

PRELIMINARY REPORT OF

SUBSURFACE EXPLORATION AND GEOTECHNICAL ENGINEERING ANALYSIS

DEANWOOD HILLS 5201 HAYES STREET, NE WASHINGTON, D.C.

ECS PROJECT NO. 37:1404

FOR

PENNROSE PROPERTIES, LLC

FEBURARY 25, 2015

February 25, 2015

Ms. Ivy Dench-Carter Vice President Pennrose Properties, LLC 575 S. Charles Street Suite 140 Baltimore, MD 21201

ECS Project No. 37:1404

Reference: Preliminary Report of Subsurface Exploration and Geotechnical Engineering Analysis, Deanwood Hills, 5201 Hayes Street, NE, Washington, DC

Dear Ms. Dench Carter:

As authorized by your acceptance of our Proposal No. 37:262-GP that was last revised on September 24, 2014, ECS Capitol Services, PLLC (ECS) has completed the subsurface exploration and geotechnical engineering analysis for the proposed Deanwood Hills development in northeast, Washington, DC.

A preliminary report, including the results of our subsurface exploration, boring data, laboratory testing, preliminary engineering recommendations, as well as a Boring Location Diagram is enclosed herein. These preliminary recommendations presented are intended for use by your office and for use by other professionals involved in the design and planning stages of the project described herein. These recommendations were based upon preliminary information for the project and should be confirmed when the final design loads and drawings are completed and we have a chance to review and produce a final report.

We appreciate the opportunity to be of service to Pennrose Properties, LLC on this project. If you have any questions with regard to the information and recommendations contained in this report, or if we may be of further service to you during the planning and/or construction phase of this project, please do not hesitate to contact the undersigned.

Respectfully,

ECS CAPITOL SERVICES, PLLC

Daniel J. Spielvogel, P.E.

Project Engineer

Scott S. Stannard, P.E. Consultant – Principal Engineer

Stephen F. Patt, P.E. Sénior Project Engineer

DJS/blm I:\Geotechnical\ e-projects\1400-1499\1404 - Deanwood Hills\e-Report Prep\1404.doc

PRELIMINARY REPORT

PROJECT

Subsurface Exploration and Geotechnical Engineering Analysis Deanwood Hills 5201 Hayes St, NE Washington, DC

CLIENT

Pennrose Properties, LLC 575 S. Charles Street Suite 140 Baltimore, MD 21201

PROJECT NO.	37:1404
DATE	February 25, 2015

TABLE OF CONTENTS

PROJECT OVERVIEW	
Introduction Site Location and Existing Site Conditions Proposed Construction Purpose and Scope of Work	1 1 2
EXPLORATION PROCEDURES	
Subsurface Exploration Procedures Soil Borings In-Situ Infiltration Testing Laboratory Testing Program	3 3 3 4
EXPLORATION RESULTS	
Regional Geology Soil Conditions Stratum I – Existing Fill Stratum II – Alluvial River Terrace Deposits (Pleistocene Deposits) Stratum III – Potomac Group Formation (Cretaceous Deposits) Groundwater Observations	5 5 5 5 6 6
PRELIMINARY ANALYSIS AND DESIGN RECOMMENDATIONS	
Foundations Ground Improvement Floor Slab Design Underslab Drainage Pavements Site Retaining Walls Below-Grade Walls Temporary and Permanent Slopes Infiltration Test Results Site Seismic Considerations	7 9 10 11 11 12 13 14 14 15
PRELIMINARY PROJECT CONSTRUCTION RECOMMENDATIONS	
Subgrade Preparation and Earthwork Operations Fill Placement Settlement Platform Recommendations Construction Dewatering Closing	16 17 18 20 20

APPENDIX

PROJECT OVERVIEW

Introduction

This preliminary report presents the results of our subsurface exploration and geotechnical engineering analysis performed for the proposed Deanwood Hills project located at the address of 5201 Hayes St, NE Washington, DC. This preliminary report was prepared in general accordance with ECS Proposal No. 37:262-GP most recently revised on September 24, 2014 and authorized by your office. Please note this report has been prepared using only the information provided to us and data collected from the subsurface exploration performed at the project site.

Site Location and Existing Site Conditions

Based on the information provided to us and our site observations, the project site is located at the address of 5201 Hayes St, in Northeast Washington, DC. The subject parcel is currently a vacant lot containing various concrete pads, asphalt pavement sections, and site retaining walls from previous site developments. Generally, the site is triangularly shaped and grassed covered with wooded areas located around the fence-lined perimeter. The site is bound to the north by Hayes Street, NE, to the west by 51st Street NE and existing buildings, a parking lot and existing building to the south, and a public alley to the east. Based upon topographic mapping provided, the site appears to slope from the northeast corner of the site down to the southwest. Currently Hayes Street, NE is approximately at EL. 80 feet at the east end of the site and approximately at EL. 60 feet at the west end. The south edge of the property is at approximately EL. 54 feet. The site is relatively level in the center of parcel where the site was previously developed with grades ranging from approximately EL. 62 to 57 feet.

Proposed Construction

Based on the site and architectural plans provided to us by you, we understand the proposed development will require demolition of any existing site features, significant regrading of the site including substantial fill placement (on the order of 10+ feet), construction of stormwater management facilities, and the construction of a retaining wall with a maximum expected height of 12 feet on the south edge of the site. We understand a new stick frame structure will be built on the site and will have a partial basement and 4 floors above grade. As shown on the boring location diagram, the proposed building will have 4 individual wings off of a main part of the building located south of the wings. The lowest, basement level (shaded orange on the Boring Location Diagram) will be located beneath wings 1-3 and the main part of the building having a finish floor elevation of EL. 60 feet. This level will only be partially buried on the north part of the site and will be at-grade to the south parking lot area. Wing 4 of the proposed structure (shaded blue on the Boring Location Diagram) will be cut into the hillside and have a finish floor elevation of EL. 77.67 feet. We have shown our current understanding of the building footprint and lowest finished floor elevations on the Boring Location Diagram which is included in the Appendix. From the information you have provided, we understand the maximum wall loads are on the order of 6 kips per linear foot of wall.

The description of the project site is based on the information provided by the project team, and the plans provided to us at this time. If any of this information is inaccurate, either due to our misunderstanding or design changes, we recommend we be contacted in order to provide alternative recommendations that may be warranted.

Purpose and Scope of Work

The purpose of this exploration was to perform a subsurface exploration and develop preliminary engineering recommendations to guide the design and construction budgeting of the project based on review of the exploration findings and performing an engineering analysis using the current site plan. We accomplished these purposes by performing the following scope of services:

- 1. Reviewing the geotechnical reports prepared for adjacent project sites by ECS,
- 2. Performing eighteen soil borings,
- 3. Performing nineteen, in-situ, infiltration tests,
- 4. Reviewing laboratory testing performed to determine their engineering properties,
- 5. Analyzing the field and laboratory data from the exploration to develop appropriate engineering recommendations, and
- 6. Preparing this preliminary geotechnical report of summarizing our findings and recommendations.

ECS recently performed a total of eighteen soil borings (referenced as B-1 through B-18) at the project site. Borings B-1 through B-8 were performed in close proximity to the proposed building footprint at drill rig accessible locations and extended to depths ranging from 40 feet to 60 feet below the ground surface. Borings B-9 through B-18 were performed in close proximity to the potential stormwater infiltration facilities. These borings were advanced to depths of 8 feet below the ground surface. Nineteen auger probes were also advanced at the potential stormwater infiltration facilities to allow for infiltration testing at approximately 6 feet below site grades. The subsurface exploration included split spoon sampling, Standard Penetration Tests (SPT), groundwater level observations in the boreholes, and in-situ infiltration testing. Laboratory tests were then conducted on selected soils samples to determine certain engineering properties.

Each of the borings and auger probes were located in the field by ECS personnel measuring from existing site features and by use of a portable GPS. We consider the boring locations to be accurate to within ±3 feet of the plan location shown herein. The ground surface elevations were interpolated from the topographical survey provided to ECS. We consider the boring elevations to be accurate to within ±2 feet of actual elevation. The results of the completed soil borings along with a Boring Location Diagram are included in the appendix of this report. We have also included three cross-section profiles (labeled as A-A', B-B', and C-C') showing the subsurface conditions through different areas of the proposed development.

EXPLORATION PROCEDURES

Subsurface Exploration Procedures

Soil Borings

The soil borings were performed utilizing an ATV-mounted auger-drilling rig, which utilized continuous flight, hollow stem augers to advance the borehole. Because of the closed LUST case onsite, the borings were advanced assuming the site is potentially contaminated. Due to these conditions, borings that were advanced below the confining layer included the installation of casing that is installed 10 feet down into the confining unit and grouted in place. Boring advancement was then continued within the casing using mud rotary drilling methods. After completion of the borings, each was backfilled with grout in general accordance with DDOE regulations. The drilling spoils were containerized and were removed from the site.

Representative soil samples were obtained by means of the split-barrel sampling procedure in accordance with ASTM Standard D-1586. In the split-barrel sampling procedure, a 2-inch O.D., split-barrel sampler is driven into the soil a distance of 18 or 24 inches by means of a 140-pound hammer falling 30 inches. The number of blows required to drive the sampler through the last for the 12-inch interval for 18-inch sample or the middle 12-inch interval for the 24-inch sample is termed the Standard Penetration Test (SPT) "N" value and is indicated for each sample on the boring logs. This value can be used to provide a qualitative indication of the in-place relative density of cohesionless soils.

A field log of the soils encountered in the boring was maintained by the drill crew. After recovery, each sample was removed from the sampler, visually classified, and placed in glass jars. Representative portions of each sample were (placed in the glass jars) brought to our laboratory for further visual classification and select laboratory testing.

In-Situ Infiltration Testing

At the infiltration test locations (IT-1 through IT-19), an auger probe boring (no samples taken) was advanced to the approximate infiltration test elevation provided to us by the project civil engineer and a temporary solid PVC pipe was installed and seated near the bottom of the hole to keep the bore hole from collapsing prior to infiltration testing. ECS used the Johnson Permeameter[™] to perform a constant head infiltration test which is in general accordance with the publication entitled "DDOE (District Department of the Environment) Stormwater Guidebook, Appendix O."

Each hole is prepared in general accordance with the information contained in the *Johnson Permeameter*TM *Instruction Manual* dated June 14, 2014. A schematic of the equipment used is included in the Appendix of this report for reference. The test is then performed in general accordance with the same manual and the test results are recorded during testing of each location. The final design rate chosen is ultimately the discretion of the design engineer; however, is typically the average of the last three to four readings taken during the test or the last reading, as appropriate, based on the test results. The results of each infiltration test are included in the Appendix of this report for reference.

Laboratory Testing Program

Representative soil samples were selected and tested in our laboratory to check field classifications and to determine pertinent engineering properties. The laboratory testing program performed included visual classifications, moisture content tests, Atterberg Limits, grain size distribution analysis, and hydrometer analysis. The data obtained from the laboratory tests is included in the Appendix of this report.

An engineer/geologist classified each soil sample on the basis of texture and plasticity in accordance with the Unified Soil Classification System. The group symbols for each soil type are indicated in parentheses following the soil descriptions on the boring logs. A brief explanation of the Unified System is included with this report. The soil engineer grouped the various soil types into the major zones noted on the soil boring logs. The stratification lines designating the interfaces between earth materials on the soil boring logs and profiles are approximate; in situ, the transitions may be gradual, rather than distinct.

The soil samples will be retained in our laboratory for a period of 60 days, after which they will be discarded unless other instructions are required as to their disposition.

Regional Geology

The proposed site is located in the Coastal Plain Physiographic Province of Washington, DC. The near surface soils in the Washington, D.C. area typically consist of man-placed fill soils or natural soils which have been disturbed by previous construction.

Beneath these near surface fill or disturbed soils, Pliocene and Pleistocene river terrace deposits were generally encountered. These deposits vary in their percentages of sand, silt, clay and gravel, both laterally and vertically, and contain localized areas of organics. Beneath the Coastal river terrace deposits, the area is typically underlain by lower and upper Cretaceous, or Potomac Formation soils. The Potomac formation is generally characterized by silty clay beds inter-bedded with irregular sand and gravel lenses.

Soil Conditions

During the time of our exploration, the site consisted of a vacant lot and the borings were performed throughout the site. The surface materials encountered at the site generally consisted of topsoil less than 7 inches thick with isolated areas of asphalt pavement approximately 24 inches thick. The subsurface profile can generally be subdivided into three different and distinct strata, (I) Stratum I – Existing Fill, (II) Stratum II – Alluvial Terrace Formation, and (III) Stratum III – Potomac Deposits. The following sections describe each soil strata in more detail and three cross-sections (referenced as A-A', B-B', and C-C') showing the subsurface conditions are included in the Appendix of this report.

Stratum I – Existing Fill

Fill soils were observed in borings B-4 through B-11 and B-14 through B-16 to depths ranging from $2.0\pm$ feet to $8.5\pm$ feet below existing site grades or depths explored. The fill soils typically consisted of varying mixtures of sand, silt, and clay and contained various debris such as asphalt, brick and organics. The existing fills encountered are most likely associated with the demolished structure onsite and generally appear to be located within the center and southern portions of the site. SPT N-values in the fill soils varied greatly between 4 blows per foot (bpf) to greater than 50 bpf.

Stratum II – Alluvial River Terrace Deposits (Pleistocene Deposits)

Stratum II was encountered in each of the borings directly beneath the existing fill materials of Stratum I (where encountered) or below the surface cover materials. Stratum II soils generally consisted of various amounts of silt, clay, and sand but were typically classified as Lean CLAY (CL), Sandy Silt (ML) or Silty/Clayey SAND (SM/SC). A small layer of Gravel with Sand (GP) was observed in boring B-6 at elevation EL. 33 feet. SPT N-Values with in the Stratum II soils generally ranged from 2 bpf to 26 bpf. Stratum II generally extended to approximately elevation EL. 25 feet in borings B-1 through B-8, or the depths explored.

Stratum III – Potomac Group Formation (Cretaceous Deposits)

Stratum III was generally encountered directly beneath the Stratum II in the deeper borings B-1 through B-8 that extended below elevation 25; however, was most likely not encountered in the remaining borings that were terminated at shallower depths. The Potomac deposits generally consisted of Lean Clay, (CL) with varying amounts of sands encountered. SPT N-Values with in the Stratum III soils generally ranged from 27 bpf to 48 bpf.

Groundwater Observations

During the subsurface exploration, the boreholes were observed for the presence of groundwater during drilling, before removal of the augers, and after the removal of the augers prior to grouting. In hollow-stem auger drilling operations, water is not introduced into the boreholes, and the groundwater position can often be determined by observing water flowing into or out of the boreholes; however, drilling fluid was used in borings B-1 through B-8. Visual observation of the soil samples retrieved during the auger drilling exploration can often be used in evaluating the groundwater conditions. A summary of groundwater observations is summarized in the table below; however, groundwater was not observed in borings B-1 through B-3 and boring B-10 through B-19.

