
Overture Technical Report Series

No. TR-005

May 2010

Tutorial for Overture/VDM-RT

by

Peter Gorm Larsen

John Fitzgerald

Sune Wolff

Nick Battle

Kenneth Lausdahl

Augusto Ribeiro

Kenneth Pierce

Overture – Open-source Tools for Formal Modelling

Tutorial to Overture/VDM-RT

Document history

Month Year Version Version of Overture.exe

January 2010 0.1.5

March 2010 0.2

May 2010 1 0.2

ii

Contents

3 Overture Tool Support for VDM-RT: an Introductory Guide 1

3.1 Introduction . 1

3.2 Obtaining the Overture Tools . 3

3.3 Using the Overture Perspective . 4

3.4 Mapping UML to VDM . 6

3.4.1 Mapping VDM to UML . 7

3.5 Debugging . 7

3.5.1 The Debug configuration . 8

3.6 Test coverage . 10

3.7 Combinatorial Testing . 11

3.8 Realtime Log Viewer . 12

3.9 Proof Obligations . 15

3.10 A Command-Line Interface . 16

3.11 Summary . 18

A A Car Navigation System Example 23

A.1 System Overview of the Car Navigation example 23

A.2 The Radio Navigation System Class . 24

A.3 The MMI Class . 25

A.4 The Radio Class . 26

A.5 The Navigation Class . 26

A.6 The Environment Task Class . 27

A.7 The Insert Address Class . 29

A.8 The Transmit TMC Class . 30

A.9 The Volume Knob Class . 31

A.10 The World Class . 32

A.11 The Test Class . 32

iii

Chapter 3

Overture Tool Support for VDM-RT: an

Introductory Guide

Preamble

This is an introduction to the Overture Integrated Development Environment (IDE) and its facilities

for supporting modelling and analysis in VDM-RT the VDM extended language for modelling real-

time systems, formerly known as VICE (VDM in Constrained Environments). It may be used as a

substitute for Chapter 3 of “Validated Designs for Object-oriented Systems”1 or as a free-standing

guide. Additional material is available on the book’s web site2. Throughout this guide we will

refer to the textbook as “the book” and the book’s web site simply as “the web site”.

We use examples based on an in-car navigation case study and VDM-RT model presented in

Appendix A.

We introduce the features of Overture that support the combination of formal modelling in

VDM++ with object-oriented design using UML. This is done by providing a “hands-on” tour of

Overture, providing enough detail to allow you to use Overture for serious applications, including

the exercises in the book. However, this is by no means a complete guide to Overture3; more

information can be obtained from www.overturetool.org.

3.1 Introduction

In this chapter, an in-car radio navigation system which supports the Traffic Message Channel

(TMC) will used as example.

The system is composed of three main clusters of functionality;

1John Fitzgerald, Peter Gorm Larsen, Paul Mukherjee, Nico Plat and Marcel Verhoef. Validated Designs for Object-

oriented Systems, Springer, New York. 2005, ISBN 1-85233-881-4.
2www.vdmbook.com.
3Note that the Overture tool suite support three different VDM dialects; VDM-SL (Specification Language), VDM++

and VDM-RT (Real Time) so although this tutorial illustrate how to use Overture with VDM-RT models you will see

multiple references to these dialects.

1

Tutorial to Overture/VDM-RT

• The man-machine interface (MMI) takes care of user interaction such as handling key press

input and graphical display output.

• The navigation is responsible for destination entry, route planning and turn-by-turn guidance.

• The radio is responsible for basic tuner and volume control as well as handling traffic infor-

mation from the TMC.

Figure 3.1 gives an overview of the in-car navigation system.

Figure 3.1: Car Navigation System Overview

The system must be able to support the following three use cases:

Change Volume: The user turns the rotary button and expects near instant audible feedback from

the system. Furthermore, the visual feedback (the volume setting on the screen) should be

timely and synchronized with the audible feedback.

Address Look-up: Destination entry is supported by a smart “typewriter” style interface. By

turning a knob the user can move from letter to letter; by pressing it the user will select the

currently highlighted letter. The map database is searched for each letter that is selected and

only those letters in the on-screen alphabet are enabled that are potential next letters in the

list.

TMC Message Handling: Digital traffic information is important for in-car radio navigation sys-

tems. It enables features such as automatic re-planning of the planned route in case a traffic

jam occurs ahead. It is also increasingly important to enhance road safety by warning the

driver, for example when a ghost driver is spotted just ahead on the planned route. TMC is

such a digital traffic information service.

When developing a Real-time model, it is adviced to create an object-oriented model first

outside the real-time domain. This will enable the developer to focus on the structure of the system

2

Chapter 3. Overture Tool Support for VDM-RT: an Introductory Guide

as well as eliminating any concurrency issues before moving on to the real-time domain. This

proposed process is described in much more detail in [Larsen&09a].

