in
the bank, the surplus is transferred into it,

» 1f the customer doesn’t possesses another account, a
varning letter is send to him,

Jouarnic seeciFication /N
SAVINGS-ACCOUNT

UPD_ACC_BAL

ACCOUN
\—/

PROQUEL SPECIFICATION

DEFINE EVENT EV4 IS ACC_OVER
ON UPDATE OF SAVINGS_ACCOUNT
COMMENT "The savings-account exceeds its ceiling"
PRED
{ YAR $CEIL : DOLLARS:
$CE{L:=SELECT CEILING FROM LAST CEILINGS_HISTORIC
WHERE HDATE <= CONTEXT.OPENING_DATE;
RETURN NEW.BALANCE > $CEIL }
TRIGGER
IF C1 THEN { UPD_ACC_BAL(NEW.BALANCE-$CEIL)
ON ACCOUNT;
CEIL_SAVISCELL?! ON SAVINGS-AGCOUNT }
ELSE SEND_WARN;

Fig. 3 : Specification of the internal event EV4

* The TRIGGER part introduces the operations, their respective
triggering conditions and factors, and the relations they
modify (if any). In the example, UPD_ACC_BAL (OP3: transfer
the surpius of the new BALANCE to the customer’s current-
account) and CEIL_SAV (level the savings-account balance to
the ceiling) are executed if the condition Ci (the customer
possesses a currenkraconmaty is, -true.. [f not, SEND_WARN (send
a warning letter) is executed.

The specification of Dynamic Transitions corresponds to the
first version ot the schema definition.
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level R-Schesa
the definition of

After checking  for  consistency, second
specification can start. This includes
conditions, factors and operations texts.

An oxample of such definitions is given in figures 4 and §,
which respectively introduce the Cl1 and 0P3 spscifications. .

DEFINE GONDITION C1 1S CURR_ACC

COMMENT "The customer possesses a current-account” |
TEXT EXISTS ACCOUNT WHERE CUST# = CONTEXT.CUST#;

Fig. 4 : Specification of the triggering condition Cl

DEFINE OPERATION 0P3 IS UPD_ACC_BAL
MODIF ACCOUNT
. TYPE _UPDATE
COMMENT "Modify the customer's current-account balance”
INPUT (#credit : DOLLARS)
TEXT UPDATE ACCOUNT
SET BALANCE = BALANCE + $credit
WHERE CUSTH# = CONTEXT.CUST#;

Fig. 5 : Specification of the operation OP3

Conditions, factors and operations have two kinds of parameters:

- their explicit parameters (ex: $credit), introduced by
INPUT and receiving a value during the call (i.e in the
TRIGGER part of the triggering event(s)),

T an implicit parameter : that of the triggering event
(here: the two tuples representing the modified savings-
accaunt}, The attributes of this implicit paraseter are
retrieved using the OLD, NEV or CONTEXT prefix (e.g
CONTEXT.CUSTH).

the modified relation naame is

introduced by MODIF, The TYPE part introduces the modification
type (INSERT, UELETE or UPDATE). The TEXT part contains the
operation's algorithsic specification,

In an operation specification,

Each operation possesses an isplicit output parameter: the two
versions of the tuple it modifies.

NOTE: These two specifications could have been incerporated in
the EV4 specification, using a special notation :
IF C1 [DEFINED AS ..] THEN ...

EXAMPLE 2: EXTERNAL EVENT SPECIFICATION

Figure 6 represents the specification of the external event :
*Arrival of a list of movements for a savings-account" (EV3).

An external event ascertains the arrival of an appropriate
message. The structure of this message (which is the external
event "context®) can be quite complex and is described in a
special part.

¢ Since an external event ascertains no relation, the NESSAGE
keyword is used in the ON part,

# PROP describes the structure of the message the ovent is
waiting for. This structure isn't in Lst Noreal Form, so it
may contain embedded structures, optional fields and lists
(c.f LIST_OF if fig. 6J.
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* The message validity condition is described in‘the PRED part’
(here: "the SAVINGS_ACCOUNT referemced by its number in the
message, nust already exist in the Database").

The TRIGGER part of an external event is identical to that of
an internal event. In this example, note that UPD_SAV_BAL
(update the SAVINGS_ACCOUNT balance) is unconditional, and
HIST_MVT (save a wmovement into the historic) is iterative tcf.
factor F1, described further on).