	Water Level	Water Level	Water Level Before	Water Level Before
Boring	During Drilling	During Drilling	Pulling Augers	Pulling Augers
	(Deptn, tt)	(Elevation, ft)	(Depth, ft)	(Elevation, ft)
B-1	Not Observed	-	Not Observed	-
B-2	Not Observed	-	Not Observed	-
B-3	Not Observed	-	Not Observed	-
B-4	28.5	32.5	32.0	29.0
B-5	18.5	44.5	-	-
B-6	28.5	31.5	-	-
B-7	13.5	43.5	-	-
B-8	33.5	24.5	19.5	38.5
B-9	4.0	57.0	-	-
B-10	Not Observed	-	Not Observed	-
B-11	Not Observed	-	Not Observed	-
B-12	Not Observed	-	Not Observed	-
B-13	Not Observed	-	Not Observed	-
B-14	Not Observed	-	Not Observed	-
B-15	Not Observed	-	Not Observed	-
B-16	Not Observed	-	Not Observed	-
B-17	Not Observed	-	Not Observed	-
B-18	Not Observed	-	Not Observed	-

 Table 1: Summary of Groundwater Observations

Variations in the location of the long-term water table may occur as a result of changes in precipitation, evaporation, surface water runoff, and other factors not immediately apparent at the time of this exploration. Free and/or "perched" water may also be encountered at the interface of fill materials and natural soils such as the water observed in boring B-9.

PRELIMINARY ANALYSIS AND DESIGN RECOMMENDATIONS

The conclusions and recommendations presented in this preliminary report should be incorporated in the design and construction of the project to minimize possible soil and/or foundation related problems during construction; however, only preliminary loading details regarding the proposed buildings were provided at this time. Once the design advances further ECS should be provided with the design documents to confirm the recommendations included herein are still applicable and/or provide alternate recommendations (if necessary).

The following sections present more specific recommendations with regard to the design of the proposed building and site improvements. These include recommendations with regard to building foundations, below-grade walls and drainage, earthwork, ground slabs, construction dewatering, pavement, retaining walls and seismic design parameters.

We recommend that ECS review the final design and specifications to check the earthwork and foundation recommendations presented in this report have been properly interpreted and implemented in the design and specifications. Depending on if a ground improvement method is utilized on the site, the grading and fill placement will be a critical component of the site development.

Foundations

<u>General</u>

As we understand the current design for the site is preliminary; however, the structure will be constructed using slab on grade methods. We understand the existing grading will be significantly changing (12 feet of fill will be added along the southern property line and minor fill areas on the north side of the site) to allow for building construction. In general, the majority of the building will have a finish floor elevation of EL. 66 feet; however, Wing 4 will have a finish floor elevation of EL. 77.67 feet. The Boring Location Diagram included within the appendix as well as cross sections A-A' and B-B' show the proposed structure including the approximate finish floor elevations with regard to the existing site conditions. This information is based upon the preliminary grading plan provided and should be confirmed upon completion of the final design.

Within the site, localized areas of existing fill extend to depths up to $8.5\pm$ feet below the existing ground surface, which often consisted of organics and construction debris/concrete. Additionally, the site is generally underlain by soft natural soils which would also need to be addressed prior to building construction or new fill placement. Considering the variability of the existing fill and the presence of the soft natural soils, the total settlement potential of the proposed structure as well as settlement of the new fill, could be problematic. Additionally, the timing of the settlement can also be variable, with some settlement occurring during grading operations and some occurring after grading/building construction.

The traditional option for providing a suitable subgrade for building and floor slab support would be to completely remove the unsuitable materials to a stable, natural subgrade and replace them with new engineered fill that is placed and compacted in accordance with the project specifications. For this site we are recommending two options for construction of the fills and structures, both designed to reduce the risk of future settlement.

Option 1: Undercut Existing Fills and Perform Settlement Monitoring

Under this scenario, we recommend undercutting the existing fills in building pad areas, and either re-using the materials (if suitable) or new fill to establish the proposed lowest level elevation.

The project site should be prepared in accordance with the <u>Subgrade Preparation and</u> <u>Earthwork Operations</u> section of this report. In order to quantify the magnitude and rate of the settlement realized during construction, we recommend that settlement platforms be installed. The settlement platforms should be installed prior to placement of engineered fill to evaluate the existing soils and additional platforms be installed within the newly placed engineered fill to evaluate settlement of the new fill. At a minimum, four settlement platforms should be installed onsite however; the ultimate locations should be determined by the GER once final site and building plans are developed. Additional information regarding the settlement platforms is included in subsequent sections of this report.

The purpose of the settlement platforms are to measure the vertical displacement of the engineered fill and natural soil. The GER will review and interpret settlement data and provide opinions on when it is appropriate to begin foundation construction. Subsequent to the completion of earthwork and grading operations onsite, we recommend the site be monitored for a minimum of two months to provide the GER with sufficient data to provide recommendations for foundation construction. Please note, additional monitoring may be required prior to the foundation construction. We also recommend the settlement monitoring be carried out during building construction.

Option 2: Ground Improvement

Alternatively, subgrade stabilization/ground improvement could be performed throughout the project site to decrease the risk of soil settlement and limit the required waiting period after earthwork operations are completed. Therefore, as an alternative, we recommend ground improvement consisting of densified aggregate piers or stone columns be considered for the subgrade stabilization within the project site. The most suitable use of ground improvement will likely be through the use of stone columns or aggregate piers installed in a grid pattern, to improve the existing unsuitable subgrade materials, prior to the placement of engineered fill. By improving the subgrade prior to new fill placement, the ground improvement method will provide adequate bearing for both the engineered fill and building pads.

For this option, the construction operations should be sequenced such that any subgrade to be improved is properly stripped and prepared prior to the installation of the aggregate piers/stone column elements. After the aggregate piers/stone columns are installed, the grading operations for the remainder of the building pad may resume. Under this option piers would only be required in deep proposed fill areas with existing fills (to be left in place) and/or soft natural soils.

Discussions of the recommended option for building pad preparation are detailed further in following sections of the report. Several additional options, including the use deep foundation support consisting of short drilled shafts or micropiles in conjunction with structural slabs, were also considered; however, we anticipate these options are not considered to be economical and are therefore not being considered at this time. Additional options/recommendations can be provided upon your request.

Option 1: Shallow Spread Footings

Where the building is founded in new engineered fill, the building may be supported on shallow foundations designed for an allowable soil bearing pressure of 3,000 psf. This bearing pressure assumes that the <u>Subgrade Preparation and Earthwork Operations</u> recommendations are followed as detailed in subsequent sections of the report. A bearing pressure of, 3,000 psf can also be used if natural soils are encountered at the bearing elevation. The existing fill materials onsite are not capable of supporting building foundations and should be completely removed and replaced with engineered fill. The allowable soil bearing pressure refers to the pressure which may be transmitted to the foundation bearing soils in excess of the final minimum surrounding overburden pressure. During construction, the bearing capacity at the final footing excavation should be tested in the field by an experienced soil engineer or qualified representative to document that the in-situ bearing capacity at the bottom of each footing excavation is adequate for the design loads. If unsuitable soil or rock materials are observed at the design subgrade elevation for any footing, it will be necessary to "step down" the individual footing to suitable material.

Exposure to the environment may weaken the soils at the footing bearing level if the foundation excavations remain open for too long a time. Therefore, foundation concrete should be placed the same day the footing excavations are made. If the bearing soils are softened by surface water intrusion or exposure, the softened soils must be removed from the foundation excavation bottom immediately prior to placement of concrete. If the excavation must remain open overnight, or if rainfall becomes imminent while the bearing soils are exposed, we recommend a 1- to 3-inch thick "mud mat" of "lean" concrete be placed on the bearing soils before the placement of reinforcing steel.

On the basis of the design assumptions outlined in this report including the required monitoring period, settlement of the structures is expected to be within tolerance for the proposed development. Total settlement is expected to be on the order of 1 inch, with differential settlement on the order of 3/4 inch or less. These settlement values are based on our engineering experience with these soils, the anticipated structural loading, and are a guide for the structural engineer with his design.

We recommend the continuous footings have a minimum width of 18 inches and that isolated column footings have a minimum lateral dimension of 30 inches. The minimum dimensions recommended above help reduce the possibility of foundation bearing failure and excessive settlement due to local shear or "punching" action. In addition, footings should be placed at a depth to provide adequate frost cover protection. Therefore, we recommend footings in heated areas be placed at a minimum depth of 24 inches below the finished grade, and perimeter footings subject to climatic variations be located at a minimum depth of 30 inches below finished grade.

Option 2: Ground Improvement

As previsiouly mentioned, drilled aggregate piers or stone columns could be utilized as a ground improvement technique to decrease the risk of settlement and stabilize and improve the existing subgrade soils, in order for the engineered fill to be placed after stripping is complete.

Stone columns are a ground improvement technique in which a column of soil is replaced with open-graded crushed stone vibrated into place. In a similar manner, drilled aggregate piers are constructed by replacing a column of soil with well-graded aggregate, except the aggregate is compacted (not vibrated) as it is put in place. In this case, the footings within the building

footprint will not bear directly on the improved subgrade and will be supported by the newly placed engineered fill which is supported by an improved subgrade. While the footings within the overhang portion of the building will be directly bearing on the aggregate piers/stone columns. The piers generally consist of 24-inch to 30-inch minimum diameter drilled excavations. The soil reinforcement occurs as a result of the excavation of soft unsuitable soils and replacement by vibrated or compacted dense granular aggregate, such as VDOT No. 57, 21A, or 21B. In addition, some limited densification of the surrounding soils is reported to occur with aggregate piers, which will provide a suitable subgrade for fill placement to commence.

As with other soil improvement techniques, the aggregate piers are designed by a design build contractor and the proposed soil improvement plan is reviewed by the GER. We anticipate the contractor will perform a grid pattern throughout the proposed site to improve the subgrade soils, but different approaches may be proposed if competitive bids are solicited. We recommend that ECS review any such submittals. The design-build contractor should design a system to limit settlement of the underlying materials to no more than ½ inch after the new fill is placed. The design-build contractor should also take into account the foundation elements of the proposed building in their subgrade improvement plan. Where the depth of new engineered fill to be placed is less than the width of the overlying footing, an increased aggregate pier/stone column density may be required at the footing location to provide adequate improvement within the footing stress zone of influence. We expect that a bearing pressure on the order of 4,000 psf to 6,000 psf may be used for preliminary design if aggregate piers are used; however, the design build contractor will include this information as part of their soil improvement plan.

This information is provided for your use in preliminary design and budgeting. The stone columns or aggregate pier system should be designed by a design-build contractor and the proposed soil improvement plan should be reviewed by the GER.

Floor Slab Design

We expect the existing subgrade soils will either be undercut and replaced or be treated with ground improvement, atop which the new engineered fills will be constructed. Therefore, the slabs can be designed as slab on-grades for this project. Depending on which foundation earthwork option is chosen, a monitoring period may be necessary following fill construction and prior to slab construction.

Prior to sub-slab stone placement for soil fill (in areas where grades need to be raised), the slab on grade subgrade should be visually observed for soft/loose and/or excessively wet soils and the subgrade should be proofrolled utilizing a fully loaded tandem axle dump truck (minimum axle weight of 10 tons). Before the proofrolling, the subgrade should be densified in place to 95% maximum dry density). The stripped area should be observed by the Geotechnical Engineer of Record (GER) or their authorized representative during the time of construction in order to aid in locating all such unsuitable materials, which should be removed. Materials placed as engineered fill below the floor slab should be placed in accordance with the recommendations provided in the <u>Fill Placement</u> section of this report.

At a minimum, 8 inches of granular material having a maximum aggregate size of 1.5 inches and no more than 2% soils passing the No. 200 sieve should be placed below the slab. This granular layer will facilitate the fine grading of the subgrade and help prevent the rise of water through the floor slab. Prior to placing the granular material, the floor subgrade should be free of standing water, mud, and frozen soil. Before the placement of concrete, a vapor barrier may be placed on top of the granular material to provide additional moisture protection. Weldedwire mesh reinforcement should be placed in the upper half of the ground slab and attention should be given to the surface curing of the slab in order to reduce uneven drying of the slab and associated cracking.

Underslab Drainage

We recommend the below grade areas of the proposed development be provided with an interior perimeter and underslab subdrainage system (i.e., a "drained" condition). This recommendation applies to all areas within the building footprint that are below existing or proposed site grades. A sketch titled "Below-Grade Wall Waterproofing and Underslab Drainage Details" provides a graphical summary of our recommendations and is included in the Appendix. The system may consist of perforated or porous wall, closed joint drain tiles located around the interior perimeter of the below-grade areas, as close as feasible to the exterior wall, below the finished floor level.

Lateral drain lines under the floor slab should be placed at no more than 40 to 60 feet on center. Underslab drain lines should have a minimum diameter of 4 inches, be underlain by 2 inches of free draining material and have 6 inches of cover. They should be slotted or appropriately perforated. For the filter fabric we recommend a non-woven product such as Mirafi 140N with an AOS of 70 (U.S. Sieve) be placed on the entire subgrade. An equivalent geotextile fabric can also be used if approved by the Geotechnical Engineer of Record. Clean out access should be installed at all sharp bends and at approximately every 100 feet for straight runs.

We recommend that the interior perimeter and underslab drain system for the proposed building be designed to flow to via gravity to an adjacent storm structure or day-lighted onto the south portion of the site. Should gravity not be feasible, we recommend the permanent sump(s) be designed with a full duplex capability (i.e., two pumps per pit). We recommend that each individual pump rated at no less than 25 gpm for the multi-family building. With this configuration, under emergency conditions, these individual sumps would have the capacity to pump 50 gpm for the building. The contractor should monitor the pumping rate of the construction dewatering system in order to verify that the permanent sump pump has been adequately sized. Smaller or conversely larger pumps may ultimately be needed. Once the plans are further developed, please contact ECS so that we can refine our pumping estimates. Based on the actual design below-grade and water conditions

Pavements

For the design and construction of exterior pavements, we recommend the subgrade be prepared following the recommendations included in the previous sections of this report. The stripped surface should be proofrolled and carefully observed by the GER at the time of construction in order to aid in identifying the localized soft or unsuitable materials, which would be removed. In addition, the guidelines provided in the section entitled <u>Subgrade Preparation</u> and <u>Earthwork Operations</u> should be followed. At the time of subgrade preparation, additional laboratory testing, consisting of California Bearing Ratio (CBR) and Atterberg limit tests, should be performed on representative subgrade materials in the proposed pavement areas to confirm final design of these pavements prior to installation.

CBR testing was not performed during the previous exploration; however, based on the materials encountered, and our experience with similar soils, we recommend a design CBR value of 4 to 6 be used for **preliminary** design for the near surfaced natural clay soils. We recommend CBR samples be obtained within the upper 12 inches of the subgrade soils during construction for final pavement design. The value(s) obtained during construction should be used to confirm and/or change the design of the pavements. If the results of the CBR tests performed during construction differ from that mentioned above, the pavement design should be modified as necessary. Pavements and subgrades should have a minimum cross-slope of 2% and where the pavement base course does not daylight, underdrains should be installed on the low side of pavements.

The pavement recommendations provided herein are for preliminary planning purposed only. A detailed pavement design and analysis is required to be performed by the site civil engineer prior to construction.

Retaining Walls

Site Retaining Walls

We understand the proposed site grading will require a retaining wall, with a maximum height of 12 feet, along the south property line of the site. In general, we understand the retaining wall will have a top elevation that ranges from EL. 63 to 65 feet while the toe will be at EL. 52 to 54 feet. Cross section C-C' included within the Appendix visually shows the retaining wall profile as well as the borings advanced within that area. Please note, borings advanced along the south property line were generally advanced for stormwater infiltration facilities and not the proposed retaining wall.