The rest of this chapter has the following outline; Section 3.2 describes how to obtain the Over-

ture tools. Section 3.3 provides an initial introduction to the terminology used by Eclipse tools like

Overture. Section 3.4 shows how VDM-RT models can be connected to UML. Section 3.5 de-

scribes the process of testing and debugging VDM-RT models using Overture. Section 3.6 follows

up to show how test coverage information from the testing carried out can be produced and dis-

played directly in a pdf document generated using the LATEX text processing system. Section 3.7

shows how parts of the test process can be automated using Overture’s combinatorial testing fea-

ture. Section 3.8 goes on to show the Real-Time Log Viewer which gives a graphical presentation

of thread execution. Section 3.9 demonstrates the automatic generation of the additional checks

(called proof obligations) needed to ensure that a model is consistent. Finally, Section 3.10 illus-

trates how parts of Overture’s functionality can be accessed from a command line.

3.2 Obtaining the Overture Tools

In order to run the examples and exercises presented in the book, you will need to download the

Overture tools from the Internet. Overture is an open source tool, developed by volunteers and built

on the Eclipse platform. The project is managed on SourceForge4. The best way to run Overture

is to download a special version of Eclipse with the Overture functionality already pre-installed. If

you go to:

http://sourceforge.net/projects/overture/files/

you will find pre-installed versions of Overture for Windows, Linux and Mac5.

A library of sample VDM-RT models, including all those needed for the exercises in the book,

is available and can be downloaded from SourceForge under the examplesRT.zip file using

the URL6:

https://sf.net/projects/overture/files/Examples/

You can import the example library zip folder as described in Section 3.3. Finally, the web site

www.vdmbook.com contains all the examples used in this book as plain text files but these are

also all present in the above mentioned zip file. Finally, in order to make use of the test coverage

feature described in Section 3.6 it is necessary to have the text processing system called LATEX and

its pdflatex feature. This can for example be obtained from:

http://miktex.org/2.8/

4https://sourceforge.net/projects/overture/
5It is planned to develop an update facility, allowing updates to be applied directly from within the Overture tools

without requiring a reinstallation. However, this can be a risky process because of the dependencies on non-Overture

components and so is not yet supported.
6The library files are created to be used with Eclipse, but can be opened with file compression programs like Winrar

on Windows.

3

Tutorial to Overture/VDM-RT

Note for VDMTools R© users. Overture provides a new open source VDM tool set, but it can also

work in conjunction with the VDMTools R© tool set originally developed by IFAD A/S and now

maintained and developed by CSK Systems (see http://www.vdmtools.jp/en/). Over-

ture accesses VDMTools functionality via a remote API, and the integration is to some extent

limited by the API capabilities. However, the additional features provided by the Overture GUI

make it worth considering as a front end to the VDMTools functionality.

3.3 Using the Overture Perspective

Eclipse is an open source platform based on a workbench that provides a common look and feel

for a large collection of extension products. Thus if a user is familiar with one Eclipse-based

product, it will generally be easy to start using a different product on the same workbench. The

Eclipse workbench consists of several panels called views, such as the Script Explorer view at

the top left of Figure 3.2. A particular collection of panels designed to assist a specific activity

is called a perspective. For example Figure 3.2 shows the standard Overture perspective which

contains views for managing Overture projects, and viewing and editing files. As we shall show

later, several other perspectives are avilable in Overture.

The Script Explorer view helps you create, select, and delete Overture projects and navigate

between the files in these projects. Start by importing the car navigation project from the book’s

web site. This can be done by right clicking the project view and selecting Import, followed by

General → Existing Projects into Workspace. In this way the projects from .zip file mentioned

above can be imported very easily.

The panel to the right of the Explorer is the editor area. An editor customised to the dialect of

VDM being used in the project will appear here.

Figure 3.2: The Overture Perspective

4

Chapter 3. Overture Tool Support for VDM-RT: an Introductory Guide

The Outline view, to the right of the editor (see Figure 3.3), displays an outline of the file

selected in the editor. It shows all declared classes, their instance variables, values, types, functions,

operations and traces. Figure 3.2 shows the outline view on the right hand side. Clicking on an

operation or function in the outline will move the cursor in the editor view to its definition. At

the top of the outline view there is a button to (optionally) display the items in the outline view in

alphabetical order.

Figure 3.3: The Outline View

The Problems view presents information about the projects you are working on, including

warnings and error messages. In Figure 3.2 the problems view is shown at the bottom.

In the standard Overture perspective there is a VDM Quick Interpreter view in a pane in the

same area as the problems view. This can be used for evaluation of standard VDM expressions

independent of all VDM projects incorporated in your Overture IDE. This can be very convenient

to gain understanding of the different VDM operators. In Figure 3.4 it is possible to see how a

couple of expressions (typed in at the box at the botton of the view) are evaluated7.

Figure 3.4: The VDM quick interpreter view

Most of the other features of the workbench, such as the menus and toolbars, are similar to other

Eclipse applications, though for newcomers to Eclipse it is worth noting that there is a special menu

with Overture-specific functionality. One convenient feature is a toolbar of shortcuts to switch

between different perspectives that appears on the right side of the screen; these vary dynamically

according to context and history.

When making corrections to the model, you can use the Overture IDE templates. When you

hit the key combination CTRL+space after entering the initial characters of the template needed,

7If errors appear in this evaluation the current version of the Overture IDE simply yield a Fatal error where it is

anticipated that later releases will provide more helpful run-time errors to the users.

5

Tutorial to Overture/VDM-RT

Figure 3.5: Explicit operation template

Overture will offer possible completions. For example, if you typ ”op” followed by CTRL+space,

Overture will propose the use of an implicit or explicit operation template.