-

-

The message is the “"context® of the external event.

The values of this amessage are still accessible froa the PRED
and TRIGGER parts of the event, and also from all the
specifications ot . .conditions, . tactors and .operations which
appear in the TRIGGER part of the event.

Here again, the prefix to use is CONTEXT {(e.g CONTEXT.svnum),

{TEXTUAL SPECIFICATION l

 On each arrival of a list of movements for a savings
-account, update the savings-account.

% The savings-account referenced by the message must
already exist in the Data Base.

¥ Each savings-account moveaent aust be historicized.

(GRAPHIC SPECIFICATION

KIST_WT UPD_SAV_BAL
Fi

HVTS_HISTORIC SAVINGS_ACCOUNT
-/ N4

PROQUEL SPECIFICATION

DEFINE EVENT EV3 IS HWVT_ARR
ON MESSAGE
COMNENT "Arrival of a list of movements
for a savings-account”
PROP
{ svnum : INTEGER; (# savings-account number#,
1_avt ¢ LIST_OF { date_mvt : DATE:
avt : DOLLARS 1} )
PRED EXISTS SAVINGS_ACCOUNT WHERE SAYN=CUNTEXT.svnum
TRIGGER '
{UPD_SAV_BAL ON SAVINGS_ACCOUNT:
HIST_MVT(CONTEXT. svnum, FACT. dat.FACT. sove,FACT. type)
ON MVTS_HISTURIC FOR F1 }:

Fig. 6 : Specification of the external event EV¥3

Fig. 7 presents the F1 triggering factor specification.

The OUTPUT part describes the structure of the FACT relation.
which is the implicit output parameter of every factor.

How the FACT tuples.are ‘generated is described in the TEIT part.
These tupies will be used as effective parameters during the
call of the operation to trigger iteratively tef. "FACT.xx" in
the EV3 TRIGGER part!.
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DEFINE FACTOR F1 1S ALL_MVTS
COMMENT “For all the movements included in the message”
OUTPUT (dat: DATE, move: DULLARS, type: MVT_TYPE)
TEXT FOR EACH m IN CONTEXT.! avt .
DB IF m.avt >= 0 h

THEN INSERT INTO FACT (n.dat_svt,m.avt,’CREDIT")
ELSE INSERT INTO FACT (m.dat_mvt,-m.avt,'DEBIT');

Fig. 7 : Specification ot the triggering factor F1

EXAMPLE 3: TEMPORAL EVENT SPECIFICATION .

Each temporal event is associated with the predefined
relation named CALENDAR. Its predicate is a temporal assertion
vhich is defined using all-tesporal sodel eepabitities:
in this section, tise assertions have been specified using the
following subset of operations and language clauses :

OPERATORS
:  :equality redefined on time types.
¢ :muitiplication of an integer and a duration.
The result is a duration.
+ :addition of a point and a duration. The result is a point.

CLAUSES :
d after p :d is a duration, p is a time point.
The result is a time point z, such as z = p + d.

from p  :tise interval starting at point p
until p' :time interval ending at point p'
every ¢ :periodic time defined with a duration (this duration

represents the distance between tvo realizations).
at <time-assertion> :refers to the first point for which the
assertion is true.
For exasple, "at day=26" defines the first
point from current tise, for which day=26.
each <time-assertiony:refers to the set of points from current
time, for which the assertion is true.
For example, "gach day=15" generates one
realization per month.

Figure 8 describes the temporal
pay-roll publishing periodicaily.
all the esployees”.

event EV] which triggers the
Here, the F4 factor seans "for

DEFINE EVENT EV{

ON CALENDAR

PRED each day=25
TRIGGER 0OP4 FOR Fa ;

Fig. 8 : Specitication of the EV1 temporal event

It EVS is the external event ascertaining an order-note arrival,

then "EVS.time" represents the real occurrence time of an EVS

instance ithe occurrence time is an implicit property of every

gvent). Thus. the predicate of event EV6 : "at most 3 days after

each order-note arrival™ can be specified in the following vay :
PRED until 3 days after EVS.time

Here, EV6 has been defined "by reference to EV5", there will be
one occurrence of EV6 after each occurrence of EVS.
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More complex temporal assertions can be expressed. For example,
if ve consider the operation of “automatic levy for loan
refunds”®, pay-days are defined by the following expression :
"on the 26th day of the aonth, each FREQ, from the menth
following OBTAINING DATE . and . during a _period equal te
(REF_NB » FREQ)"
" FREQ, OBTAINING_DATE, and REF NB are attributes of the LOAN
relation which is described in Fig. 2.