The design of the retaining wall will be performed by a specialty design/build contractor to determine the most economical solution; however, post and panel type wall, segmental block gravity type wall, or cast-in-place concrete walls are all feasible at the site. Please note, the existing fill soils and natural soils will likely not be acceptable backfill for a segmental block wall. When additional details for the retaining wall are known, ECS should be contacted to participate in the design/evaluation process. Since details for proposed retaining wall are unknown at this time, we are providing the following general parameters for design.

We recommend the retaining wall be designed using a linearly increasing lateral "active" earth pressure of approximately 40 psf per vertical foot of wall if free draining granular materials (SP, SW, GP, GW) are used for wall backfill. Additionally, we recommend a coefficient of friction against sliding of 0.30 for the wall foundation which will be bearing in the natural clay, silts and sands. The retaining wall should be designed so that the resultant of the overturning forces remains in the central one-third of the footing. The foundations for the proposed retaining wall should be designed for a net allowable soil bearing pressure on the order of 2,500 psf, provided that the footings are founded within firm natural soils or engineered fill placed over firm natural soils with SPT N-values greater than 6 blows per foot (bpf). Based on the soils encountered at the proposed footing elevation, undercutting should be expected. The proposed retaining wall should also be designed for any surcharge load within a 45 degree slope from the base of the wall and the sloping backfill onsite. A Lateral Earth Pressure Diagram – Site Retaining Walls, illustrating our general recommendations regarding the application of lateral earth pressure on

the retaining wall is included with the Appendix of this report. At this time, the design recommendations provided are considered general and should be specifically evaluated based on the type of wall and construction processes to be used for its installation. In addition, we recommend ECS review the design documents prior to construction of the retaining wall.

The recommendations contained above assume that the backfill behind the retaining walls is properly drained through the use of a gravel chimney drain or suitable man-made drainage medium. Drainage of the backfill may be accomplished through the use of 4-inch diameter weep holes at 8 feet spacing, through the wall, immediately above proposed grade at the front of the wall. Alternatively, a longitudinal drain line could be used behind the retaining wall. The drain should consist of a 6-inch perforated pipe surrounded by a minimum of 6 inches of #57 stone and encapsulated in a geotextile fabric. The geotextile used should be reviewed and approved by the GER.

As previously mentioned, the final site layout (site retaining walls, sidewalks, etc.) and proposed grading is unknown at this time. The selected wall design engineer should take into account global stability during the design process and <u>additional analysis will be necessary once</u> <u>additional design details are known. Please contact ECS to complete this analysis once the design is finalized.</u>

Below-Grade Walls

We understand the building level walls will be below grade or partially buried due to grade changes on the site. Walls should be designed to withstand lateral earth pressures and surcharge loads. Where a below-grade drainage system is utilized that effectively eliminates hydrostatic pressures, we recommend the below-grade walls be designed for a linearly increasing lateral earth pressure of 60 psf per foot of wall depth. This lateral earth pressure assumes that the below grade walls are fully drained (i.e., hydrostatic pressures) and does not include any surcharge loads. Any surcharge loads imposed within a 45 degree slope of the base of the wall should be considered in the below-grade wall design. The influence of these surcharge loads on the below-grade walls should be based on an at-rest pressure coefficient, k_0 , of 0.5. The below-grade walls are recommended to be fully waterproofed as well. A Lateral Earth Pressure (LEP) Diagram-Drained is included in the Appendix of this report.

Suitable man-made drainage materials may be used in lieu of the granular backfill, adjacent to the site retaining and/or below-grade walls. The LEP Diagram provided is applicable where drainage board is used to drain water from the wall and behind the walls. Examples of suitable materials include Enka Mat, Mira Drain, or Geotec Drains. These materials should be covered with a filter fabric having an Apparent Opening Size (AOS) consistent with the size of the soil to be retained. The material should be placed in accordance with the manufacturer's recommendations and should be discharged to a suitable outlet.

If appropriate and where a space exists between the outside of the walls and the excavation, granular backfill may be placed in lieu of manmade drainage material. Granular fill should extend to a level of approximately two feet below the final outside grade. The remaining two feet should consist of a clayey material to reduce the amount of surface water infiltration into the granular material. The ground surface adjacent to the walls should be kept properly graded to prevent ponding of water adjacent to the walls.

Temporary and Permanent Slopes

Temporary fill slopes constructed of on site native sandy, silty or clayey soils should be limited to a maximum gradient of approximately 2H:1V. The temporary slopes should also be thoroughly vegetated to help reduce erosion of the surficial soils. Temporary excavation slopes cut in the native soils should be no steeper than 1H:1V, or as indicated by OSHA and VOSHA protocol. Permanent slopes constructed of native soils should generally be 3H:1V or flatter. Slopes steeper than 3H:1V should be designed by the GER. Gradients as steep as 2H:1V may be achieved through the use of select aggregate or engineered rock fills, as well as through the installation of geosynthetics in native soils, but again, must be designed by the GER. Small landscape berms (< 5 feet in height) may be as steep as 1H:1V but should be compacted as structural fill and thoroughly vegetated immediately upon completion.

Infiltration Test Results

The individual infiltration tests and laboratory testing results are included as an attachment to this report and are summarized in Table 2 below.

Infiltration Test Location	Depth of Infiltration Test (ft)	Soil Classification at Infiltration Soil Horizon ¹ (USCS/USDA)	Measured Field Infiltration Rate (in/hr) ²
I-1	6.0	CL	0.00
I-2	6.0	CL	0.01
I-3	6.25	CL	0.00
I-4	6.25	CL	0.52
I-5	6.25	CL	0.00
I-6	6.25	CL	0.00
I-7	6.25	CL	0.00
I-8	6.0	SM	0.00
I-9	6.0	SM	0.00
I-10	6.25	CL	0.00
I-11	6.25	CL	1.47
I-12	6.25	ML	0.00
I-13	6.25	CL	0.00
I-14	6.0	ML	0.63
l-15	6.25	CL	0.01
I-16	5.75	CL	0.00
I-17	6.25	ML	0.11
I-18	6.25	ML/Loam	0.42
I-19	5.75	ML/Loam	0.83

Table	2:	Field	Infiltration	Rates
-------	----	-------	--------------	-------

1. The soil classification was based upon samples collected from adjacent boring. At the direction of the project civil engineer, USDA classification was only performed on samples for I-18 and I-19.

2. Site conditions are variable and the project civil engineer should consider applying a factor of safety to these higher field infiltration rates to account for the different soil horizons encountered.

Site Seismic Considerations

The subsurface exploration completed for the proposed development included the drilling of 18 borings to depths ranging from 8.0 to 60 feet below the existing surface elevation. The International Building Code (IBC) 2012 requires site classification for seismic design based on the upper 100 feet of a soil profile. Where site specific data are not available to a depth of 100 feet, appropriate soil properties are permitted to be estimated by the registered design professional preparing the soils report based on known geologic conditions.

Three methods are utilized in classifying sites, the shear wave velocity (v_s) method; the unconfined compressive strength (s_u) method; and the Standard Penetration Resistance (N-value) method. The Standard Penetration Resistance method was used in classifying this site. Based on our interpretation of IBC 2012 and Section 1613.3.2, the project is defined as "Site Class D" for seismic design considerations. The Site Class definition should not be confused with the Seismic Design Category designation, which the Structural Engineer typically assesses.

In addition to the seismic site class noted above, ECS has determined the design spectral response acceleration parameters following the IBC 2012 methodology. The Mapped Reponses were estimated from the free <u>Java Ground Motion Parameter Calculator</u> available from the USGS website. The design responses for the short and 1-second period (SDS and SD1) are noted at the far right end of the Table 2.

Period (sec)	Mappeo Res Accele	l Spectral ponse erations (g)	Values of Site Coefficient for Site Class D		Maximum Respo Acceler Adjusted Class	Spectral onse ation for Site (g)	Design Spectral Response Acceleration (g)		
Reference	Figures (1)	8 1613.3.1 & (2)	Tables 1613.3.3 (1) & (2)		Eqs. 16 16-3	-37 & 38	Eqs. 16-39 & 16-40		
0.2	Ss	0.118	Fa	1.6	S _{MS}	0.189	S _{DS}	0.126	
1.0	S ₁	0.051	F _v	2.4	S _{M1}	0.122	S _{D1}	0.081	

Table 3: Ground Motion Parameters (IBC 2012 Method)

Subgrade Preparation and Earthwork Operations

Initial preparation of the site should consist of complete removal of any existing building elements or foundations, retaining walls, pavements, sidewalks, and abandoned utilities as well as any trees, shrubs, and other deleterious organic or refuse material. Further excavation to the design subgrade level should be limited to about 1 foot above the design subgrade for the lowest level subgrade elevation. This remaining 1-foot of material should remain in place during foundation installation just until the slab or engineered fill is ready for placement. This can reduce the amount of subgrade undercutting necessary due to disturbance from construction activities.

The stripping within the proposed structural building and pavement areas should be extended at least 5 feet, where possible, beyond the planned limits of the proposed building and pavements. Stripping limits should be extended an additional 1 foot for each foot of fill required at the building's exterior edge.

After stripping to the desired grade and performing all necessary excavation (and after the installation of the aggregate piers/stone columns if used), and prior to any engineered fill placement, the exposed soils should be carefully examined to identify any localized loose, yielding or otherwise unsuitable materials by an experienced geotechnical engineer or their authorized representative. After examining the exposed soils, loose and yielding areas can be identified by proofrolling with an approved piece of equipment, such as a loaded dump truck, having an axle weight of at least 10 tons. If any soft or unsuitable materials are encountered during proofrolling, the GER should be contacted for further recommendations.

Existing fill material will be prevalent throughout the project site. Should aggregate piers be selected for subgrade ground improvement, we recommend the materials currently present be left in place provided they are stable for the support of compaction of engineered fill, followed by the pier installation. If aggregate piers are not used, the existing fill materials should be completely removed under the proposed building pad and backfilled to building bad subgrade elevation with engineered fill as outlined in the Fill Placement section herein. Existing fill materials may remain in place under the proposed pavement areas provided they are stable during proofrolling operations as noted above. However, in order to reduce the potential for future settlement and reduced life cycle costs of the proposed pavement, we recommend the existing fill material be removed to a minimum of 2 feet below all of the proposed pavement subgrade elevations. At this depth, the subgrade should be proofrolled and, provided the areas are stable, should be backfilled to pavement subgrade elevation with engineered fill as outlined in the Fill Placement settlement and, provided the areas are stable, should be backfilled to pavement subgrade elevation with engineered fill as outlined in the Fill Placement section herein. However, should yielding or soft areas be encountered beneath any fill, the GER should be contacted for additional recommendations.

The preparation of any areas to receive engineered fill, as well as proposed building subgrades should be observed on a full-time basis. These observations should be performed by the GER, or their authorized representative, to document that all unsuitable materials have been removed, and that the subgrade is suitable for support of the proposed construction and/or fills.

Fill Placement

Engineered fills are anticipated for the project and all engineered fill should consist of an approved material (approved by the GER), free of organic matter and debris, cobbles greater than 4-inches, and have a Liquid Limit and Plasticity Index less than 40 and 20, respectively. Unacceptable engineered fill materials include topsoil and organic materials (OH, OL), and high plasticity silts and clays (CH, MH). Under no circumstances should high plasticity soils be used as engineered fill material. Wall (retaining walls or below-grade walls) backfill will require a maximum Liquid Limit and Plasticity Index of 40 and 15, respectively. Undercuts beneath footings should be replaced with lean concrete or approved engineered fill.

Based on the materials encountered during the subsurface exploration, a majority of the on-site soils **will not** be suitable for reuse as engineered fill or will be difficult to work with due to their moisture sensitive properties and segregate construction debris. Alternative sources for engineered fill materials may be necessary for grading of the site.

Engineered fill materials should be placed in lifts not exceeding 8-inches in loose thickness and moisture conditioned to within ±2 percentage points of the optimum moisture content. Soil bridging lifts should not be used, since excessive settlement of overlying structures will likely occur. Controlled engineered fill soils placed below the building pad should be compacted to 98% of the maximum dry density obtained in accordance with ASTM Standard D-698, Standard Proctor Method. Controlled engineered fill soils placed below the pavement areas should be compacted to a minimum of 98% of the maximum dry density obtained in accordance with ASTM Standard D-698, Standard Proctor Method. However, the upper one foot of engineered fill soils supporting pavements, sidewalks, or gutters should be compacted to a minimum of 100% of the maximum dry density obtained in accordance with ASTM Standard D-698.

To minimize excessive pressures against the below-grade walls and to reduce the settlement of the wall backfill, it is recommended the wall backfill (if required) be compacted to 95% of the maximum dry density determined in accordance with ASTM Standard D-698, Standard Proctor Method. Heavy earthwork equipment should maintain a minimum horizontal distance away from the below-grade walls of 1 foot per foot of vertical wall height. Lighter compaction equipment should be used close to the below-grade walls.

The footprint of the proposed building pad, pavement, and engineered fill areas should be well defined, including the limits of the engineered fill zones at the time of engineered fill placement. Grade control should be maintained throughout the engineered fill placement operations. All engineered fill operations should be observed on a full-time basis by the GER or their authorized representative to determine the compaction requirements specified are being met. A minimum of one compaction test per 2,500 square-foot area should be tested in each lift placed. The elevation and location of the tests should be clearly identified at the time of fill placement.

In any areas where the total depth of fill will exceed 5 feet, we recommend these fill zones be placed as early as possible in the earthwork operations phase and that the fill soils be compacted per the recommendations above. The purpose of the higher compaction criteria is to reduce differential settlement between natural cut soils and controlled fill soils and total settlement of the fill mass. Additionally, we recommend these areas are monitored using settlement platforms as described herein, if the pier option is not chosen. Please note that although the building pad areas may be improved through the use of aggregate piers/stone columns, the engineered fill placed to achieve the final subgrade elevations will still be required to be placed and compacted in accordance with the recommendations outlined above (i.e. 98% compaction within the building pad locations and within the pavement areas).

Compaction equipment suitable to the soil type used as engineered fill should be used to compact the engineered fill material. Theoretically, any equipment type can be used as long as the required density is achieved. Ideally, a steel drum roller would be most efficient for compacting and sealing the surface soils. All areas receiving engineered fill should be graded to facilitate positive drainage from the building pad and pavement areas of any free water associated with precipitation and surface runoff.

Prior to the commencement of fill operations and/or utilization of any off-site borrow materials, the GER should be provided with representative samples to determine the material's suitability for use in a controlled compacted fill and to develop moisture-density relationships (minimum of 5-days prior to use). In order to expedite the earthwork operations, if off-site borrow materials are required for use as engineered fill, it is recommended they consist of a select granular material which will provide suitable support and be easily compacted and well drained.

Engineered fill materials should not be placed on frozen soils or frost-heaved soils and/or soils that have been recently subjected to precipitation. All frozen soils should be removed prior to continuation of fill operations. Borrow fill materials, if required, should not contain frozen materials at the time of placement. All frost-heaved soils should be removed prior to placement of controlled, compacted fill, granular subbase materials, foundation or slab concrete, and asphalt pavement materials.

Settlement Platform Recommendations

Based on the way in which the subgrade will be prepared, we recommend the use of settlement platforms if the undercut and replace option is chose during the installation of the engineered fill which will support the proposed building pad and parking lot. This work will consist of the installation of settlement platforms as specified herein. The Contractor shall furnish all necessary labor, equipment, and materials and shall perform all operations necessary and incidental to the installation of all instrumentation specified. If requested, ECS can provide the fabrication, installation, and monitoring of the settlement platforms. Instrumentation shall be performed at locations as directed by the Engineer.