The Overture IDE supports many templates for language constructs including cases state-

ments, classes, quantified expressions, functions (explicit/implicit), operations (explicit/implicit)

and many more8. Further templates can easily be added in the future. The use of templates makes

it more concenient to write VDM models without detailed prior knowledge of the language syntax.

When editing a VDM model, the Overture IDE parses the content of the editor buffer contin-

uously as changes are made. If there are any syntax errors, these will be reported in the problems

view, as well as being highlighted in the editor. See the bottom of Figure 3.2. Each time a VDM-

RT model file is saved the editor type checks the model and reports any errors or warnings. Note

also that the suggestions made about missing characters in the error messages may not always be

entirely the action you may wish to take when correcting the source since the tool cannot guess

what you intended to write.

3.4 Mapping UML to VDM

In order to map the UML class diagram created in Enterprise Architect to VDM, a new project must

be created in the Overture IDE to receive it. This is done by right-clicking in the Script Explorer

view, and creating a new VDM-RT project and for example naming it CarRadioNavUML. If the

desired language dialect (say a VDM-RT project) is not directly available in the right-click menu,

please choose Project or Other and browse to the VDM-RT project. By right-clicking the new

project root in the Script Explorer, UML Transformation can be chosen, followed by Import XMI.

Now browse to the XMI/XML file exported from EA called carradnavuml.xmi and open this.

The transformation from UML to VDM is not entirely automated right now. For example, any

custom types are transformed to VDM++ definitions using machine-generated identifiers since

8It is possible to see and enhance the complete list of these by selecting Window → Preferences → Overture.

6

Chapter 3. Overture Tool Support for VDM-RT: an Introductory Guide

custom types are not named in UML. As a result, you have to expect to make minor modifications

to the generated VDM files.

3.4.1 Mapping VDM to UML

It is possible to automatically transform all the classes from the car radio navigation project to

UML. To do this, simply right click the project root and choose UML Transformation → Export

XMI. The XMI file can subsequently be imported in EA, enabling the user to get an overview of

the complete model.

3.5 Debugging

This section describes how to debug a model by testing it using the Overture IDE. The model can

be exercised by running the operations RunScenario1 or RunScenario2 in the World class:

✞

class World

types

public perfdata = nat * nat * real

instance variables

static public envTasks : map seq of char

to EnvironmentTask := {|->};

operations

addEnvironmentTask: seq of char * EnvironmentTask ==> ()

addEnvironmentTask (pnm, penv) ==

(envTasks := envTasks munion { pnm |-> penv };

penv.Run());

public RunScenario1 : () ==> map seq of char

to perfdata

RunScenario1 () ==

(addEnvironmentTask("VolumeKnob",

new VolumeKnob(10));

addEnvironmentTask("TransmitTMC",

new TransmitTMC(10));

return { name |-> envTasks(name).getMinMaxAverage()

7

Tutorial to Overture/VDM-RT

| name in set dom envTasks });

...

end World
✡✝ ✆

3.5.1 The Debug configuration

Before you start to debug a model in Overture, you need to set up a debug configuration. Right click

the project and choose Debug As → Debug configuration9. The dialog requires the project name,

the class, the operation/function used as the entry point of the test and the source file containing

the entry point definition. As an example, Figure 3.6 shows the debug configuration for the car

navigation model. The class and operation/function name can be chosen from a Browse dialog. If

the operation or function has arguments, these must be typed in manually between the brackets of

the entry point function/operation.

Figure 3.6: The debug configuration dialog

Once the configuration is ready, the model can be debugged. The Overture IDE will change to

the Debug perspective which contains the views needed for debugging in VDM. Breakpoints can

easily be set by double clicking in the left margin of the editor view. When the debugger reaches a

9Note that the Run As functionality existing Eclipse users are used to is not supported in the current version of Overture.

In the current version of Overture debugging of VDM-RT models in general does not work very well because of the

scheduling done internally in the interpreter. This is currently being redesigned and it is expected that in the next stable

release this will be fully operational.

8

Chapter 3. Overture Tool Support for VDM-RT: an Introductory Guide

Table 3.1: Overture debugging buttons

Button Explanation

Resume debugging

Suspend debugging

Terminate debugging

Step into

Step over

Step return

Use step filters

breakpoint, evaluation suspends and the user can inspect the values of different variables and step

through the VDM model line by line.

The Debug perspective is illustrated on figure 3.7 The Debug view in the upper left corner

Figure 3.7: Debugging perspective

of the Debug perspective shows all running models and their call stacks. It also shows whether a

given model is stopped, suspended or running. All threads are also shown, along with their running

status. It is possible to switch between threads from the Debug view.

At the top of the view are standard Eclipse buttons (see Table 3.1) for controlling debugging,

allowing you to stop, step into, step over and resume.

The Variables view in the upper right corner of the Debug perspective shows all the variables

in a given context, when a breakpoint is reached. The variables and their displayed values are

automatically updated when stepping through a model.

9

Tutorial to Overture/VDM-RT

Figure 3.8: Breakpoint View

The Breakpoints view gives an overview of all breakpoints set (see Figure 3.8). From this view

the user can easily navigate to the location of a given breakpoint, disable or delete them, or set

their properties.