PRED { ALIAS OF LOAN IS L:
from i month after Month(L.OBTAINING_DATE);

at wyes;
every L.FREQ;
until (L.REF_NB # L.FREQ)
after ( Month(L.OBTAINING_DATE) + 1) |}

Figure 9 : A aore complex predicate specification

Finally, an interesting application of temporal events is the
avtomatic sanagement of Database Snapshots, which can be easily
sodel Jed using such events.

IT  NANAGING DYNAMICS
1.1 GLOBAL ARCHITECTURE OF RUBIS

Automatic management of the database dynamics from the R-
Schema specification involves :
- automatic recognition of events,
- automatic triggering of appropriate operations when an
event occurs,
- operations execution control,
- event synchronization.

Attaining such automation requires :
a) a Relational DBMS to deal! with :

- managing the relations and the Meta-Base corresponding to
the R-Schema specitications,

- ekecuting operations texts and evaluating factors,
conditions and predicates; this requires an interpreter
nore powerful than a simple SQL interpretes:

b} a mechanisa able to :

- recognize an event,

- determine which operations to execute,

- trigger and control operations execution,

and to synchronize event-chaining.

This mechaniss is similar to the inference engine of a
forvard chaining expert system, whose cyclic function is to :
- test the rules premises,
- thoose a candidate rule,
- execute the action part of the rule,
and which possesses a rule-chaining strategy.
Such a wmechanism has to exist in the DBNS itselt for an
efficient management of the database dynamics.

The mechanisn we propose i3: vomposed of ‘three units managing all
kinds of events :

- the Applications Nonitor recognizes external events,

-~ the Temporal Processor recognizes temporal events,

190

- the - Event Processor recognizes internal events and trests
all events and their synchronization,

11.2 THE RUBIS" RUNNING

¥ The Heta-Base contains the relational description of the R-
Schema. Texts,  like -any other component are- stored in-it;-
thus, they can be modified easily. For example, modifying a
text (like an event predicate or an operation) doesn’t imply
recospiiing the application; it doesn’t even imply stopping
the usets' activities if the text isn*t used at that wowent.

[
' )L END_USER i
i !
lL{Aplil.lc:n'nms NONITOR TEMPORAL PROCESSOR
I ]
vl
MESSAGE
QWEvE L

EVENT PROCESSOR

l
PROQUEL INTERPRETER

|
RELATIONAL D.B.M.S

Fig. 10 : Global Architecture

» The Applications Momitor is the end-user interface. For each
external event specification, a corresponding Application
Program {(A.P,) is generated. The A.P, construction is based
upon the event structure (its PROP part) and predicate (which
is the message validation condition,

The Applications  Monitor  executes Application Programs
according to end-user requests. In fact, executing an AF.
corresponds to a message acquisition and validation. When the
A.P. is correctly finished, the Applications Monitor sends the
valid message into the Message Queve.

Since the external event predicate is verified by the
corresponding A.P., one may consider the reception of a valid
message in the Message Queuve as an external event occurrence.
Each time a user is connected to RUBIS, a process containing
an Applications Monitor is created. ’

The Temporai Processor works independently. It sends a message
into the Message Queue each time it recognizes a temporal
event.
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# The Event Processor recognizes internal events, takes into
account, processes and synchronizes events,

- taking into account an external or temporal event is
accomplished by removing the corresponding message from the
Queue,

- processing an event includes :

- gvaluation of all conditions and factors appearing in
the TRIGGER part of the event,

- controlled execution of all operations having a true
condition and a not espty factor.
Event processing is the atomic execution unit, which
means that it must be executed entirely and in one
block or not at all. Furthersore, it is also the
consistency unit, since it must leave the database in a
valid state.

- event synchronization is based upon the following strategy:
the internal consequences of an external or temporal event
(i.e the internal events it may generate), receives
priority processing before any other external or temporal
event can be taken into account .