Part 1 – General

1. Settlement platforms are surface displacement reference platforms placed on the prepared ground surface in locations selected by the GER. Settlement platforms shall consist of 3-foot square plates to which risers are attached. The risers are extended as the engineered fill is placed. Settlement platforms are monitored by optical survey methods to determine vertical displacements occurring during and after fill construction.

Part 2 – Submittals

1. Prior to installation, the Contractor shall submit suppliers' or manufacturer's plans (or shop drawings) to the GER for approval.

Part 3 – Materials

1. The base plate shall be made from 1/8-inch thick steel plate conforming to the requirements of ASTM A 36. The casing and inner riser pipe shall be steel pipe conforming to the requirements of ASTM A 53, welded, standard weight. The casing shall consist of 3-inch diameter pipe and the riser shall consist of 1-1/2 inch diameter pipe. Centralizing spacers shall also be provided to maintain the alignment of the exterior casing.

Part 4 – Equipment and installation Procedure

- 1. The GER shall be present during installation of the settlement platforms to determine the general degree of contractor compliance with the plans and specifications.
- 2. Settlement platforms should be constructed and installed before placement of any engineered fill material. Installed on the improved subgrade, as well as within the engineered fill. The settlement platforms shall be installed on a 4-inch thick sand base on the improved subgrade surface and engineered fill surface. The riser pipe shall be marked in 1-foot increments and labeled at 5-foot increments to indicate the distances above the platform extending up through the engineered fill.
- 3. The sand base shall be tamped to provide a firm, level, and unyielding bearing surface for the base plate. The original ground surface must be stripped and prepared in accordance with the previous sections of this report prior to placement of the sand base. The casing and riser pipes shall be steel pipes of Schedule 40 (ASTM A 53) with a maximum length of 6 feet. Spacers shall be provided between the riser pipe and the casing at a minimum of 3-foot intervals to ensure concentricity. A container, approximately 2.5 feet in diameter and 3 feet high, with both ends open, shall be placed around the initial length of casing pipe. This container shall be backfilled with tamped clean sand or fine gravel to support the pipe in a vertical position during fill placement until the fill is carried above the platform.
- 4. The casing pipe shall be marked by flags to clearly show its location and to warn equipment operators and others of its location. The Contractor shall maintain the flags during the entire length of the Contract and replace those flags that are missing. At no time shall the settlement platform risers extend higher than 5 feet above the fill surface elevation.
- 5. The Contractor is responsible for maintaining the settlement platforms in working order. Settlement platforms damaged by the Contractor's construction operation or the operation of subcontractors under the direction of the Contractor shall be repaired or replaced by the Contractor at his expense within three calendar days after the damage occurs.
- 6. The platforms shall be surveyed by the GER (vertically and horizontally) upon completion of the installation of the settlement platforms. All settlement platforms should be initially surveyed within 24 hours after installation and prior to starting engineered fill placement. During engineered fill placement and after the engineered fill has reached the subgrade elevation, the platforms shall be surveyed once per week while the engineered fill is being

placed and for a period of 15 to 60-days upon the completion of grading operations within the building limits have been completed. Building construction can begin, once the GER indicates that any settlements observed appear to have stabilized; however, we recommend settlement monitoring continue through building construction.

Construction Dewatering

As noted previously in this report, groundwater was not encountered at elevations above EL. 45 feet in the borings performed. We anticipate construction phase dewatering operations, if necessary, can be handled by the use of conventional sump pit and pump operations in conjunction with trenching. It may be necessary to use several sump pits and pumps around the site along with temporary trenches or french drains consisting of free draining granular stone wrapped in filter fabric to direct the flow of water and to remove water from the excavation. A French Drain installation detail is included in the Appendix of this report for reference. We recommend that the sump pits be established at an elevation at least 2 to 3 feet below the design footing subgrade elevation on the excavation. Perforated 55 gallon drums, or other temporary structures could be used to house the pumps. Regardless of the water control techniques ultimately selected, the soils at the design subgrade elevation will be both water and disturbance sensitive. ECS should be retained to review the final dewatering system chosen.

<u>Closing</u>

In addition to geotechnical engineering services, ECS Capitol Services, PLLC has the in-house capability to perform multiple additional services as this project moves forward. These services include the following:

- Global Stability Analysis;
- 3-D Monitoring of the SOE and adjacent structures;
- Construction Material Testing / Special Inspections; and,
- Third Party Inspections / Code Compliance for MEP, Elevators, etc.

We would be pleased to provide these services for you. If you have any questions with regard to this information or need any further assistance during the design and construction of the project please feel free to contact us.

This report only provides preliminary recommendations for early design and early construction planning and ECS should be provided with the design documents as the project progresses to confirm the recommendations included herein are applicable. Depending on the final building layout/elevation, additional/alternate recommendations may apply.

APPENDIX

Unified Soil Classification System

Reference Notes for Boring Logs

Boring Logs B-1 through B-18

Laboratory Test Results

Lateral Earth Pressure Diagrams

Zone of Influence Diagram

French Drain Installation Procedure

Below Grade Wall Waterproofing and Underslab Drainage Diagram

Boring Location Diagram (Sheet 1 of 4)

Cross Section A-A (Sheet 2 of 4)

Cross Section B-B (Sheet 3 of 4)

Cross Section C-C (Sheet 4 of 4)

UNIFIED SOIL CLASSIFICATION SYSTEM (ASTM D 2487)

Major Divisions		Group Typical Names		Laboratory Classification Criteria							
Major Divisions		Symbols		I ypical Names							
ained soils arger than No. 200 Sieve size)	<u>.</u> 2	jravels or no es)	GW	v	sand mixtures, little or no fines	t soils	$ \begin{array}{c} \underline{s}\\ \overline{c}\\ \overline{c}\\ \overline{c}\\ \overline{c} \end{array} \end{array} \qquad \begin{array}{c} C_u = D_{60}/D_{10} \text{ greater than 4}\\ C_c = (D_{30})^2/(D_{10}xD_{60}) \text{ between 1 and 3} \end{array} $				
	se fraction eve size)	Clean g (Little fine	GF	>	Poorly graded gravels, gravel-sand mixtures, little or no fines	rse-grainec	Not meeting all gradation requ	irements for GW			
	Gravels ore than half of coar larger than No. 4 si	vels with fines ciable amount of fines)	GMª	d	Silty gravels, gravel-sand mixtures	urve. 200 sieve size), coa bols ^b	Atterberg limits below "A" line or P.I. less than 4	Above "A" line with P.I. between 4 and 7 are borderline cases requiring use of dual symbols			
	Ŵ)	Grav (Appre	GC	2	Clayey gravels, gravel-sand- clay mixtures	rain-size cu r than No g dual sym	Atterberg limits below "A" line or P.I. less than 7				
Coarse-gra naterial is la	Sands More than half of coarse fraction is smaller than No. 4 sieve size)	sands or no es)	SN	V	Well-graded sands, gravelly sands, little or no fines	avel from g tion smalle SP SC es requiring	$C_{u} = D_{60}/D_{10} \text{ greater than } 6$ $C_{c} = (D_{30})^{2}/(D_{10} \times D_{60}) \text{ between 1 and 3}$				
in half of m		Clean (Little fin	SP		Poorly graded sands, gravelly sands, little or no fines	ind and gra fines (fract GC, SM, derline case	Not meeting all gradation requ	irements for SW			
(More tha		fines nount of	SMª	d	Silty sands, sand-silt mixtures	itages of sa rcentage of ollows: ant GW cent GM,	Atterberg limits above "A" line	Limits plotting in CL-MI			
		ands with 1 eciable an fines)		u		ine percer ding on per ssified as f an 5 perce nan 12 perce percent		zone with P.I. between 4 and 7 are borderline cases requiring use of dual symbols			
	E)	Sa (Appr	SC		Clayey sands, sand-clay mixtures	Determ Depend are clas Less th More th 5 to 12	Atterberg limits above "A" line with P.I. greater than 7				
(6	lays	ML	-	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands, or clayey silts with slight plasticity		Plasticity Chart					
. 200 Sieve	Silts and c	ud limit less	CL	-	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	60 50		"A" line			
an No		(רומו	OL	-	Organic silts and organic silty clays of low plasticity	× 40		СН			
ained soils s smaller th	s,	nan 50)	MF	4	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts	30	CL				
Fine-gr f material is	lits and clay	imit greater t	С⊦	4	Inorganic clays of high plasticity, fat clays			1H and OH			
re than hal	<u>.</u>	(Liquid I	OF	1	Organic clays of medium to high plasticity, organic silts	0	CL-ML ML and OL	0 70 80 90 100			
OM)	Highly Organic soils H		t	Peat and other highly organic soils		Liquid Limit					
^a Divi	sion of GN	A and SM	groups	into s	subdivisions of d and u are for roa	ads and airfields only	. Subdivision is based on Attern	perg limits; suffix d used when			
^b Bor GW-	derline cla GC,well-gr	assification aded grav	is, usec rel-sand	for a mixt	soils possessing characteristics ure with clay binder. (From Ta	of two groups, are d ble 2.16 - Winterkor	lesignated by combinations of <u>c</u> n and Fang, 1975)	roup symbols. For example:			

REFERENCE NOTES FOR BORING LOGS

I. Drilling Sampling Symbols

SS

RC

DC

BS

- Split Spoon Sampler ST Shelby Tube Sampler
 - Rock Core, NX, BX, AX PM Pressuremeter
 - Dutch Cone Penetrometer RD Rock Bit Drilling
 - Bulk Sample of Cuttings PA Power Auger (no sample)
- HSA Hollow Stem Auger
- WS Wash sample
- REC Rock Sample Recovery % RQD Rock Quality Designation %

II. Correlation of Penetration Resistances to Soil Properties

Standard Penetration (blows/ft) refers to the blows per foot of a 140 lb. hammer falling 30 inches on a 2-inch OD split-spoon sampler, as specified in ASTM D 1586. The blow count is commonly referred to as the N-value.

A. Non-Cohesive Soils (Silt, Sand, Gravel and Combinations)

Dens	ity	Relative Properties			
Under 4 blows/ft	Very Loose	Adjective Form	12% to 49%		
5 to 10 blows/ft	Loose	With	5% to 12%		
11 to 30 blows/ft	Medium Dense				
31 to 50 blows/ft	Dense				
Over 51 blows/ft	Very Dense				

	Part	ticle Size Identification
Boulders		8 inches or larger
Cobbles		3 to 8 inches
Gravel	Coarse	1 to 3 inches
	Medium	1/2 to 1 inch
	Fine	1/4 to 1/2 inch
Sand	Coarse	2.00 mm to ¼ inch (dia. of lead pencil)
	Medium	0.42 to 2.00 mm (dia. of broom straw)
	Fine	0.074 to 0.42 mm (dia. of human hair)
Silt and Clay		0.0 to 0.074 mm (particles cannot be seen)

B. Cohesive Soils (Clay, Silt, and Combinations)

Blows/ft	Consistency	Unconfined Comp. Strength Q₀ (tsf)	Degree of Plasticity	Plasticity Index
Under 2	Very Soft	Under 0.25	None to slight	0 – 4
3 to 4	Soft	0.25-0.49	Slight	5 – 7
5 to 8	Medium Stiff	0.50-0.99	Medium	8 – 22
9 to 15	Stiff	1.00-1.99	High to Very High	Over 22
16 to 30	Very Stiff	2.00-3.00		
31 to 50	Hard	4.00-8.00		
Over 51	Very Hard	Over 8.00		

III. Water Level Measurement Symbols

WL	Water Level	BCR	Before Casing Removal	DCI	Dry Cave-In
ws	While Sampling	ACR	After Casing Removal	WCI	Wet Cave-In
WD	While Drilling	∇	Est. Groundwater Level	🗑 Est. Se	easonal High GWT

The water levels are those levels actually measured in the borehole at the times indicated by the symbol. The measurements are relatively reliable when augering, without adding fluids, in a granular soil. In clay and plastic silts, the accurate determination of water levels may require several days for the water level to stabilize. In such cases, additional methods of measurement are generally applied.

CLIENT				JOB #		BORING	i #		SHEET			
Pennrose P	ties,	LLC		3	7:1404		B-1		1 OF 2	57		
PROJECT NAME					ARCHI	FECT-ENGINEEF	1			-		25
Deanwood SITE LOCATION	Hills									_		TM
5201 Haves	e Stro	ot N	E Washingto	n District of (Colur	nhia				-O- CALIBRATED F	PENETROMETE	R TONS/FT ²
NORTHING	5 0110	EASTI		STATION	Colui	Πρια				ROCK QUALITY DE	SIGNATION & F	RECOVERY
											NEO //	
	ш (Î	Î	DESCRIPTION OF M	ATERIAL		ENGLISH	UNITS	SI É		PLASTIC N LIMIT% CC	WATER INTENT%	LIQUID LIMIT%
E NO.		ERY (BOTTOM OF CASIN	G 📕	LOSS	OF CIRCULATIC			.9/	×	•	<u>∕</u> ∆
AMPL	AMPL	ECOV	SURFACE ELEVATIO	ON 77				VALEP	SMOT	STANDAI	RD PENETRAT _OWS/FT	ION
	<u>0 0</u>	18	√Topsoil Depth	[2"]				<u> </u>	2 5	14-8		
			(CL) SANDY L Brown, Moist,	EAN CLAY WIT	TH GR/ Very S	AVEL, Light tiff	V/Æ	- - 75	9			
	20 10	10	-					_	6			
5-2_5	55 18	18						_	11	21-8		
5			-					_	3			
S-3S	SS 18	18						-	5 6	11-⊗		
								- 70				
			-					_	3			
	SS 18	18	-			3 4	7					
								_				
			(SC) CLAYEY	SAND, Reddish	ו Brow	n, Moist,		- 65				
			Loose	·				-	2			
S-5 S	SS 18	18						_	23	5-🛠		
								_				
								- 60				
			(SM) SILTY SA	AND Black Moi	ist Ver	vloose		_				
	SS 18	15			.01, 101	, 20000		_	2	⊗-3		
20			-				_	_	2			
							_					
			(SM) SILTY SA Moist, Loose	AND WITH GRA	VEL, (Gray,	_	- 55				
	55 18	15	,				_	_	2	7		
25			-					_	5			
								-				
							_	- 50				
			(CL) SANDY L	ean CLAY, Ligh	nt Purp	le, Moist,		_	7			
	SS 18	18						_	11 13	24-⊗		
	I	I	I				V////					
												PAGE.
THE S	STRATIF					DARY LINES BE	TWEEN SC		PES. IN-SITU THE TRANSITION MAY BE GRADUAL.			AL.
≝ wLN/A ₩	_	ws∟	WD	BORING STARTE	U	12/18/14		-+				
₩ WL(BCR)	Ţ	WL(AC	CR)	BORING COMPLE	TED	12/19/14		-+	CAVE	E IN DEPTH		
₩L			RIG 750 ATV		FOREMAN N	adal		DRIL	LING METHOD 4.25 H	SA		