The Expressions view allows the user to enter watch expressions whose values are automati-

cally displayed and updated when stepping. Watch expressions can be added manually or created

by selecting create watch expression from the Variables view. It is possible to edit existing expres-

sions. Like the Breakpoints view, this view is hidden in the upper right hand corner in Figure 3.7.

While the Overture Expressions view allows you to easily inspect values, the functionality is

somewhat limited. For more thorough inspections in Overture, the Interactive Console view is

provided. Here commands can be executed in a given context, i.e. when the debugger is at a break-

point. The Interactive Console keeps a command history, so that previously executed commands

can be run again easily. The interactive console can be seen at the bottom of Figure 3.7.

3.6 Test coverage

It is often useful to know how much of a model has been exercised by a set of tests10. This gives

some insight into the thoroughness of a test suite and may also help to identify parts of the model

that have not been assessed, allowing new tests to be devised to cover these. When any evaluation

is performed on a VDM-RT model, the interpreter records the lines of the VDM-RT model that

are executed. This permits the line coverage to be examined after a test to identify the parts of the

VDM++ model that have not yet been exercised – coverage is cumulative, so a set of tests can be

executed and their total coverage examined at the end.

In our simple example, the different tests in the exercise above does cause the majority of

the VDM-RT model to be executed, but for demonstration purposes let us start by cleaning the

model (right click on the project and select Clean). Let us evaluate the RunScenario1 and

RunScenario2 operations where the Generate test coverage option is selected. Re-

member that whenever test coverage information is desired the Generate Latex Coverage

option must be selected as shown in Figure 3.6. Once the debugger has completed and the result

is written out in the console it is possible to right click on the CarRadioNavi project and

select the Latex → Latex coverage the coverage information that have been gathered in any ex-

pressions that have been debugged since the last change to a file have been saved or the project

have been cleaned will be turned into a pdf file. The CarRadioNavi.pdf file is placed in the

generated/latex directory. Note that whenever the model is adjusted or it is cleaned so it

10Note that this feature is not yet supported for models using unicode characters such a Japanese identifiers.

10

Chapter 3. Overture Tool Support for VDM-RT: an Introductory Guide

gets type checked again all the files in the generated directory are deleted.

The coverage information is provided in a way where uncovered expressions are shown in red

in the generated pdf file. In addition after the content of each VDM-RT source file a table with

coverage overview is provided in tabular form. So for example for the MMI class this looks like:

Function or operation Coverage Calls

HandleKeyPress 90.0% 36

UpdateScreen 87.0% 65

mmi.vdmrt 88.0% 101

where the ExpertIsOnDuty and ExpertToPage operations are fully covered by just one call

(due to the fact that its body is simply one line) whereas the PlantInv operation is called twice11.

3.7 Combinatorial Testing

The previous sections have shown how to manually test and debug models that use an executable

subset of VDM-RT. However, Overture also contains a feature enabling more automation in the

testing process. It is possible to write regular expressions, as traces, that one would like to expand

into a large set of individual tests. When new traces are incorporated in a VDM project you may

need to press the Refresh button () in the CT Overview view.

In order to illustrate how this can be used, we have introduced a Test class which only in

introduced in this example for illustration purposes.

In order to do the automation, Overture needs to know about the combinations of operation

calls that you would like to have carried out, so it is necessary to write a kind of regular expression

called a trace. VDM-RT has been extended such that traces can be written directly as a part of a

VDM-RT model. A full explanation of this can be found at [Larsen&09b]. In our case, inside the

Test class one can find:

✞

traces

TT: let x in set {1,2,3}

in

((mmi.HandleKeyPress(x,x) |

mmi.UpdateScreen(x,x) |

radio.AdjustVolume(x) |

radio.HandleTMC(x) |

nav.DatabaseLookup(x) |

nav.DecodeTMC(x));

EnvironmentTask‘IsFinished())
✡✝ ✆

11Note that the coverage from the combinatorial testing feature described in Section 3.7 is not taken into account in the

current version of the Overture IDE, but this will be enabled in a later release.

11

Tutorial to Overture/VDM-RT

The let-be statements in the trace called TT yield all possible combinations of the variable bindings

to x (whereas manual debugging will select an arbitrary binding here). This is followed by the call

of 6 different operations seperated by an alternative operator (|). The selected x value is then used

as argument t each of these operations so in total this generates 18 (3 times 6) test cases. Inside

this combinatorial testing view you can select the CarRadNav project, right click it and choose

the Full Evaluation option as shown in Figure 3.9. Now Overture expands and executes all 18 test

cases one after each other. The results of these executions are illustrated with green check marks

and red crosses, meaning that the tests passed or failed respectively. See Figure 3.10. Note that in

the Combinatorial Testing perspective, the view in the lower region is able to show the individual

steps of a selected test case, along with the corresponding results from its four operation calls.

Note that here IsFinished have been defined in the EnvironmentTask class as:

✞

public static IsFinished: () ==> ()

IsFinished() == skip;

sync

per IsFinished => #fin(logSysToEnv) > 0;
✡✝ ✆

This is necessary because the operations being tested are all defined as being asynchronous and thus

the execution would complete before the system had a change to do its work if the IsFinished

operation was not used.