# The PROQUEL Interpreter evaluates predicates, conditions and
factors, and supervises execution of operations. It executes
all texts written in PROQUEL, by sending queries to the DBMS
and managing : local wvariables, control structures and
parameter passing.

It is being developped using the LEX and YACC tools of the
UNIX System. Queries {expressed in relational algebra) are
sent to a small Relational DBMS called PEPIN [BOUCSL].

Ve vill now focus on the two Processors, which are the most
interesting parts of the Systes.

11.2 THE TEMPORAL PROCESSOR

The role of the Temporal Processor is to recognize
automatically each occurrence of a temporal event, and to inform
the Event Processor of such occurrences (by sending a message
into the Queue). Its strategy is based on a dynamic management
of the agenda.

The agenda is 3 chronologically organized 1list describing a
pertinent subset of future temporal event occurences.
This list is constructed :

- either by directly using the R-Schema specifications (the
case for temporal events in which the predicate defines an
absolute time),

- or a time propagation through the Tesmporal RElationships
Graph (the case for temporal events in which the predicate
defines a relative time).

11.2.1 THE AGENDA STRUCTURE
{) The occurrence domain notion

In theory, a temporal event occurs when its predicate becomes
true for Current-Time ("Current-Time™ is the value returned by
the "now" function which reads the computer clock).

In fact, due to our model, such a predicate may be true during a
time interval. Therefore, in order to deal with these
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*imprecisely defined times®, the occurrence-domain notion must
be distinguished from the occurrence-time notion,

The occurrence-dosain of a given (temporal event) EVi instance
is a time interval during vhich the EVi predicate is true; that
is to say during wich an instance of EVi may occur. As shown in
fig. B, the occurrence-domain of the EVl instance X could be:

[ 1986/12/23:00h00w005 - 1966/12/23:23h59059s )
and the occurrence-domain of the instance X+l :

{ 1986/12/24:00n00a00s - 1986/12/24:23h59059s )

Occurrence-time is the precise time at which a given event is
effectively ascertained. An  event  occurrence is then
instantaneous and the assertion : "occurrence-time jis during
occurrence-domain® sust always be true.

2) The agenda organization

list of related events
N

”~ Y
EVT_TYPE JJ -»
NEXT PDINTER J—

EVT_POINTER -
BEG_TINE
END_TINE
NEXT_POINTER
N —_—
~N

list of domains

Fig. 11 : The AGENDA structure

Each element within the list of domains :
- corresponds to a particular occurrence domain,
- is associated with the events whose predicate is alvays
true during this domain.

Occurrence domains are defined in terms of time intervals like
[BEG_TIME - END_TIME]. Therefore, it is possible to represent :
- occurrence-dosains reduced to a single point
(if BEG_TIME = END_TIME),
- occurrence-domains infinite in the past (or the future)
by assigning to BEG_TIME (or END_TIME) the “INFINITE"
valve.

The agenda is sorted in increasing order of "BEG_TIME"; a domain
B appears "later® than a domain A :

- when the assertion : "B.BEG_TIME is after A.BEG_TIME" is
true; no assusption is made concerning A.END_TIME and
B.END_TIME; so, domain B can be included in domain A when
the assertion "A.END_TIME is-after B.END_TIME" is true.

- or when the two assertions : "B.BEG_TINE equals A.BEG_TIME™
and "B.END _TIME js-after A.END_TIME" are true.
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11.2.2 ORDERING ABSOLUTELY DEFINED EVENTS

Forsally, a temporal event is absolutely defined if its
predicate directly or indirectly refers to the calendar origin.
For exampie, aii the foiiowing predicaies define absoiute iimes:

PRED at 1966/05/11

PRED during [1966/05/11 - 1986/06/11}

PRED from 1988/05/11 and until 1966/06/11
PRED at 10 days after 1966/11/30

The absolute definjtion is transitive, so a time expressed
enlablivale édn an abhealube dime ir indannnatnd ar an ahenluda
IUIALIVYL]) WV an aVPu i vvg vimg in llll:'lrl'b'u BRP Gl AVOVIVLY

time.