CLIENT							JOB # BORING #				SHEET			
Pennr	ose	Pro	oer	ties,	LLC		37	:1404		B-1		2 OF 2	FPG	
Dean		l Hil	ls				ARCHITE	CT-ENGINEER	{					
SITE LOC	ATION						-						ENETROMETER TONS/FT ²	
5201 NORTHIN	Haye	es S	tree	<u>et, N</u> Eastin	<u>E, Washingto</u> ^{NG}	n, District of Columbia					ROCK QUALITY DESIGNATION & RECOVERY RQD% REC%			
			Î		DESCRIPTION OF N	IATERIAL		ENGLISH	UNITS			PLASTIC V	VATER LIQUID	
Ê.	ġ	ТҮРЕ	DIST. (RY (IN)	BOTTOM OF CASIN	NG LOSS OF CIRCULATION 🔤 🔒 Z				=	LIMIT% CO	-		
DEPTH (F	SAMPLE	SAMPLE	SAMPLE	RECOVE	SURFACE ELEVATI	on 77				WATER L ELEVATIO	BLOWS/6	\otimes STANDAF	ND PENETRATION	
CL) SANDY Lean CLAY, Light Purple, Moist, Stiff to Hard														
	S-9	SS	18	18						_	8 8 15	23-🔗		
35										_				
										40				
_										_	6	18 18.1	^	
40	S-10	SS	18	18							7	14-8 🐨 — 7	2/	
										35 				
	S-11	SS	18	18						- 	9 12 18	3	0-8	
45										-	10			
										30				
											6			
 50 —	S-12	SS	18	18						_	13 16	29	-8	
_										25 				
	S-13	SS	18	18						_ 	8 12	24-&		
55										_	12			
	-									20				
											12			
60 -	S-14	SS	18	18						_	20 28		48->	
					END OF BOR	ING @ 60.00'								
▽	THI	STR	ATIFI				TE BOUNDARY LINES BETWEEN SOIL TYP				ES. IN-	SITU THE TRANSITION M	AY BE GRADUAL.	
l ∰ WL N			.	WS []			D 12/18/14							
₩ WI	υп)		Ŧ	VVL(AC	<i>יח</i> י		ETED 12/19/14							
÷ ""							750 ATV FOREMAN Nadal							

CLIENT		JOB #		BORING #		SHEET				
Pennrose Proper	ties, LLC	ARCH	37:1404	B-2		1 OF 2	ECC			
Deanwood Hills SITE LOCATION						0				
5201 Haves Stree	at NE Washingto	n District of Colu	mhia							
NORTHING	EASTING	STATION	Πισια	ROCK QUALITY DESIGNATION & RECOVERY RQD% REC%						
Ê	DESCRIPTION OF M			PLASTIC W	ATER LIQUID					
Т) 7РЕ 0IST. (E BOTTOM OF CASIN	G LOSS	S OF CIRCULATION			LIMIT% CONTENT% LIMIT%				
HTH (F		70		ER LE	WS/6'	🛞 STANDAR				
SAN SAN SAN				MAT C	BLO	BL	OWS/FT			
0S-1 SS 18	18 Topsoil Depth (CL) SANDY L	[2"] .EAN CLAY, Light Bro	own, Moist,		3 5 5	10-🔆				
_	Medium Stiff to	very Stiff			Ĵ					
S-2 SS 18	18				3 5 8	13-📎				
5										
	18				6 7 10	17-🔗				
					10					
	15				2 2 4	6-⊗ 18 -₩ ●				
10				60	-	20.2				
<u> </u>	18				3	7-1				
15				55	4	1				
	(SM) SILTY SA	AND WITH GRAVEL,	Light							
	Brown, Moist,	Medium Dense		_	2					
	18				8 7	15-🛇				
			Noist							
	Very Stiff	EAN CLAY, LIGHT BR	own, ivioist,							
	18				6 7	17-🚫				
25				45	10					
					12					
S-8SS18	15			40	10 9	19-⊗				
			ĺ	/////						
							AV DE CRADUAL			
			12/22/14	VVEEIN SUIL I YP	⊏o. IN-8		AT DE GRADUAL.			
			10/00/14							
₩L(BCR)	VVL(AUK)		12/22/14		GAVE					
₩L		RIG 750 ATV	V FOREMAN Nadal DRILLING METHOD 4.25 HSA							

CLIENT							JOB # BORING #					SHEET			
Pennr PROJECT	OSE NAME	Prop	ber	ties,	LLC		37:1404 B-2					2 OF 2	ECQ		
Deany SITE LOC	NOOC ATION	l Hill	s												
5201	Науа		trod	st NI	= Washingto	n District of	Columbia								
NORTHIN	G	<u>,,,,,</u>		EASTIN	ig	STATION	Columbia					ROCK QUALITY DESIGNATION & RECOVERY RQD% REC%			
		щ	T. (IN)	(NI	DESCRIPTION OF I	MATERIAL	ENGLISH UNITS 의 대					PLASTIC W. LIMIT% CON	ATER LIQUID ITENT% LIMIT%		
I (FT)	О Щ	E TYF	E DIS	/ERY (BOTTOM OF CASIN	IG 📕	LOSS OF C	IRCULATION	1 21002>	TION	.9/8	X			
DEPTH	SAMPL	SAMPL	SAMPL	RECOV	SURFACE ELEVAT	ON 70		.		WATEF	BLOW	STANDARI BLC	D PENETRATION DWS/FT		
					(CL) SANDY		nt Brown, r	vioist,		-					
					Very Stiff to H	ard	it ruipie, iv	ioist,		- 	6				
35 —	S-9	SS	18	18						35	11 11	22-&			
										-					
	S-10	SS	18	18							22 18 23		41 🛇		
40										30 					
										-					
	S-11	SS	18	18						-	15 19		47 ⊗		
45										<u> </u>	28				
	S-12	SS	18	18						-	16 21		39 🛇		
50	0.12				END OF BOR	ING @ 50.00'				20	18				
										-					
									_	-					
55 —										— - — 15					
										- 					
									E	-					
									F	-					
60 —										<u> </u>					
	I	Į		I	I			I	I			.			
	THE	E STRA	TIFI	CATION	I LINES REPRESEN	THE APPROXIMAT	E BOUNDARY	LINES BETW	WEEN S		ES. IN-	SITU THE TRANSITION MA	AY BE GRADUAL.		
<u>⊒</u> w∟ N	J/A			WS	WD	BORING STARTE	D 12/22/14								
₩ WL(B	CR)		Ţ	WL(AC	R)	BORING COMPLE	ETED 12/22/14 CAV				CAVE	CAVE IN DEPTH			
¥ WL						RIG 750 ATV	FOREMAN Nadal DR				DRILLING METHOD 4.25 HSA				

CLIENT	JOB #	BORING #	SHEET			
Pennrose Properties, LLC	37:1404 ARCHITECT-ENGINEI	B-3	1 OF 2	EGQ		
Deanwood Hills						
				ENETROMETER TONS/FT ²		
NORTHING EASTING STAT	ISTICT OF COLUMBIA		ROCK QUALITY DESIGNATION & RECOVERY RQD% – — REC% ——			
			PLASTIC V LIMIT% CO	VATER LIQUID NTENT% LIMIT%		
L V F G K DOTTOIN OF CRAINED	MATER LE	⊗ STANDAF BL	RD PENETRATION OWS/FT			
0 S 18 18 Topsoil Depth [1"] S-1 SS 18 18 (CL) SANDY LEAN Soft to Very Stiff Soft to Very Stiff Soft to Very Stiff	CLAY, Light Brown, Moist,		⊗-3			
S-2 SS 18 15		60 2 3 2	5-&			
5		57	15-⊗			
		8				
S-4 SS 18 18		55 4	17-⊗●-19.9	9		
		50 ³ 5 8	13-⊗			
S-6 SS 18 10		45	∞-3			
		2				
S-7 SS 18 18		40 3 5 6	11-8			
(CL) SANDY Lean Very Stiff to Hard	CLAY, Light Purple, Moist,					
S-8 SS 18 18 30		35 [°] ₇ 10	17-8			
		С	ONTINUED O	N NEXT PAGE.		
		ETWEEN SOIL TYPES. II	N-SITU THE TRANSITION M	IAY BE GRADUAL.		
	ING STARTED 12/26/14 ING COMPLETED 12/26/14	CA	CAVE IN DEPTH			
꽃 WL RIG	IG 750 ATV FOREMAN Nadal DRILLING METHOD 4.25 HSA					

CLIENT							JOB # BORING #					SHEET			
Pennr	ose	Pro	oer	ties,	LLC		37:14	-04		B-3		2 OF 2	5		
PROJECT	NAME						ARCHITECT-E	NGINEER						55	
		<u>liH t</u>	ls											TM	
			1				Calumahia					-O- CALIBRATED P	ENETROMET	ER TONS/FT ²	
NORTHIN	G	<u> </u>	tree	<u>ƏL, INI</u> EASTIN	<u>e, wasningic</u> ^{IG}	STATION				ROCK QUALITY DESIGNATION & RECOVERY RQD% - — - REC% ——					
			î		DESCRIPTION OF I	MATERIAL	ENGLISH UNITS					PLASTIC WATER LIQUID			
Ē	ġ	YPE	IST. (I	(IN)	BOTTOM OF CASIN		LOSS OF CIF	CULATION	y >100%>	evels		LIMIT% CO	NTENT%	LIMIT%	
ЕРТН (F	AMPLE N	AMPLE T	AMPLE D	RECOVER	SURFACE ELEVAT	ION 64				"IOWS/6	STANDARD PENETRATION				
	0	0	0	<u>ш</u>	(CL) SANDY	Lean CLAY, Ligh	nt Purple, Mo	oist,		<u>> ш</u> 	<u> </u>				
					Very Stiff to H	ard				_					
											8				
35 —	S-9	SS	18	18						 	10 13	23-⊗			
													\backslash		
										_	15				
40	S-10	SS	18	18						25 	17 21		38-📎		
													X		
										- 			\	\setminus	
										_	18				
45	S-11	SS	18	18						20	20 25		4	5-🔗	
														/	
										_	0				
	S-12	SS	18	18						15 	11 19	31	0-⊗		
					END OF BOR	ING @ 50.00'			-	_					
									F						
										10					
55 —									E	-					
									╞						
									F						
									F	5					
60 —									F	_					
		I		I	I				F	_					
	THI	E STR/	ATIFI		I LINES REPRESEN	T THE APPROXIMAT	E BOUNDARY L	INES BET	WEEN S		ES. IN-	SITU THE TRANSITION M	IAY BE GRADU	JAL.	
							D 12/20	6/14							
₩ WL(BO	CR)		Ţ	WL(AC	R)	BORING COMPLE	TED 12/20	6/14			CAVE	AVE IN DEPTH			
₩ Ţ WL						RIG 750 ATV	FOREMAN Nadal DRI				DRILI	DRILLING METHOD 4.25 HSA			

CLIENT							JOB # BORING #					SHEET				
Pennro PROJECT N		Prop	bert	ies,	LLC		ARCHI	37:1404 TECT-ENGINEER	}	B-4		1 OF 2				
Deanwo	ood	Hill	s													
5201 Haves Street, NE, Washington. District of Columbia												-O- CALIBRATED PENETROMETER TONS/FT ²				
5201 H	laye	<u>s St</u>	ree	<u>et, NI</u> eastin	<u>E, Washingtor</u> ^{IG}	n, District of Columbia STATION						ROCK QUALITY DESIGNATION & RECOVERY RQD% – — REC% ——				
L DESCRIPTION OF MATERIAL ENGLISH UNITS 0, F												PLASTIC	WATER	LIQUID		
Ê	ġ	ТҮРЕ	DIST.	ERY (IN	BOTTOM OF CASING	a	LOSS	OF CIRCULATIO	N 2002	IEVEL		X	•	Δ		
DEPTH (H H H H H H H H H H H H H H H H H H H										BLOWS/(⊗ STANDA BI	RD PENETRA LOWS/FT	TION		
	S-1	SS	18	18	\Topsoil Depth (SM FILL) SIL1 Contains Asph	[1"] FY SAND WITH alt and Organics	GRA\ s, Ligh	/EL, It Brown		60	5 12 6	18-⊗				
s	S-2	SS	18	5	and Black, Moi	st, Loose to Mee	dium [Dense			4 4 4	8-8				
5					(CL) SANDY L	EAN CLAY, Ligh	nt Bro	wn and		_	2					
	S-3	SS	18	18	Gray, Moist, So	oft to Very Stiff				55 	222	≪-4				
	S-4	ss	18	18						_	3 4 9	13-8				
	S-5	SS	18	15							5	16-🛇				
15											10					
	_									_	3					
20	S-6	SS	18	18							5 9	1:4-⊗				
										40 						
					(SM) SILTY SA Dense	AND, Light Brow	n, Mo	ist, Medium				ND				
25	S-7	SS	18	18					-		2 5 2 7	NP 12 ⊗ ● 15.2				
										35						
									-							
30	S-8	SS	18	18						<u> </u>	3 5 8	13-8				
										_	I I CC			PAGE.		
	THE	STRA	TIFIC		I LINES REPRESENT	THE APPROXIMATE	BOUN	DARY LINES BET	TWEEN :	SOIL TYPI	ES. IN-	SITU THE TRANSITION N	MAY BE GRADU	JAL.		
⊥ 문 ₩L 28	3.50			ws	WD	BORING STARTED)	12/26/14								
₩ WL(BCF	R) 32	2.00	Ţ	WL(AC	R)	BORING COMPLE	CAVE IN DEPTH									
₩ WL						RIG 750 ATV	FOREMAN Nadal					DRILLING METHOD 4.25 HSA				

CLIENT							JOB # BORING #					SHEET		
Pennr	OSE NAME	Prop	ber	ties,	LLC		3 ARCHIT	7:1404		B-4		2 OF 2	2	CC
	NOOC ATION	<u>d Hill</u>	s											
5004		~					0 1					-O- CALIBRATED P	PENETROMET	ER TONS/FT ²
5201 NORTHIN	G G	<u>əs 5</u>	tree	<u>ƏL, INI</u> EASTIN	<u>e, vvasningto</u> ^{IG}	In, District of Columbia				ROCK QUALITY DESIGNATION & RECOVERY RQD% - — - REC% ——				
			(Ľ		DESCRIPTION OF I	MATERIAL		ENGLISH	UNITS	<i>(</i>) ()				
FT)	Ň	ТҮРЕ	DIST.	ERY (IN	BOTTOM OF CASIN	IG 📕	LOSS	OF CIRCULATIO	N \1002	ION (FI	.9	X		
DEPTH (SAMPLE	SAMPLE	SAMPLE	RECOVE	SURFACE ELEVATI	on 61				WATER ELEVAT	BLOWS/	⊗ STANDAF BL	RD PENETRAT .OWS/FT	TION
					(SM) SILTY S Dense	AND, Light Brow	vn, Moi	st, Medium	1	30				
					(CL) SANDY I Brown, Moist,	_EAN CLAY WIT Very Stiff	TH GR	AVEL, Light		<u> </u>				
	S-9	SS	18	10							9 9 13	22-8		
35										25				
	S-10	55	18	8						_	10	27-		
40		00		0	END OF BOR	ING @ 40.00'					15		-	
										20 				
										_ 				
45									-	_				
+3									-	15				
									-					
										_				
50									-					
										10 				
									-					
										_				
									-	5				
									-					
										_				
60														
		ļ			l				ŀF	<u> </u>				
	THI	E STRA			I LINES REPRESEN	T THE APPROXIMATI	E BOUN	DARY LINES BET	WEEN S	SOIL TYP	ES. IN-	SITU THE TRANSITION N	IAY BE GRADU	AL.
							D	12/26/14						
₩ WL(B	CR) 3	82.00	Ţ	WL(AC	R)	BORING COMPLE	TED	12/26/14			CAVE IN DEPTH			
₩ WL						RIG 750 ATV	750 ATV FOREMAN Nadal				DRILLING METHOD 4.25 HSA			