Figure 3.9: Invoking the combinatorial testing feature

The syntax for traces also enables operation sequencing and repetition to be specified, but these

were not needed for this simple case. Using the full power of traces it is possible to efficiently

generate and execute very large test suites. Naturally, this is most likely to find inconsistencies

when the model attempts to define its essential predicates (invariants, pre and post-conditions).

3.8 Realtime Log Viewer

When a VDM-RT model is being executed a textual logfile with information about the time of

the generation is created in a folder called ”generated/logs/debugconfig” with the .logrt

12

Chapter 3. Overture Tool Support for VDM-RT: an Introductory Guide

Figure 3.10: Using Combinatorial Testing for the Radio Navigation VDM-RT model

extension. Note that debugconfig here will be the name of the launch configuration that the

user have created so if several launch confugurations are used these will be separated in different

directories. This logfile can be viewed in the build-in RealTime Log Viewer, by double-clicking

the file in the project view. The viewer allows you to explore system execution in different ways.

In Figure 3.11 the architectural overview of the system is given, describing the distributed nature

of the model.

Figure 3.11: Architectural overview

The RealTime Log Viewer also enables the user to get an overview of the model execution

on a system level – this can be seen in Figure 3.12. This view shows how the different CPUs

communicate via the BUSes of the system.

Since the complete execution of the model cannot be shown in a normal sized window, you

have the option of jumping to a certain time using the Go to time button. It is also possible to

export all the generated views to JPG format using the Export Image button. All the generated

pictures will be placed in the ”log” folder.

13

Tutorial to Overture/VDM-RT

Figure 3.12: Execution overview

In addition to the execution overview, the RealTime Log Viewer can also give an overview

of all executions on a single CPU. This view gives a detailed description of all operations and

functions invoked on the CPU as well as the scheduling of concurrent processes. This can be seen

in Figure 3.13.

Figure 3.13: Execution on single CPU

14

Chapter 3. Overture Tool Support for VDM-RT: an Introductory Guide

3.9 Proof Obligations

The Overture tool is also able to generate Proof Obligations automatically for VDM-RT models.

Proof obligations are boolean expressions that describe constraints to be met at various points in

the model in order to ensure that the model is internally consistent (i.e. no run-time errors will

occur while debugging if these are all satisfied). Proof obligations are generated to ensure, for

example, that operations will always respect invariants on instance variables. Each proof obligation

generated from a model should evaluate to true.

The proof obligation generator is invoked by right clicking on the project in the Explorer view

and then selecting the Proof Obligations -> Generate Proof Obligations entry. This will start up

a proof obligation perspective with a special PO view. For the alarm example this view takes the

form shown in Figure 3.14.

Figure 3.14: The Proof Obligation view for the Car Navigation VDM-RT model

One of the first proof obligations listed for this example is related to the RunScenario1

operation, which is defined as:

✞

public RunScenario1 : () ==> map seq of char to perfdata

RunScenario1 () ==

(addEnvironmentTask("VolumeKnob", new VolumeKnob(10));

addEnvironmentTask("TransmitTMC", new TransmitTMC(10));

return { name |-> envTasks(name).getMinMaxAverage()

| name in set dom envTasks });
✡✝ ✆

The proof obligation records the constraint that the mapping application envTasks(name)

is indeed defined (i.e. that the name is in the domain of the mapping envTasks). This is de-

scribed as a proof obligation in the following form:

✞

15

Tutorial to Overture/VDM-RT

forall name in set (dom envTasks) &

name in set dom envTasks
✡✝ ✆

Proof obligations represent checks that should be made on a model in order to gain confidence

in its consistency. At present, proof obligations have to be checked by manual inspection of the

model code. Tools are being developed for Overture to check as many as possible of the proof

obligations automatically, but there are always likely to be some that have to be checked manually.

3.10 A Command-Line Interface

So far only the graphical user interface of the Overture IDE has been presented but the engine

underlying Overture, called VDMJ, also provides a simple command line interface. This is useful

for the automatic batch execution of tests, though the command line also provides a full set of

interactive execution and debugging commands which can be useful when examining batch tests.

The command line also provides access to tool facilities that have not yet been included in the

Overture IDE.

VDMJ is written in Java, and so to run it from the command line, the VDMJ jar file 12 should

be executed with a Java JRE (version 5 or later):

java -jar vdmj-2.0.0.jar

If the jar file is executed with no further options like this, it will print a list of available options

and exit. The most important option is the VDM dialect that the tool should use. In the case of

our alarm example, we want to use VDM-RT for which the option is -vdmrt. After this, we can

simply specify the names of the VDM-RT model files to load, or the name of a directory in which

all the files reside:

java -jar vdmj-2.0.0.jar -vdmrt CarNaviRadio

That will perform a syntax and type check of all the VDM-RT model files in the directory called

CarNaviRadio, producing any errors and warning messages on the console, before terminating:

Parsed 9 classes in 0.61 secs. No syntax errors

Type checked 11 classes in 0.093 secs. No type errors

In the case of our example, there are no syntax or type checking errors. Warnings can be suppressed

using the -w option.

If a VDM-RT model has no type checking errors, it can either be given an expression to evaluate

as an option on the command line, or the user can enter an interactive mode to evaluate expressions

12See the Overture documentation at sourceforge.net/projects/overture for the location of the jar file.

16

Chapter 3. Overture Tool Support for VDM-RT: an Introductory Guide

and debug their execution.