Insertion of an absolutely dsfined event into the agenda can be
oxecuted immediatly after validation of its specification. The
Tesporal Processor then executes the following actions :

- it examines the event specification (located in the R-
Schesa) in order to determine the occurrence-domain of the
event;
it searches for this occurrence-domain in the agenda;
if the occurrence-domain is already present, it simply adds
the event into the domain's related events list;
it not, it imserts a new occurrence-domain into the agenda,

Tha nalatad avand 1ot At dthie damain anntaine ad thie nnint
iG TCieLBU SVENiL 145 OF wiiS WUmALN CONLeiiS auv wlid pudiic

only the considered event. Domain location within the agenda
is determined by comparing the domain bounds with those of
the other domains.

NOTE : if the event predicate defines a periodic time, only the
first future occurrence is inserted into the agenda.

11.2,3 ORGANIZING RELATIVELY DEFINED EVENTS

A temporal event is relatively defined if its predicate
doesn’t refer to the calendar origin at specification time. This
is the case when the event predicate references :

- the occurrence-time of another event,

- a temporal attribute of a database relation.
Therefore, it is impossible 1o determine the occurrence-domain
of a relatively defined event just after its specification.
‘For example, if the EVk predicate is the following :

PRED until 3 days after EV3.time

the corresponding occurrence-domain can be determined only when
EV3.time (i.e the occurrence-time of an instance of EV3) is
known. At this amoment, an absolute time can be derived from the
relative specification. Consequently, a relatively defined event
can become an absolutely defined event (applying transitivenmess)
during the systes evolution.

Inorder to allow such transforsatioms, the Temporal Processor
manages a graph which organizes temporal events according to
their relationships [KAHNT7] (NITT82].

1) The Temporal REferences Graph {TREG)
This graph is a directed graph which consists of a finite set
of vertices and edges.

A vertex V describes a non-temporal event (and then corresponds
to a root) or a relatively defined event.
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Two vertices V! and V2 are connected by an adge (V1,VZ) if V2 is
defined by reference to Vi,

In the graph presented in figure 12, the EVA9 predicate is the
si

most compiex and has the fors
PRED from 7 days after EV47.time
and until 1 month after EV41.time;
EV4l EV47 EVS1
/l\until /
until 1 zonth from

3 days until after 7 days until

after 1 week EV4l.time [ after 1 month
|Eval.time  [after EV4T. time after
EV4l.time EVS1.time
' 4
EV EV42 EV49 EV52
until| 10 days
from after | EVS2,.time
EVAZ.time and| until
3 1987/07/14
EVa4 EV53

Fig. 12 : An example of Temporal REferences Graph (T.R.E.G)

¥ The TREG is built by the temporal language interpreter, which
tests the consistency of each new temporal specification. For
example, incoherent constructs such as the one below are
detected using the transitive closure mechanisa.
EV1

until 4 days froa 3 days
after EVl.tim fter EVi.tine
EV3 ¢ EV2

from 2 days
after EV2.tine

# The TREG will also be used by a *Time Expert” in order to
answer questions like : “can EVA3 occur before EV42 7" or
*what is the distance between EV42 and EV4i 7%,

% Events from the TREG are grouped together in precedence
classes. P_Class(EVi) is composed of all the events which are
defined relatively to EVi. Five P_Classes can be derived from
the TREG of Fig. 12 :

P_Class(EVAL) = { EV43, EVA2, EVA4, EVA9 }
P Class(EV42) = { EVA4 } P_Class(EV4T)
P_Class(EVS1) = ( EV52,EV53 } P_Class(EVS2)

{ EVAS )
( EVS3 }

2) Propagation sechanisas

% Yhen an event EVi ocours, the Temporal Processor verifies the
existence of P_Class(EVi). If this class exists, it then
propagates the EVi.time value through the TREG, in order to
determine the occurrence-domains of the next instances of
events belonging to the class. In fig. 12, the EV4l.time
propagation detersines the occurrence-domains of new instances
of events EVA3 and EV42; and fixes the upper bound of the
occurrence-dosain of a new EVA9 instance. This mechanism is
called forward propagation.

* A second mechanism, called backward propagation, is used to
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deternine the occurrence-domains more precisely.