CLIENT						J	JOB #		BORIN	G #		SHEET				
Pennro: PROJECT N	se F	Prop	ert	ies,	LLC		3 ARCHI	87:1404 TECT-ENGINE	ER	B-5		1 OF 2		GQ		
	ood	Hills	;													
5201 H	ave	s Str	-00	at NI	E Washingto	n District of C	Colur	mhia				-()- CALIBRATED PENETROMETER TONS/FT ²				
NORTHING	ayo	<u>5 Oli</u>		EASTIN	IG	STATION						ROCK QUALITY DESIGNATION & RECOVERY RQD% REC%				
		ш	Î	Î	DESCRIPTION OF M	ATERIAL		ENGLIS	H UNITS	ET)		PLASTIC V LIMIT% CO	WATER	LIQUID LIMIT%		
(FT)	И И И	E TYP	E DISI	/ERY (BOTTOM OF CASING	a 📕	LOSS	OF CIRCULAT	ION 2007	RION (3/6"	×	•	Δ		
H H W S SURFACE ELEVATION 63										WATEF ELEVA	BLOWS	STANDAR BL	RD PENETRAT OWS/FT	FION		
	6-1	SS	18	10	\Topsoil Depth (SM FILL) SIL Contains Brick	[1"] FY SAND WITH (and Asphalt, Bla	GRAN ack, M	/EL, /oist, Loose		- 	8 7 3	10-⊗				
s	6-2	SS	18	18	(CL) SANDY L Stiff	EAN CLAY, Ligh	t Brov	wn, Moist,			4 6 7	13-🛇				
5	3-3	55	18	18						-	4	14				
					(SC) CLAYEY	SAND, Light Bro	wn, N	Aoist,		-	7					
	6-4	SS	18	18	Loose to Medi	um Dense				— 55 - —	2	6-8				
10										-	3					
										- - - 50						
s	6-5	SS	18	18							4 8 8	16-8				
										45						
S	6-6	SS	18	18						-	2 3 4	7-⊗ 17.3-●				
										-						
					(CL) SANDY L Very Stiff	ean CLAY, Light	Purp	le, Moist,		- 	5					
25	6-7	SS	18	18						-	6 11	17-8				
	6-8	SS	18	18						— 35 - —	8 12	26-0	0			
30										-	14					
	THE	STRAT	IFIC				BOUN		FTWFFN S			SITU THE TRANSITION A		PAGE.		
<u></u> ₩L 18	3.50	5.1.41		ws		BORING STARTED	APPHOXIMATE BOUNDARY LINES BETWEEN SOIL TYP					25. IN-SITU THE THANSITION MAY BE GRADUAL.				
WL(BCR	- R)		Ţ	WL(AC	R)	BORING COMPLET	2LETED 12/18/14 CAVE IN DEPTH									
₩L						RIG 750 ATV	TV FOREMAN Nadal DRILLING METHOD 4.25 HSA									
CLIENT							JOB #		BORI	NG #		SHEET				
----------	--------	--------	--------	--------------	--------------------------	------------------	---------	---------------	---------	---------------	---------------	-----------------------	------------------------------------	-------------------------		
Pennr	ose	Pro	per	ties,	LLC		3	87:1404		B-5		2 OF 2		20		
PROJECT	NAME						ARCHI	IECI-ENGINEEI	K					55		
SITE LOC	ATION		IS											ER TONS/FT ²		
5201	Haye	es S	tree	<u>ət, N</u>	E, Washingto	n, District of	Colur	nbia					SIGNATION &	RECOVERY		
	G			EASTIN		STATION						RQD%	REC%			
					DESCRIPTION OF I	MATERIAL		ENGLISH	UNITS	<i>(</i>) ()		PLASTIC V				
FT)	ġ	ТҮРЕ	DIST.	ERY (IN	BOTTOM OF CASIN	IG 📕	LOSS	OF CIRCULATIO	ON 2007	-EVEL			•			
DEPTH (SAMPLE	SAMPLE	SAMPLE	RECOVE	SURFACE ELEVAT	on 63				WATER	BLOWS/	\otimes STANDAF	RD PENETRA ⁻ .OWS/FT	ΓΙΟΝ		
					(CL) SANDY Verv Stiff	_ean CLAY, Ligh	nt Purp	le, Moist,		_						
					- ,											
	S-9	SS	18	18							5 8	19-🛇				
35 —											11					
										25	7		\setminus			
40-	S-10	SS	18	18							, 13 16	29	$\rightarrow \otimes$			
	S-11	SS	18	18						20	6 10	20	HXX			
45 —											19		Ĭ			
										15						
	S-12	SS	18	18							8 16 12	28-	$-\otimes$			
50					END OF BOR	ING @ 50.00'				_						
										10 						
55 —																
										<u> </u>						
										5						
60																
	I	I			I				1 1		ı			:		
	THI	E STR/	ATIFI	CATION	I LINES REPRESEN	T THE APPROXIMAT	E BOUN	DARY LINES BE	TWEEN	SOIL TYP	ES. IN-	SITU THE TRANSITION N	1AY BE GRADU	JAL.		
<u> </u>	18.50)		WS	WD	BORING STARTE	D	12/18/14								
₩ WL(B	CR)		Ţ	WL(AC	:R)	BORING COMPLE	TED	12/18/14			CAVE					
₩ UL						RIG 750 ATV		FOREMAN	ladal		DRILI	LING METHOD 4.25 HS	SA			

CLIENT						JOB #		BORIN	G #		SHEET		
Pennros PROJECT N	<u>se Pro</u>	oper	ties,	LLC		37:1 ARCHITECT	404 T-ENGINEER		B-6		1 OF 2		Ce
Deanwo	<u>pod H</u>	ills											TM
SHE LOCAT	ION	~.			D ¹ · · · · · · ·	o						PENETROME	TER TONS/FT ²
5201 Ha	ayes :	Stre	<u>et, IN</u> Eastin	E, Wasningtoi	<u>n, District of</u> Station	Columbi	a				Rock quality de Rqd%	ESIGNATION 8 – REC%	RECOVERY
		Ê		DESCRIPTION OF M	IATERIAL		ENGLISH	UNITS	s î			WATER	LIQUID
Ê.	NO.	DIST.	ERY (IN	BOTTOM OF CASING	a 📕	LOSS OF (CIRCULATIO	N 21002	IEVEL	.9	X	•	Δ
DEPTH	SAMPLE	SAMPLE	RECOVE	SURFACE ELEVATIO	ON 60				WATER	BLOWS/	⊗ STANDA B	RD PENETRA	TION
0s	5-1 SS	18	15	∖ <u>Topsoil Depth</u> (CL FILL) SAN	[1"] IDY LEAN CLA	Y, Contain	s		60	2 4 3	7-⊗		
				Organics and (Soft to Medium	Concrete, Light n Stiff	Brown, Mo	oist,		- -				
s	5-2 SS	18	18						-	6 4 3	7-\$		
5	-3 SS	18	18						<u> </u>	3 2	⊗-4		
									-	2			
									-	_			
	5-4 SS	18	10	(CL) SANDY L Light Brown ar	EAN CLAY, Co nd Gray, Moist, S	ntains Org Stiff to Ver	janics, y Stiff		50	5 5 8	13-🛇		
	5 50	10	15						-	8	16-00		
	5-0 00	10	15						45	6	10 0		
				(CL) SANDY L	EAN CLAY, Lig	ht Brown,	Moist,		-				
					Juli								
s	5-6 SS	18	18							2 2 3	5-× 18 **		
20									40 	0	20.8		
										2			
S	5-7 SS	18	18							7 7	14-8		
									- 				
				(GP) GRAVEL Medium Dense	WITH SAND, E	Brown, Moi	ist,		-				
	5-8 SS	18	15		-				<u>_</u>	7 10	15-⊗		
30		-							30	5			
										СС		N NEX	FPAGE.
	THE ST	RATIFI	CATION	LINES REPRESENT		E BOUNDAR	Y LINES BET	WEEN S		ES. IN-	SITU THE TRANSITION	MAY BE GRAD	JAL.
¥ WL 28	5.50		WS 🗌		BORING STARTE	D 12	/19/14		-+				
₩L(BCR	1)	Ţ	WL(AC	SR)	BORING COMPLE	TED 12	/19/14		-+	CAVE			
÷ ₩L					RIG 750 ATV	FC	KEMAN Na	adal		DHIL	LING METHOD 4.25 H	154	

CLIENT							JOB #		BORIN	G #		SHEET		
Pennr PROJECT	OSE NAME	Pro	oer	ties,	LLC		3 ARCHITI	7:1404 ECT-ENGINEEF	 1	B-6		2 OF 2	Ξ	CC
Dean SITE LOC	NOOC ATION	<u>d Hil</u>	ls											
5201	ปองส		tro	5+ NI	= Washingto	District of	Colum	abia				CALIBRATED F	ENETROMET	ER TONS/FT ²
NORTHIN	G	<u> </u>		EASTIN	<u>L, Washingto</u> IG	STATION	Ooluli	ibia				ROCK QUALITY DE RQD%	SIGNATION 8 REC%	RECOVERY
		щ	. (IN)	Î	DESCRIPTION OF N	MATERIAL		ENGLISH	UNITS	ELS FT)		PLASTIC V LIMIT% CC	VATER NTENT%	LIQUID LIMIT%
(FT)	NO E	E TYP	E DIS ⁻	/ERY (BOTTOM OF CASIN	IG 📕	LOSS	OF CIRCULATIO	N 21002	R LEVE	3/6"	X	•	$ \longrightarrow \Delta$
рертн	SAMPL	SAMPL	SAMPL	RECOV	SURFACE ELEVATI	on 60				WATEF ELEVA ⁻	BLOWS	STANDAR BL	RD PENETRA .OWS/FT	TION
					(GP) GRAVEL Medium Dens	₋ WITH SAND, E e	Brown, N	Moist,		_				
					(CL) SANDY I Very Stiff	_ean CLAY, Ligh	nt Purple	e, Moist,		- 				
	S-9	SS	18	18							8 10 15	25-&		
_										-	8			
40	S-10	SS	18	15	END OF BOB	ING @ 40 00'				20	12 14	26-0	9	
						10.00				_				
_										-				
45 —										<u> </u>				
_										_				
										-				
50														
										-				
_										-				
										_ 5				
										-				
60										0				
					l								<u> </u>	
	THI	E STR/	ATIFI		LINES REPRESENT	T THE APPROXIMATI	E BOUND	ARY LINES BET	TWEEN S	SOIL TYPI	ES. IN-	SITU THE TRANSITION N	IAY BE GRADI	JAL.
¥ wL	28.50			WS	WD	BORING STARTE	D	12/19/14						
₩_ WL(B	CR)		Ţ	WL(AC	R)	BORING COMPLE	TED	12/19/14			CAVE	E IN DEPTH		
₩ UL						RIG 750 ATV		FOREMAN N	adal		DRIL	LING METHOD 4.25 H	SA	

CLIENT	JOB #	BORING #	SHEET	
Pennrose Properties, LLC	37:1404 ARCHITECT-ENGINE	B-7	1 OF 2	ECQ
Deanwood Hills				TN
				ENETROMETER TONS/FT ²
NORTHING	n, District of Columbia		ROCK QUALITY DES RQD%	SIGNATION & RECOVERY REC% ———
	IATERIAL ENGLI		PLASTIC V	VATER LIQUID
	LOSS OF CIRCULA			
HLA UN	ON 57	WATER ELEVAT BLOWS/	STANDAF BL	RD PENETRATION OWS/FT
O S-1 SS 18 15 (SM FILL) SIL Contains Con- Moist, Loose t	TY SAND WITH GRAVEL, crete, Brick, and Asphalt, Brown, o Dense		3	\mathfrak{A}
S-2 SS 18 10			4	
5 (CL) SANDY I	EAN CLAY, Light Brown, Moist,			
Soft to Medium	n Sum		⊗-4	
		50		
S-4 SS 18 18			7-🔗	
- (SM) SILTY S	AND WITH GRAVEL, Light Brown	45	NP	
	st, very Loose to medium Dense		⊗-4 19.8-●	
		2	NP	
		40		
		2		
20 - 5-6 SS 18 18				
		35		
			15-⊗	
(ML) SANDY Dense to Den	SILT, Light Brown, Moist, Medium se	30		
S-8 SS 18 18			16-🛇	
THE STRATIFICATION LINES REPRESENT	THE APPROXIMATE BOUNDARY LINES			
⊊ wL 13.50 ws⊡ wD⊡	BORING STARTED 12/22/14			
₩ WL(BCR) ₩ WL(ACR)	BORING COMPLETED 12/22/14	CA	VE IN DEPTH	
₩ Ţ	RIG 750 ATV FOREMAN	Nadal DR	ILLING METHOD 4.25 HS	SA

CLIENT							JOB #		BORING #		SHEET	[
Pennr	ose	Pro	oer	ties.	LLC		3	37:1404	B-7	,	2 OF 2		500	
PROJECT	NAME						ARCHI	TECT-ENGINEEF	<u> </u>				EG	
Dean SITE LOC	NOOC ATION	d Hil	ls											
5201	Науа		trod	st NI	= Washingto	n District of	Colur	mhia				ED PENETR	OMETER TC	NS/FT ²
NORTHIN	G	<u></u>		EASTIN	lG	STATION	00101	Ποια			ROCK QUALITY RQD% – –	DESIGNAT – – RE	ION & RECC	VERY -
			(N)	î	DESCRIPTION OF I	MATERIAL		ENGLISH	UNITS		PLASTIC LIMIT%	WATER	L % L	.IQUID IMIT%
(FT)	Ö	TYPE	DIST	ERY (I	BOTTOM OF CASIN	IG 📕	LOSS	OF CIRCULATIC			Х	•		-
DЕРТН	SAMPLE	SAMPLE	SAMPLE	RECOVI	SURFACE ELEVATI	ION 57			WATER	BLOWS/	\otimes stan	IDARD PENI BLOWS/F	ETRATION	
					(ML) SANDY	SILT, Light Brow	ın, Moi	ist, Medium						
_									25					
_				10						6				
35 —	5-9	55	18	18						10	20-8			
									20					
_										14				
40-	S-10	SS	18	18						17 19		36⊣	8	
					END OF BOR	ING @ 40.00'								
									15					
45														
									- 10					
50 —									-					
_														
55														
									0					
_									_					
60 —														
	THI	E STR/	ATIFI	CATION	I LINES REPRESEN	T THE APPROXIMATI	E BOUN	IDARY LINES BE	TWEEN SOIL TY	PES. IN-	SITU THE TRANSITIC	ON MAY BE C	BRADUAL.	
¥ w∟ ™	13.50			WS 🗌	WD 🗌	BORING STARTE		12/22/14						
·≝ WL(B	CR)		Ē	WL(AC	ΕR)	BORING COMPLE	TED	12/22/14		CAVE	IN DEPTH			
¥ WL						RIG 750 ATV		FOREMAN N	adal	DRILI	LING METHOD 4.25	5 HSA		