To evaluate an expression from the command line, the -e option is used, followed by a VDM

expression to evaluate. You may also find the -q option useful, as this suppresses the informational

messages about the parsing and type checking:

java -jar vdmj-2.0.0.jar -vdmrt -w -q -e

"new World().RunScenario1()" CarNaviRadio

This produces a single line of output for the evaluation, since the parsing and checking messages

are suppressed, as are the warnings:

{"TransmitTMC" |-> mk_(3904, 12574, 6836.25),

"VolumeKnob" |-> mk_(3935, 16268, 8106.416666666667)}

Clearly a batch of test evaluations could be performed automatically by running a series of

similar commands and saving the output results for comparison against expected results.

To run the command line interpreter interactively, the -i command line option must be given.

Instead of terminating after the type check, this will cause VDMJ to enter its interactive mode, and

give the interactive > prompt:

Parsed 9 classes in 0.61 secs. No syntax errors

Type checked 11 classes in 0.093 secs. No type errors

Initialized 11 classes in 0.079 secs.

Interpreter started

>

From this prompt, various interactive commands can be given to evaluate expressions, debug their

evaluation, or examine the VDM-RT model environment. The help command lists the commands

available. The quit command leaves the interpreter.

For example, the following session illustrates the creation of a test object, followed by an

evaluation of its RunScenario2 operation, and a debug session with a breakpoint at the start of

the same operation:

> create world := new World()

> p world.RunScenario2()

= {"InsertAddress" |-> mk_(3993, 16132, 7759.2727272727),

"TransmitTMC" |-> mk_(3871, 12128, 6980.714285714285)}

Executed in 1.094 secs.

> break World‘addEnvironmentTask

Created break [1] in ’World’ (CarNaviRadio\World.vdmrt)

17

Tutorial to Overture/VDM-RT

at line 12:5

12: (envTasks := envTasks munion { pnm |-> penv };

> p world.RunScenario2()

Stopped break [1] in ’World’ (CarNaviRadio\World.vdmrt)

at line 12:5

12: (envTasks := envTasks munion { pnm |-> penv };

[MainThread-164]> print penv

penv = InsertAddress{#77, max_stimuli:=10, e2s:={|->},

s2e:={|->},EnvironmentTask{#76, max_stimuli:=10, num:=0,

e2s:={|->},s2e:={|->}}}

[MainThread-164]> continue

Runtime: Error 4021: Duplicate map keys have different

values:

"InsertAddress" in ’World’ (CarNaviRadio\World.vdmrt)

at line 12:28

Stopped in ’World’ (CarNaviRadio\World.vdmrt)

at line 12:28

12: (envTasks := envTasks munion { pnm |-> penv };

[MainThread-164]> continue

>

Notice that the print command is available at the breakpoint to examine the runtime state of

the system. In the example, we show the value of the penv variable. Continuing from this point,

the VDM-RT model raises a runtime error because the previous execution’s results are still in the

(static) envtasks map. The VDM-RT model can be re-initialized between runs with the init

command to avoid this.

The help command is context sensitive, and will list the extra debugging commands available

at a breakpoint, such as continue, step, stack, list and so on. The full set of commands

is described in the VDMJ User Guide13.

3.11 Summary

This chapter has introduced the following major features of tool support for VDM-RT:

• syntax checking of VDM-RT models;

• type checking of VDM-RT models;

• executing and debugging VDM-RT models;

13Supplied with the Overture documentation.

18

Chapter 3. Overture Tool Support for VDM-RT: an Introductory Guide

• combinatorial testing enabling automation of parts of the testing process;

• proof obligation generation and

• a command-line interface enabling access to test coverage.

19

Tutorial to Overture/VDM-RT

20

References

[Larsen&09a] Peter Gorm Larsen and John Fitzgerald and Sune Wolff. Methods for the De-

veloping Distributed Real-Time Systems using VDM. International Journal of

Software and Informatics, 3(2-3), October 2009.

[Larsen&09b] Peter Gorm Larsen and Kenneth Lausdahl. User Manual for the Overture Com-

binatorial Testing Plug-in. Technical Report TR-2009-01, The Overture Initia-

tive, www.overturetool.org, March 2009. 30 pages.

21

Tutorial to Overture/VDM-RT

22

Appendix A

A Car Navigation System Example

This section presents the requirements for a in-car radio navigation system which supports the

Traffic Message Channel (TMC). It forms a running example that serves to illustrate the process

described earlier and to introduce elements of the VDM++ modelling language with the Real-time

extension VICE. Although the modelling process is described here as though it were a single-pass

activity, a real development would usually be iterative.

A.1 System Overview of the Car Navigation example

In Figure 3.1 an overview of the in-car navigation system is shown. Similarily Figure A.2 provides

an overview of the World class and the environment classes.

Figure A.1: Car Navigation System Overview

23

Tutorial to Overture/VDM-RT

Figure A.2: Overview of the Wolrd and Environment Classes

A.2 The Radio Navigation System Class

The RadNavSys class is the system class that all VDMRT models must include.