As shown in figure 12; if "day(EV51{.time)" = 1967/07/01, then
the two following occurrence-domaing are deduced using forward
propagation : occ_dom(EV52)=[1987/07/0L - 1967/08/01]

then, occ_doa(EVS3)=[EV52.tise - 1987/08/11]
inter [EV5Z.time - 1967/07/14}
But obviously, if day(EV52,time) is greater than 1967/07/14, it
is impossible for EV53 to occur. Therefore, backward propagation
is used to reduce the occurrence-domain of EVSZ 5o that EVS3
may occur occ_dom(EV52)= [1987/07/01-1967/07/14]

Non-ascertainment of an event is still possible. For example,
this situation occurs when EVSL.time is greater than 1987/07/14.
For this type of situation, the designer must define exception
handling statements.

When a  referenced event EVi occurs, forward and backward
propagations are executed. Then, the "now completely defined
occurrence-dosains” and their related  "future  events
occurrences” are inserted into the agenda.

11.3.3 THE TEMPORAL PROCESSOR ALGORITHM

WHILE there are some events related to the considered
occurrence-domain
DO BEGIN
/% . send to the Events Processor a message¥/
/% notifying the occurrence of the first #/

PROCESS 1; /¢ event of the related list, #
/% , propagate the event occurrence-time inx/
/% the THEG, ¥/
/%, insert, if necessary, deduced domains */
/% and events into the agenda; ¥/

IF the recognized event predicate corresponds to a
periodic time
THEN
/% ,determine the next occurrence domaink/
PROCESS Z; /% .insert this domain and its related #/
/% agvent into the agenda; %/

PROCESS 3; /% . delete the recognized event froa the #/
/% apenda; 174
END;
/% . delete the occurrence-domain fros the »/
PROCESS 4; /* agenda and sleep until the beginning #/
/¢ of the next domain. %/

Fig. 13 : Global algoriths of the Temporal Processor

Only future domsains and events are present in the agenda.
The first element in the list of domains is always the next
domain to occur. Therefore, it determines the next event
occurrences to be ascertained. So, the Temporal Processor must
vait for “Current-Time® to belong to this first domain. When
true, the processor exscutes the set of processes shown above.

NOTE : this algorithe is a basic version of the Processor. It
is, indeed, possible to take into account. event
priorities (depending on resources allocation, for
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instance). In this case, the Processor should dynamically
reorder the different lists of the agenda after each
temporal event occurrence.

1.4 THE EVENT PROCESSOR

The event processor fulfils three main functions :
- takes into account external and temporal events;
- processes events;
- orders thea.

The first function is based on a FIF0 management of the
Message Queve. The second function consists of a meta-base
search for appropriate condiiions, ifacters and operations that
will be evaluated or executed by the relational DBMS. These two
functions do not present any major difficulties, as opposed to

the third function, presented in the following section.

[1.4,1 EVENT SYNCHRONIZATION

The chosen strategy is based on the induction rotion, and on
the use of the induction graph, which is derived from the R-
Schena. '

a) The induction notion

DEFINETION :
An event EVi inducts an event EVj
- EVi triggers OPn which
ascertained by EVj,
- an occurrence of EVi, followed by the execution of
0Pn can produce an occurrence of EVj.

if and only if :
modifies the relation

Graphically, the situation is the following :

"n
The notation used to represent an induction is : EVi—EVj

But, if OPn has a triggering factor, the induction is called a

"n

multiple induction and is written : EVi —23) EVj
This means that an occurrence of EVi can induce several
occurrences of EVj.

The EV3 and EV4 events (described in section I, Fig.6 and Fig.3)
give us the folloving induction :
1
EV3 — EV4
this is because OP1 modifies the SAVINGS_ACCOUNT relation and
may produce a "ceiling exceeded" event (EVA).

B) The Induction Graph construction

The Induction Graph uses the above notation. It contains :
- vertices representing R-Schema events,
- directed edges representing inductions,
- weights on the edges, which represent operations and are
used as "induction conditions".
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The Induction Graph construction is accomplished in two steps :
- an automatic step, producing the Maximal Induction Graph,
- a manual step transforming the Maximal Induction Graph into
the Induction Graph.

1st STEP

The Maximal Induction Graph can be automatically deduced from

the R-Schesa :

- " priori possible chainings® are obtained by analysing the
N, MODIF and TRIGGER parts of event and operation
specifications.