CLIENT							JOB #		BORING #	¥		SHEET		
Pennr	ose	Prop	bert	ties,	LLC		3	37:1404		B-8		2 OF 2	_ 5	
PROJECT	NAME						ARCHI	TECT-ENGINEE	2					5
SITE LOC	NOOC ATION	HIII	<u>s</u>											TER TONS/FT ²
5201	Haye	es St	ree	<u>et, N</u>	E, Washingto	n, District of	Colui	mbia						
NORTHIN	G			EASTIN	IG	STATION						RQD%	- REC%	
			Î		DESCRIPTION OF I	MATERIAL		ENGLISH				PLASTIC	WATER	LIQUID
(F.	Ŋ.	TYPE	DIST. (RY (IN)	BOTTOM OF CASIN	IG 📕	LOSS	OF CIRCULATIO		DN (FT	-	LIMI1% C	JNTENT%	A
ЕРТН (F	AMPLE	MPLE	AMPLE	ECOVE	SURFACE ELEVAT	on 58			ATER L	EVATIO	OWS/6	STANDA		ATION
	7S	S/	7S	11 11	(SM) SILTY S	AND WITH GRA	AVEL,	Brown,	×		BI			
					Wet, Medium (CL) SANDY I	Dense _ean CLAY, Ligh	nt Purp	ole, Moist,						
					Very Stiff to H	lard				25	5			
35 —	S-9	SS	18	18							6 10	16-⊗		
										. 20				
	S-10	55	18	18						20	12 14	16->	/\\$-31	
40	0.0	00			END OF BOR	ING @ 40.00'					17	17.0	29 29	
										15				
45 —														
									E					
										10				
50														
										5				
55 —														
_										· 0				
60 —														
<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	THE	STRA	TIFI				E BOUN	IDARY LINES BE	TWEEN SOII	L TYP	ES. IN-	SITU THE TRANSITION	MAY BE GRAD	UAL.
¥ WL (33.50	0 50	.	WS []	WD []			12/26/14			C 4)/			
₩I ₩I	οn)	9.30	Ŧ	VVL(AC	<i>ו</i> חי			12/20/14	ladal	-+			SA	
÷ **L									uuu		UTIL			

CLIENT							JOB #		BORIN	NG #			SHEET		
Pennro	ose I	Prope	erti	es, l	LC		3	7:1404		B-9		1	OF 1		
PROJECT	NAME			,			ARCHIT	FECT-ENGINEE	3			•			<u> </u>
		Hills													ти
	laura	- 01-						ab'a				-()- C	ALIBRATED	PENETROM	IETER TONS/FT ²
NORTHING	aye	s Str		<u>(, INE</u> ASTIN	<u>s, wasningto</u>	STATION	Colur	noia				ROCK		ESIGNATIO	N & RECOVERY
												R	2D% – —	- REC%	o
				Î	DESCRIPTION OF I	MATERIAL		ENGLISH	IUNITS	S- (F		PLAST LIMIT	IC % C	WATER ONTENT%	LIQUID LIMIT%
Ê L	Ö	TYPE		ERY (II	BOTTOM OF CASIN	NG 📕	LOSS	OF CIRCULATIO	ON 2008	LEVEI ION (F	0	\times		•	Δ
PTH (WPLE	WPLE		COVE	SURFACE ELEVAT	ION 61				ATER	/SWO		\otimes stand		RATION
	SA	SA SA	ð	8	7				7///	<u> </u>	료 1			BLOWS/F1	
	S-1	SS 2	4	2	Topsoil Depth					60	2	5-⊗			
		_			Contains Con	crete and Aspha	lt, Ligh	t Brown,			9 13 10				
	S-2	SS 2	4	15	Moist, Mediun	n Stiff to Stiff				$\overline{\nabla}$	5		8		
5-	S-3	SS (3	6	(ML) SANDY Moist Very D	SILT WITH GRA	VEL, E	Brown,		- -	50/6				50/6=⊗
			_		(SM) SILTY S	AND, Brown, Mo	oist, Ve	ery Dense		 55	13				
	S-4	SS 1	2	1	END OF BOR	ING @ 6.9'					50/6				50/6
10															
										50 					
15 —															
										45					
25															
										<u> </u>					
										_					
30 —										<u> </u>					
	I	1	1	I						F	1	L İ			: :
	THE	STRATI	FIC					DARY LINES BE	TWEEN	SOIL TYP	ES. IN-	SITU THE	TRANSITION	I MAY BE GRA	ADUAL.
<u> </u>	:.UU	<u>_</u>	V L v		wu			12/10/14			CAV		4		
			- V	· L(AU	.,			FORFMAN N	ladal		DRII		- HOD 2 25 1	ISA	
- "L									auai					101	

CLIENT							JOB #		BORING	G #		SHEET				
Pennr	ose	Pror	oert	ies.	LLC		3	7:1404		B-10)	1 OF -	1	5		
PROJECT	NAME						ARCHIT	ECT-ENGINEER	3	<u> </u>					69	
Deany	NOOC	l Hill	s											11- -		1 m
SHELOC	ATION												TED PI	ENETROME	TER TON	S/FT ²
5201 NORTHIN	Haye G	<u>es S</u>	tree	<u>et, NI</u> eastin	<u>E, Washingto</u> ^{iG}	<u>n, District of</u>	<u>Colur</u>	<u>ibia</u>				ROCK QUALI RQD% -	TY DES 	GNATION REC%	& RECOV	ERY
(F	ON	ТҮРЕ	DIST. (IN)	(IN) ک۶	DESCRIPTION OF M BOTTOM OF CASIN		LOSS	ENGLISH		EVELS DN (FT)		PLASTIC LIMIT%	N COI	VATER NTENT%	LI	20ID иIT% ∕∆
DEPTH (F	SAMPLE	SAMPLE -	SAMPLE I	RECOVER	SURFACE ELEVATI	DN 58				WATER L ELEVATIO	BLOWS/6	⊗ st.	ANDAR BL	D PENETRA OWS/FT	ATION	
0	S-1	SS	24	18	Topsoil Depth (CL FILL) LEA Moist Medium	[2"] N CLAY WITH S	SAND,	Brown,			1 2 5 6	7-&				
	S-2	SS	24	24						55	4 6 7 7	13-8				
5	S-3	SS	24	24	(CL FILL) SAN Brown and Gra Stiff	IDY LEAN CLAN ay, Moist, Mediu	Y, Brow ım Stiff	n Light to Very			, 3 4 4 7	8-&				
	S-4	SS	24	24							9 11 9 9		⊗ 20			
					END OF BOR	ING @ 8.00'				50						
10																
										<u>45</u>						
15 —																
										40						
20 —																
										— — 35						
25																
										- 30						
30																
	. 1	I			I						1 I	L i			:	
	THE	STRA	TIFIC	CATION	I LINES REPRESENT	THE APPROXIMATI	E BOUND	ARY LINES BE	TWEEN SO	OIL TYP	ES. IN-	SITU THE TRANSI	TION M	AY BE GRAD	UAL.	
<u>₩</u> WL N	J/A		_	WS	WD	BORING STARTE	D	12/18/14								
₩ WL(B	CR)		Ţ	WL(AC	R)	BORING COMPLE	TED	12/18/14			CAVE	IN DEPTH				
₩ WL						RIG 750 ATV		FOREMAN N	ladal		DRILI	LING METHOD 2.	25 HS	A		

CLIENT							JOB #		BORIN	IG #		SHEET				
Pennr	ose	Pro	oerl	ties.	LLC			37:1404		B-11		1 OF 1		5	Ó	
PROJECT	NAME			,			ARCHI	TECT-ENGINI	EER						69	
Dean	NOOC	<u>l Hil</u>	ls													∕ ∎™
SITE LOC	ATION												ED PE	ENETROME	TER TON	IS/FT ²
5201	Haye	es S	tree	<u>et, NI</u>	<u>E, Washingto</u>	n, District of	Colu	mbia				ROCK QUALIT	Y DES	IGNATION	& RECO\	/ERY
				2/10/11								RQD% -		REC%		
			Î		DESCRIPTION OF I	MATERIAL		ENGL	ISH UNITS			PLASTIC	N	/ATER	LI	QUID
~	ō	/PE	ST. (II	(IN)			1000			VELS 1 (FT)		LIMIT%	CON	NTENT%	LI	иіт% ∕∆
н (FT	N LE	LE T	LE DI	VER	BUTTOM OF CASIN		1033	OF CIRCULA		ER LE	'8/S/	0				
DEPT	SAMF	SAMF	SAMF	RECO	SURFACE ELEVAT	on 58				WATE ELEV	BLOV	(X) STA	BL	D PENETR/ DWS/FT	ATION	
0	S-1	22	24	20	Topsoil Depth						3 7	15-8				
	0.	00			Gray, Moist, N	ledium Dense	in ai	UNVEL,			8 8					
	S-2	SS	24	1						55	5 6 7	13-🔗				
					(CL) SANDY I	FAN CLAY Lig	iht Bro	wn and			8 4					
5-	S-3	SS	24	24	Gray, Moist, S	Stiff to Very Stiff	int Bro			_	4	10-🔆				
										_	6					
	S-4	SS	24	24						_	9 10	⊗ 16				
_					END OF BOR	ING @ 8.00'				50 						
10									-							
									-							
										45						
										_						
15-										_						
										_						
_										40 						
20-										_						
										35						
25 —										_						
_										_						
_																
_										30						
30																
-										_	1					
	TH	E STR/	ATIFI	CATION	I LINES REPRESEN	THE APPROXIMAT	E BOUN	IDARY LINES	BETWEEN	SOIL TYP	ES. IN-	SITU THE TRANSIT	ION M	AY BE GRAD	UAL.	
₩ WL N	J/A			WS	WD	BORING STARTE	D	12/16/14								
₩_ WL(B	CR)		Ţ	WL(AC	R)	BORING COMPLE	TED	12/16/14			CAVE	IN DEPTH				
₩ WL						RIG 750 ATV		FOREMAN	Nadal		DRILI	ING METHOD 2.2	25 HS	A		

CLIENT							JOB #		BORIN	IG #			SHEET				
Penni	ose	Pro	oer	ties,	LLC		3	7:1404		B-12			1 OF 1		5	PG	
PROJECT	r name						ARCHIT	ECT-ENGINEE	R							5	
Dean SITE LOC	WOO(<u>liH t</u>	IS														IS/FT ²
5201	Hay	es S	tree	et, N	E, Washingto	n, District of	Colur	nbia									
NORTHIN	IG			EASTIN	NG	STATION						F	QD% -	— –	REC%		
			Î		DESCRIPTION OF I	MATERIAL		ENGLIS	H UNITS	<i>(</i>) <i>(</i>)		PLAS	TIC	WA		LI	
(F.	Ŋ	ТҮРЕ	DIST. (RY (IN)	BOTTOM OF CASIN	IG D	LOSS	OF CIRCULATI	ON 2008	-EVELS			70		EIN I %	LII	Δ
ОЕРТН (Р	SAMPLE	SAMPLE	SAMPLE	RECOVE	SURFACE ELEVATI	on 60				VATER L	3LOWS/6		⊗ stan	NDARD BLO\	PENETR/ NS/FT	ATION	
	5-1	SS	24	18	Topsoil Depth (CL) LEAN CL	[1"] AY WITH SAND), Light	Brown,		<u> </u>	2 2 2	⊗-4					
					Moist, Soft (SM) SILTY S	AND, Brown, Mo	oist, Ve	ry Loose			2						
_	S-2	SS	24	24			-			-	2 2 2	⊗-4					
5	S-3	SS	24	20	(CL) SANDY I Gray, Moist, N	_EAN CLAY, Lig Iedium Stiff	ht Brov	wn and		55 	2 2 3	5-&					
	S-4	SS	24	18	(ML) SANDY	SILT, Light Brow	n, Moi	st, Loose			5 4 5)				
					END OF BOR	ING @ 8.00'				-	4	9					
										 50							
										_							
_										_							
15-										45							
										_							
_										_							
20	-									40							
_										-							
25										<u> </u>							
										_							
30 —	1									<u> </u>							
		- 0		0.47101								0.71 - 71 -		01111			
₩ wr t	тн Л/А	E STR/	ATIFI(BORING STARTE		12/17/14	= TWEEN S		ES. IN	SITU THE	: TRANSITI	ION MAY	Y BE GRAD	UAL.	
₩ WL(B	CR)		Ţ	WL(AC	;R)	BORING COMPLE	TED	12/17/14			CAV	E IN DEPT	Ή				
₩ Ū						RIG 750 ATV		FOREMAN	Nadal		DRIL	LING MET	HOD 2.2	5 HSA			

CLIENT							JOB #		BORIN	NG #		SHEE	Т			
Pennr	ose	Pro	oert	ies.	LLC		3	37:1404		B-13		1 OF	1	5		
PROJECT	NAME			,			ARCHI	TECT-ENGINEE	R	0			-		<u>69</u>	
Dean	NOO	<u>liH t</u>	ls									[1 TM
		_				_	. .						RATED P	ENETROME	TER TON	S/FT ²
5201 NORTHIN	Haye G	<u>əs S</u>	tree	<u>et, NI</u> Eastin	<u>–, Washingtoi</u> ^{IG}	<u>n, District of</u> STATION	Colui	mbia				ROCK QUA RQD%	LITY DES 	GNATION REC%	& RECOV	ERY
	o'	ΥΡΕ	IST. (IN)	(IN)	DESCRIPTION OF M		1088			VELS V (FT)		PLASTIC LIMIT%	v co	VATER NTENT%		בטום אוד% ∕∆
DEPTH (FT	SAMPLE N	SAMPLE T	SAMPLE DI	RECOVER	SURFACE ELEVATIO	DN 61		OF CIRCULATI		WATER LE	BLOWS/6"	⊗ s	TANDAF	RD PENETR/ OWS/FT	ATION	
0	S-1	SS	24	24	Topsoil Depth (CL) SANDY L Medium Stiff to	[1"] EAN CLAY, Lig Verv Stiff	jht Bro	wn, Moist,		60	4 8 5 5	13-⊗				
	S-2	SS	24	18							6 6 7 7	13-⊗				
5	S-3	SS	24	24							2 2 3 4	5-8				
	S-4	SS	24	24						55 	6 8 11 11		× 19			
_					END OF BORI	NG @ 8.00'				_						
10																
										50						
										_						
										_						
15										_						
20 —										_						
										40						
_																
25—																
										35						
										_						
										_						
30 —										_						
	TH	E STR/	ATIFIC		I LINES REPRESENT		E BOUN	IDARY LINES BI	ETWEEN	SOIL TYP	ES. IN	SITU THE TRAN	SITION M	AY BE GRAD	UAL.	
¥ WLN ▼ wu/⊃			.	WS 🗌		BORING STARTE		12/17/14			CA14					
₩L(B	GR)		=	vvL(AC	·K)		EIED	12/1//14			CAV			<u>`</u>		
¥ WL						RIG 750 ATV		FOREMAN	Nadal		DRIL	LING METHOD	2.25 HS	бA		