✞

system RadNavSys

instance variables

-- create an MMI class instance

static public mmi : MMI := new MMI();

-- define the first CPU with fixed priority

-- scheduling and 22E6 MIPS

CPU1 : CPU := new CPU (<FP>, 22E6);

-- create an Radio class instance

static public radio : Radio := new Radio();

-- define the second CPU with fixed priority

-- scheduling and 11E6 MIPS

CPU2 : CPU := new CPU (<FP>, 11E6);

-- create an Navigation class instance

static public navigation : Navigation := new Navigation();

-- define the third CPU with fixed priority

-- scheduling and 113 MIPS

CPU3 : CPU := new CPU (<FP>, 113E6);

24

Appendix A. A Car Navigation System Example

-- create a communication bus that links the three

-- CPU’s together

BUS1 : BUS := new BUS (<CSMACD>, 72E3, {CPU1, CPU2, CPU3})
✡✝ ✆

✞

operations

public RadNavSys: () ==> RadNavSys

RadNavSys () ==

(-- deploy mmi on CPU1

CPU1.deploy(mmi,"MMIT");

CPU1.setPriority(MMI‘HandleKeyPress,100);

CPU1.setPriority(MMI‘UpdateScreen,90);

-- deploy radio on CPU2

CPU2.deploy(radio,"RadioT");

CPU2.setPriority(Radio‘AdjustVolume,100);

CPU2.setPriority(Radio‘DecodeTMC,90);

-- deploy navigation on CPU3

CPU3.deploy(navigation,"NavT");

CPU3.setPriority(Navigation‘DatabaseLookup, 100);

CPU3.setPriority(Navigation‘DecodeTMC, 90)

-- starting the CPUs and BUS is implicit

);

end RadNavSys
✡✝ ✆

A.3 The MMI Class

✞

class MMI

operations

async

public HandleKeyPress: nat * nat ==> ()

HandleKeyPress (pn, pno) ==

(cycles (1E5) skip;

cases (pn):

1 -> RadNavSys‘radio.AdjustVolume(pno),

2 -> RadNavSys‘navigation.DatabaseLookup(pno)

end);

async

25

Tutorial to Overture/VDM-RT

public UpdateScreen: nat * nat ==> ()

UpdateScreen (pn, pno) ==

(cycles (5E5) skip;

cases (pn):

1 -> World‘envTasks("VolumeKnob").HandleEvent(pno),

2 -> World‘envTasks("InsertAddress").HandleEvent(pno),

3 -> World‘envTasks("TransmitTMC").HandleEvent(pno)

end)

end MMI
✡✝ ✆

A.4 The Radio Class

✞

class Radio

operations

async

public AdjustVolume: nat ==> ()

AdjustVolume (pno) ==

(cycles (1E5) skip;

RadNavSys‘mmi.UpdateScreen(1, pno));

async

public HandleTMC: nat ==> ()

HandleTMC (pno) ==

(cycles (1E6) skip;

RadNavSys‘navigation.DecodeTMC(pno))

end Radio
✡✝ ✆

A.5 The Navigation Class

✞

class Navigation

operations

async

26

Appendix A. A Car Navigation System Example

public DatabaseLookup: nat ==> ()

DatabaseLookup (pno) ==

(cycles (5E6) skip;

RadNavSys‘mmi.UpdateScreen(2, pno));

async

public DecodeTMC: nat ==> ()

DecodeTMC (pno) ==

(cycles (5E5) skip;

RadNavSys‘mmi.UpdateScreen(3, pno))

end Navigation
✡✝ ✆

A.6 The Environment Task Class

✞

class EnvironmentTask

instance variables

-- use a unique identifier for each generated event

private num : nat := 0;

-- we limit the number of inserted stimuli

protected max_stimuli : nat := 0;

-- administration for the event traces

-- e2s is used for all out-going stimuli

-- (environment to system)

-- s2e is used for all received responses

-- (system to environment)

protected e2s : map nat to nat := {|->};

protected s2e : map nat to nat := {|->}

functions

-- checkResponseTimes verifies for each received response

-- whether or not the elapse time did (not) exceed the

-- user-defined limit

public checkResponseTimes: map nat to nat *
map nat to nat * nat -> bool

checkResponseTimes (pe2s, ps2e, plim) ==

27

Tutorial to Overture/VDM-RT

forall idx in set dom ps2e &

ps2e(idx) - pe2s(idx) <= plim

-- the responses received should also be sent

pre dom ps2e inter dom pe2s = dom ps2e

operations

public EnvironmentTask: nat ==> EnvironmentTask

EnvironmentTask (pno) == max_stimuli := pno;

public getNum: () ==> nat

getNum () ==

(dcl res : nat := num;

num := num + 1;

return res);

-- Run shall be overloaded to implement the event generation

-- loop towards the system. typically, it starts a periodic

-- thread

public Run: () ==> ()

Run () == is subclass responsibility;

public HandleEvent: nat ==> ()

HandleEvent (pev) == is subclass responsibility;

-- logEnvToSys is used to register when an event was inserted

-- into the system. Note that the ’time’ keyword refers to

-- the internal simulation wall clock of Overture

public logEnvToSys: nat ==> ()

logEnvToSys (pev) == e2s := e2s munion {pev |-> time};

-- logSysToEnv is used to register when an event was received

-- from the system. Note that the ’time’ keyword refers to the

-- internal simulation wall clock of Overture

public logSysToEnv: nat ==> ()

logSysToEnv (pev) == s2e := s2e munion {pev |-> time};

-- getMinMaxAverage calculates the minimum, maximum and

-- average response times that were observed during execution

-- of the model note that getMinMaxAverage is blocked until

-- the number of system responses is equal to the number of

-- sent stimuli termination is ensured because only a maximum

-- number of stimuli is allowed to be inserted in the system,

28

Appendix A. A Car Navigation System Example

-- so eventually all stimuli can be processed by the system.