For @ given event EVi, the chain is composed of all those
events ascertaining relations amodified by the operations
triggered by EVi,

- in order to keep only ®structurally possible chainings",
the occurrence of each operation’s TYPE (INSERT, DELETE,
UPDATE) is checked within the ON part of the internal
event(s) it seems to induce. So, impossible chainings like
"an account closure produces an overdraft® will be removed
from the graph.

EV2
op2,0p3
opl op2 pd
p?  op8
opd opid
EV10
Fig. 14 : A Maximal Induction Graph

2nd STEP

The designer now manually modifies the Maximal Induction
Graph, until he obtains the final Induction Graph.

During this step, the designer removes all the chainings that
seea impossible to him from the graph.

For example, the EV4 event (cf. figure 3) seems to induce

itself: p2
o

this is because EV4 ascertains a SAVINGS_ACCOUNT update, while
0P2 updates SAVINGS_ACCOUNT. [n reality, two EV4 occurrences
will never be chained, because OP2 always produces a BALANCE
decrease, vhile EVA ("ceiling exceeded”) can only occur when
the BALANCE increases.

This kind of  "false  induction"™ cannot be detected
automatically since it invoives a semantical interpretation of
predicates, conditions, factors and operations.

The final Induction Graph is an optimized and generally non-
connected graph, which contains only "semantically possible
chainings®. Figure 15 presents the Induction Graph corresponding
to the Maximal Induction Graph of figure 14.

If there are cycles in the Induction Graph, they are detected
automatically, and the designer is asked to a confirm an
"impossible infinite loop*.
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EV1 EV2
opl op2  op3 opd
EV3 Ev4 EVS
op5 op? op8 opd 10
EVe EV8 EV7 EV9 EV10
Fig. 15 : Induction Graph

C) Internal event chaining strategy

Given an external or temporal event to be processed, the
chosen strategy. is based on a "breadth-first® evaluation of the
event Induction sub-graph.

## The induction sub-graph of an event is the maximal connected
component, whose root is the event concerned.
By using this kind of sub-graph when an external or temporal
event EVi occurs, the Event Processor can learn immediately
what "the set of internal events it will probably have to
process” is. This set of internal events is called the EVi
Induction Class and is writtem Cgyy. For example, the EVI
Induction Class is :

Gers = { EV3, EV4, EV6, EV7, EVB )

# The internal event sequence construction is based on a
breadth-first traversal of the Induction sub-graph.

( ) ist cycle

7O
/\

EV7 ) 3rd cycle

4) 2nd cycle

Fig. 18 : Internal event sequence
For example, if EV1 occurs, the complete processing cycle will
include :

{** cycle: EVi

2*Y cycle: EV3 + EV4

¢ cycle: EV6 + EV7 + EVB

It means that within each cycle, all events frol the sase level
are processed.

The processing is the same if there is multiple 1nduct10n. For
example, if EV2 occurs, the sequence will be :

¢ cycle: EV2
2*¢ cycle: EV4 + EV5, + EV5, + .... + EVS,
¥4 cycle: EVT + EVY, +...¢ EVS,, ¢ EVLO, +...+ EVIO,
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11.4,2 GLOBAL ALGORITHM OF THE EVENT PROCESSOR

WHILE TRUE
D0 BEGIN
WHILE there are some messages in the Queue
DO BEGIN
/%, take 1st message in the Queue; ¥
PROCESS 1; /# . generate appropriate external-event ®/
/% and sessage references; 1 74

WHILE there are some event references

DO BEGIN /% beginning of basic cycle ¥/

/% For all event references do : ¥/
/% . identify operations to trigger, ¥/
/¢ , evaluate all triggering conditions #/
PROCESS 2; /* and factors, ¥/
/¢ , generate "operations to execute" #/
/% references, %/
/¢ . generate "may-be-induced® event ¥/
/% references; %/

IF there are "operations to execute® references
THEN BEGIN
/2, execute all operations, L
/% . generate references for those ¥/
PROCESS 3; /%  state changes which may ¥/
/¢ correspond to induced events; #/

IF there are "may-be-induced® event references
THEN
/% , evaluate their predicate  #/
/% . generate references for ¥/
PROCESS 4; /% recognized events and ¥
/+ correponding state changes; #/
END;
END; /+ of basic cycle #/
END;
END;

Fig. 17 : Global Algorithe of the Event Processor

The requirements for this algoritha (given in PROQUEL) are :

1) existence of a Meta-Base describing the R-Schema part
containing all information on events, operations and the
Induction Graph.