-- This method only works when each stimulus leads to exactly

-- one response, which is the case in this instance.

public getMinMaxAverage: () ==> nat * nat * real

getMinMaxAverage () ==

(dcl min : [nat] := nil,

max : [nat] := nil,

diff : nat := 0;

for all cnt in set dom s2e do

let dt = s2e(cnt) - e2s(cnt) in

(if min = nil then min := dt

else (if min > dt then min := dt);

if max = nil then max := dt

else (if max < dt then max := dt);

diff := diff + dt);

return mk_(min, max, diff / card dom s2e))

public static IsFinished: () ==> ()

IsFinished() == skip;

sync

-- getNum is mutually exclusive to ensure unique values

mutex (getNum);

-- getMinMaxAverage is blocked until all responses have been received

per getMinMaxAverage => card dom s2e >= max_stimuli;

per IsFinished => #fin(logSysToEnv) > 0;

end EnvironmentTask
✡✝ ✆

A.7 The Insert Address Class

✞

class InsertAddress

is subclass of EnvironmentTask

operations

public InsertAddress: nat ==> InsertAddress

InsertAddress (pno) == max_stimuli := pno;

29

Tutorial to Overture/VDM-RT

public HandleEvent: nat ==> ()

HandleEvent (pev) == logSysToEnv(pev)

post checkResponseTimes(e2s,s2e,24000);

public Run: () ==> ()

Run () == start(self); --,VolumeKnobT);

createSignal: () ==> ()

createSignal () ==

(dcl num2 : nat := getNum();

logEnvToSys(num2);

RadNavSys‘mmi.HandleKeyPress(2,num2))

thread

periodic (2000,100,1000,0)

(createSignal)

end InsertAddress
✡✝ ✆

A.8 The Transmit TMC Class

✞

class TransmitTMC

is subclass of EnvironmentTask

operations

public TransmitTMC: nat ==> TransmitTMC

TransmitTMC (pno) == max_stimuli := pno;

public HandleEvent: nat ==> ()

HandleEvent (pev) == logSysToEnv(pev)

post checkResponseTimes(e2s,s2e,40000);

public Run: () ==> ()

Run () == start(self); --,TransmitTMCT);

createSignal: () ==> ()

createSignal () ==

(dcl num2 : nat := getNum();

logEnvToSys(num2);

30

Appendix A. A Car Navigation System Example

RadNavSys‘radio.HandleTMC(num2))

thread

periodic (4000,400,3910,0)

(createSignal)

end TransmitTMC
✡✝ ✆

A.9 The Volume Knob Class

✞

class VolumeKnob

is subclass of EnvironmentTask

operations

public VolumeKnob: nat ==> VolumeKnob

VolumeKnob (pno) == max_stimuli := pno;

public HandleEvent: nat ==> ()

HandleEvent (pev) == logSysToEnv(pev)

post checkResponseTimes(e2s,s2e,22000);

public Run: () ==> ()

Run () == start(self); --,VolumeKnobT);

createSignal: () ==> ()

createSignal () ==

(dcl num2 : nat := getNum();

logEnvToSys(num2);

RadNavSys‘mmi.HandleKeyPress(1,num2))

thread

periodic (1000,50,500,0)

(createSignal)

end VolumeKnob
✡✝ ✆

31

Tutorial to Overture/VDM-RT

A.10 The World Class

✞

class World

types

public perfdata = nat * nat * real

instance variables

static public

envTasks : map seq of char to EnvironmentTask := {|->};

operations

addEnvironmentTask: seq of char * EnvironmentTask ==> ()

addEnvironmentTask (pnm, penv) ==

(envTasks := envTasks munion { pnm |-> penv };

penv.Run());

public RunScenario1 : () ==> map seq of char to perfdata

RunScenario1 () ==

(addEnvironmentTask("VolumeKnob", new VolumeKnob(10));

addEnvironmentTask("TransmitTMC", new TransmitTMC(10));

return { name |-> envTasks(name).getMinMaxAverage()

| name in set dom envTasks });

public RunScenario2 : () ==> map seq of char to perfdata

RunScenario2 () ==

(addEnvironmentTask("InsertAddress",new InsertAddress(10));

addEnvironmentTask("TransmitTMC", new TransmitTMC(10));

return { name |-> envTasks(name).getMinMaxAverage()

| name in set dom envTasks });

end World
✡✝ ✆

A.11 The Test Class

✞

class Test

instance variables

32

Appendix A. A Car Navigation System Example

mmi : MMI := new MMI();

radio : Radio := new Radio();

nav : Navigation := new Navigation();

traces

TT: let x in set {1,2,3}

in

((mmi.HandleKeyPress(x,x) |

mmi.UpdateScreen(x,x) |

radio.AdjustVolume(x) |

radio.HandleTMC(x) |

nav.DatabaseLookup(x) |

nav.DecodeTMC(x));

EnvironmentTask‘IsFinished())

end Test
✡✝ ✆

33