2) Management of References containing local
each Event Processor cycle :

- event occurrences (recognized event instances),
- "operations to execute" instances,

"may-be-induced" events (not yet

instances),

messages,

factor results,

state changes that may correspond to internal events,

state changes that correspond in fact to internal

events.

inforsation for

recognized event

[1.4,3 SOME REMARKS ON EVENT PROCESSOR PERFORMANCE

1) Strategy

Proceedings of the 13th VLDB Conference, Brighton 1987

The "breadth-first” strategy (e.g EV1, EV3+EVA, EVGEVI4EVE)
has a real advantage over a “depth-first® (EVl, EV3, EV6, EVA,
EV?) or a “random” strategy (EV1, EV3, EVB, EV4, EVT, EVB),
Indeed, this strategy permits optimal management of the
input/output implicit parameters. Idle time between :

- generation of an "operation output parameter®,

- and its use as input parameter to process the event induced

by this operation,
is minimal. Internal events are recognized as soon as
"noticeable state changes®™ occur (in fact : just after all
operations triggered at the same level have been executed); and
these events are processed as soon as they are recognized (i.e
during the next basic cycle of the event processor).

In this manner, there is no parameter vaiting for use during a
complete basic cycle. This is not true with other strategies;
for instance, in the °“depth-first* strategy, the EVA input
parameters must be kept in memory as long as EV3 and EVS are
still being processed.

2) The basic cycle

Recognizing induced events at the end of the basic cycie (cf.
PROCESS 4) allows us to keep only thase state changes
corresponding to real internal events in memory from one cycle
to another. The set of such state changes is called ninisal
context and contains only those input parameters essential to
the next level of processing. -

3) Using the Induction Graph

During the generation of “operations to execute® references
(cf. PROCESS 2), a preliminary selection of “"may-be-induced”
events may be made. For example, as early as the first cycle of
EV2 processing, if OP4 isn't in the list of operations to
execute, a whole part of the EVZ Induction sub-graph can be
pruned off :

\
P10 1
!

Ev0 |
______ s
So it permits :
- avoidance of useless predicate tests (EV5, EV9, EV10),
- avoidance of useless parameter recording,
- an earlier freeing of resources ("read-locked" relations
for predicate, condition and factor evaluation; “write-
locked” relations for operation execution).

It appears that an external or temporal Induction Class will
become smaller and smaller after each basic cycle, and will
finally reach the empty state, (another external or temporal
event will then be processed.)

At any moment, the Event Processor knows what it is
processing and what it must deal with next; so it controls the
vhole process fully.

ina future version, this will surely provide efficient
panagemsnt of parallelism and concurrency. Now, the parallelism
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criterion ve are implementing is based on an "occurrence-tine"
reservation of all resources needed for each external event
processing. Several external events can be processed together if
they or their induced events can't produce any concurrency
conflict. The dynamic release of the resources (cf. pruning)
provides real-tise management of concurrency.

CONCLUSIONS

This paper has presented RUBIS as an extended relational DBNS
meant to :
¥ allov unifors and modular description of data (relations)
and processing (events and operations),
immediately take into account any schema change : all texts
are interpreted and the schema is stored in meta-relations,
automatically recognize predefined situations connected
with : - external information arrival,
- noticeable internal state changes,
- time flow;
automatically trigger appropriate operations and control
their execution,
synchronize event processing.

-

-

-

Such a system permits better management
consistency, and some transaction-writing
implies an error rate reduction).

of applications
facilities (which

Four kinds of Designer interfaces are actually being developped:
- a menu interface based on the PROQUEL language (introduced
in section I),
- a graphic interface using an icon-based representation of
the R-5chema concepts,
a Natural Language interface based on a French Language
subset [ROLLB61,
- a Semantic MNodel interface managing high level concepts
(such as generalization) which are then mapped onto the
Relational Model [CAUVE6].

A prototype version of RUBIS {based on the PEPIN DBNS [BOUCBI))
is running on VAX/UNIX. The first applications of RUBIS are

Information Systesa  Rapid Prototyping. In this kind of
application, the RUBIS' schema wmodification capabilities are
useful.
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