CLIENT							JOB #		BORIN	IG #		SHEET	Т			
Pennro	se l	Pror	ert	ies	LLC		3.	7:1404		B-14	L	1 OF 1		5		
PROJECT	NAME	.00					ARCHIT	ECT-ENGINEEF	1						Մ	
		Hill	s) 1
5001		- 01			- \\		0 - 1	- 1- 1 -					ED PE	NETROME	TER TON	S/FT ²
DORTHING	aye	<u>s Si</u>	ree	<u>EASTIN</u>	<u>=, vvasningto</u> ^{IG}	STATION	Colum					ROCK QUALITY RQD%	/ DESI — –	GNATION REC%	& RECOV	ERY
			Î		DESCRIPTION OF M	MATERIAL		ENGLISH	UNITS	<i>"</i>		PLASTIC	WA		LI	
FT)	Ň	ТҮРЕ	DIST. (ERY (IN)	BOTTOM OF CASIN	IG 📕	LOSS	OF CIRCULATIC	N 2002	-EVELS	- <u></u> 0	×	CON	ent%	LII	∆
DEPTH (SAMPLE	SAMPLE	SAMPLE	RECOVE	SURFACE ELEVATI	on 61				WATER I ELEVATI	BLOWS/(⊗ STAN	NDARE BLO) PENETR/ WS/FT	TION	
0	S-1	SS	24	18	Topsoil Depth	[1"], Asphalt De	pth [24'	"]		- 60	2 2 14	16-&				
	S-2	SS	24	18	(DEBRIS FILL Asphalt	.), Contains Brick	k, Orga	nics, and			16 11 10		26-8			
					Asphan						16 12 9					
5	S-3	SS	24	15		SILT Gray Main	t Modi		<i>``,,,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	55	12 12 14	24	1-⊗			
	S-4	SS	24	20		SILT, Gray, MOIS	st, ivieui	ulli Delise		_	11 12 10		⊗ 23			
					END OF BOR	ING @ 8.00'										
10										 50						
15																
										45 						
20										_						
										40						
										-						
										_						
25 <u> </u>																
										- -						
										_						
30										- -						
▽	THE	STRA	TIFIC					DARY LINES BE	TWEEN S		ES. IN-	SITU THE TRANSITI	ON MA	Y BE GRAD	UAL.	
₩ WL N/	r A R)		Ţ	WL(AC	WD [] R)	BORING STARTEL	TED	12/17/14			CAVE	E IN DEPTH				
₩L	-		-			RIG 750 ATV		FOREMAN N	adal		DRIL	LING METHOD 2.2	5 HSA	Ą		

CLIENT							JOB #		BORING	i #		SHEET				
Penn	OSE	Pro	oer	ties,	LLC		37:	1404		<u>B-15</u>		1 OF	1	5	20	
Doop	NAME	- -					ARCHITEC	T-ENGINEER							5	
SITE LOC	ATION	ווח ג	IS												TER TONS/F	FT ²
5201	Hay	es S	tree	et, NI	<u>E, Washingto</u>	n, District of	Columb	oia				ROCK QUALI	TY DES	IGNATION	& RECOVER	۲Y
Northin				LAOTIN		UNHON						RQD% -		REC%		
			Ê	(7	DESCRIPTION OF N	MATERIAL		ENGLISH	UNITS	vì ⊢		PLASTIC LIMIT%	W CON	ATER	LIQU LIMIT	ID ~%
(FT)	NO.	Е ТҮРЕ	E DIST.	ERY (IN	BOTTOM OF CASIN	IG 📕	LOSS OF	CIRCULATIO		ION (F	.9/	×		•	Δ	
DEPTH	SAMPLE	SAMPLE	SAMPLE	RECOV	SURFACE ELEVATI	on 59			MATER	WAI EK ELEVAT	BLOWS	⊗ st	ANDARI BLC	D PENETRA DWS/FT	ATION	
0	S-1	SS	12	8	\Topsoil Depth (ML FILL) SAI	[1"] NDY SILT, Conta	ains Sliah	/		_	2 50/6				50/6=🛇	
					Organics, Bro	wn and Black, M SII T. Contains S	loist, Very	/ Dense anics.		_	7	9				
	S-2	SS	24	24	Light Brown, N	Moist, Loose		uco,		- 55	5 4 4	×				
5-	S-3	SS	24	24	(ML) SANDY Loose	SILT, Light Brow	n, Moist,	Very		- 55	1 1 2	⊗-3				
	S-4	SS	24	24	(CL) SANDY I Very Soft	_EAN CLAY, Lig	ht Brown	, Moist,		_	2 1 1 1	\otimes				
					END OF BOR	ING @ 8.00'				-	2	2				\neg
										- 50 -						
										_						
										-						
	-									- - 45						
	-									_						
										-						
										_						
										- 40						
20										_						
_									_	_						
									_	_						
										- 35						
25									_	_						
_									-	_						
										-						
									_	- 30						
30										_						
		E OTO	ATIC!							יסעד וור						
¥ w∟ N	тн Л/А	E SIR/	≺++1F1(WS		BORING STARTE		2/17/14	WEEN SO		⊏3. IN-	SITU THE TRANS		AT DE GHAL	JUAL.	
₩ UL(B	CR)		Ţ	WL(AC	R)	BORING COMPLE	TED 12	2/17/14			CAVE	E IN DEPTH				
₩						RIG 750 ATV	F	OREMAN N	adal		DRIL	LING METHOD 2.	25 HS	A		

CLIENT							JOB #		BORIN	IG #			SHEET				
Pennr	ose	Pro	oerl	ties.	LLC		3	37:1404		B-16	5	1	OF 1		5	$\hat{\mathbf{n}}_{\mathbf{c}}$	
PROJECT	NAME		0011				ARCHI	TECT-ENGINEE	R		,		0			69	
Dean		<u>d Hil</u>	ls														
			1		- \\		0-1					-()- C	ALIBRATE	D PEN	IETROME	TER TON	S/FT ²
5201 NORTHIN	G	<u>əs 5</u>	tree	<u>ƏL, INI</u> EASTIN	<u>=, vvasningto</u> ^{IG}	N, DISTRICT OF	Colur	mola				ROCK R	QUALITY QD%	DESIG	REC%	& RECOV	ERY
			Î		DESCRIPTION OF N	IATERIAL		ENGLIS	H UNITS			PLAST	TIC	WA	TER	LI	QUID
(LL	Ň	ТҮРЕ	DIST. (RY (IN)	BOTTOM OF CASIN	G	LOSS	OF CIRCULATI	ON ∑00≵	-EVELS	- -	\times	%	CONT	ENT%	LI	⊿
DEPTH (SAMPLE	SAMPLE	SAMPLE	RECOVE	SURFACE ELEVATI	on 61				WATER I ELEVATI	BLOWS/(\otimes stan	DARD BLOV	PENETR/ VS/FT	ATION	
0	S-1	SS	24	15	∖Topsoil Depth (CL FILL) SAN	[1"] NDY LEAN CLAN	Y WITI	H GRAVEL,		60	2 4 4	8-🔗					
	S-2	SS	24	10	and Black, Mc	ist, Medium Stiff	f to Ve	ry Stiff			4 2 2 3	×					
5-	S-3	SS	24	20							3 6 8	5	20				
	S 1	55	24	19						55 	18 14 17						
	3-4	33	24	10							10 9			27			
										_							
10																	
										_							
15 —										_							
										45 							
										_							
20																	
										- 40							
25 —										_							
										35							
										_							
_										_							
30																	
<u> </u>	TH J/A	E STR/	ATIFI			BORING STARTE		12/17/14	TWEEN	SOIL TYP	ES. IN-	SITU THE	TRANSITIC	ON MAY	' BE GRAD	UAL.	
<u>₩</u> WL(B	CR)		Ţ	WL(AC	R)	BORING COMPLE	ETED	12/17/14			CAVE	IN DEPTI	н				
₩						RIG 750 ATV		FOREMAN	ladal		DRILI	ING MET	HOD 2.25	5 HSA			

CLIENT							JOB #		BORIN	G #		SHEET		
Pennr	ose	Pro	oer	ties.	LLC		37	7:1404		B-17		1 OF 1	5	
PROJECT	NAME						ARCHIT	ECT-ENGINEE	R					<u>69</u>
Dean SITE LOC	NOOC ATION	<u>liH t</u>	ls											
5201	Have		trod	st NI	= Washingto	n District of	Colur	nhia				-()- CALIBRATED	PENETROME	TER TONS/FT ²
NORTHIN	G	<u></u>		EASTIN	ig	STATION	Ooluli	ibia				ROCK QUALITY DE RQD%	SIGNATION - REC%	& RECOVERY
			Î		DESCRIPTION OF I	MATERIAL		ENGLISH	UNITS			PLASTIC	WATER	LIQUID
Ē	ġ	ΥPE	IST. (X (IN)	BOTTOM OF CASIN	IG 🗩	LOSS	DE CIRCULATIO		evels N (FT)				LIMIT%
TH (F1	PLE N	PLET	PLE D	OVER		ON E0	2000 0	0.1.002.1.1		ER LE	NS/6"			
DEP	SAM	SAM	SAM	REC	SORFACE ELEVAI	<u> </u>				WAT ELE ^V	BLO	В	LOWS/FT	·
0	S-1	SS	12	8	Asphalt Depth	ı [24"]					9 50/6			50/6=8
					(ML) SANDY	SILT Contains (Organic	s Liaht		-	14	11		
	S-2	SS	24	18	Brown, Moist,	Hard to Stiff	o game	o,g		<u> </u>	7 4 4	8		
5-	S-3	SS	24	18	(ML) SANDY Loose	SILT, Light Brow	/n, Mois	st, Very		-	3 2 1	⊗-3		
	S-4	SS	24	18						-	1	\downarrow		
	-										1 2	2		
						ING @ 0.00				-				
10										_				
										_				
_														
_										- 45				
 15 —														
										40				
										_				
										35				
25 —														
_														
30 —										_				
		I			I					_	I		:	:
	THI	E STR/	ATIFI					ARY LINES BE	TWEEN S	SOIL TYPE	ES. IN-	SITU THE TRANSITION	MAY BE GRAD	0UAL
<u>₹</u> wl N	J/A			WS	WD	BORING STARTE	D	12/17/14						
₩ WL(B	CR)		Ţ	WL(AC	R)	BORING COMPLE	TED	12/17/14			CAVI	E IN DEPTH		
₩ wL						RIG 750 ATV		FOREMAN	ladal		DRIL	LING METHOD 2.25 H	SA	

CLIENT							JOB #	1	BORING #		SHE	ET	J	
Pennr	ose	Pro	per	ties,	LLC		37:14	-04	B-18	3	10	F 1	5	
PROJECT	NAME						ARCHITECT-E	NGINEER						5
Dean SITE LOC	NOOC ATION	<u>liH t</u>	ls											TM
5201	Have	es S	tree	et. NI	E, Washingto	on, District of	Columbia					RATEDP	ENETROME	IER IONS/FI ²
NORTHIN	G			EASTIN	IG	STATION					ROCK QU/ RQD%	ALITY DES 5 – — –	SIGNATION REC%	& RECOVERY
			(Z	Î	DESCRIPTION OF N	MATERIAL		ENGLISH U	NITS 0 F		PLASTIC LIMIT%	v co	VATER NTENT%	LIQUID LIMIT%
(FT)	ÖN	Е ТҮРЕ	DIST	ERY (II	BOTTOM OF CASIN	IG 📕	LOSS OF CIF	RCULATION		.9	×		•	Δ
DЕРТН	SAMPLE	SAMPLE	SAMPLE	RECOVI	SURFACE ELEVATI	ION 57			WATER	BLOWS	\otimes	STANDAF BL	RD PENETR OWS/FT	ATION
0	S-1	SS	9	8	Topsoil Depth	[7"], Asphalt De	pth [16"]			15 50/3				50/3-8
					(ML) SANDY	SILT, Light Brow	n, Moist,		55	4	8			
	S-2	SS	24	24	Loose					4 4 3	8			
5	S-3	SS	24	24	(ML) SANDY Loose	SILT, Light Brow	n, Moist, Ve	ery		1 1 1	⊗-2	● 18.4		
	S-4	SS	24	24					50	1 2 2	$\bigotimes_{\mathbf{A}}$	22.2 ●		
					END OF BOR	ING @ 8.00'			<u></u>	3	-			
10									E					
									-					
									45 					
_									E					
15														
_									40					
20 —									-					
_									35					
									-					
									-					
25 <u> </u>									E					
_									- 30					
									-					
30 —									F					
			A T	0.4										
⊻ w∟ N	THI J/A	= STR/	ATIFI			BORING STARTE	= BOUNDARY I	-INES BETW	IEEN SOIL TYF	′ES. IN-	SITU THE TRA	NSTFION M	IAY BE GRAD	JUAL.
₩ WL(B	CR)		▼ Ţ	WL(AC	:R)	BORING COMPLE	TED 12/1	7/14		CAVE	E IN DEPTH			
₩						RIG 750 ATV	FOR	EMAN Nac	dal	DRIL	LING METHOD	2.25 HS	SA	

				Laboratory	Testing	l Sun	nmar	ʻy				Dogo 1 of 1
					Atter	bera Li	mits3	Percent	Moisture - De	nsity (Corr.)5		Page 1 01 1
Sample Source	Sample Number	Depth (feet)	MC1 (%)	Soil Type ²	LL	PL	PI	Passing No. 200 Sieve ⁴	Maximum Density (pcf)	Optimum Moisture (%)	CBR Value ⁶	Other
B-1												
-	S-10	38.50 - 40.00	18.1	CL	27	18	9	73.4				
B-2	64	9 50 10 00	20.2		24	10	16	66.4				
B-3	5-4	8.50 - 10.00	20.2	UL	34	10	10	00.4				
20	S-4	8.50 - 10.00	19.9									
B-4												
	S-7	23.50 - 25.00	15.2	SM	NP	NP	NP	49.9				
B-5		40.50.00.00										
D.C.	S-6	18.50 - 20.00	17.3									
B-0	S-6	18 50 - 20 00	20.8	CI	32	18	1/	60.0				
B-7	5-0	10.30 - 20.00	20.0	0L	52	10	17	00.0				
	S-5	13.50 - 15.00	19.8	SM	NP	NP	NP	37.7				
B-8												
	S-10	38.50 - 40.00	17.0	CL	29	16	13	71.5				
B-18			10.0									
	S-3	4.00 - 6.00	18.4					62.8				
	5-4	0.00 - 0.00	22.2					70.2				
Notes: Definitions:	1. ASTM D 2216, 2 MC: Moisture Cont	2. ASTM D 2487, 3. AST tent, Soil Type: USCS (U	M D 4318, 4. AS	TM D 1140, 5. See test re ification System), LL: Liqu	ports for test me id Limit, PL: Pla	ethod, 6. S	ee test re PI: Plastic	ports for test m	ethod : California Bearing	g Ratio, OC: Orga	nic Content (AS	STM D 2974)
Project No.	37:1404											
Project Name:	Deanwood Hills											
PM:	Dan Spiel	vogel								Chantill	y, VA 20151-32	32
PE:	Stephen F	. Patt								Phone: Fax: (70	(703) 471-8400 3) 834-5527	
Printed On:	Friday, Fe	bruary 13, 2015							TM	(

LIQUID AND PLASTIC LIMITS TEST REPORT

LIQUID AND PLASTIC LIMITS TEST REPORT

Tested By: HTN1

LIQUID AND PLASTIC LIMITS TEST REPORT

Tested By: ● HTN1 ■ HNT1 ▲ HNT1 Checked By: DVT

Tested By: KV

Tested By: KV

Tested By: KV

Constai	nt-Head Boreh	nole Permeameter	Test	Glover	Solution (Deep WT	or Imperviou	s Layer)	File Name: @	loverRE-deep	-WT
Project Name:	Deanwood Hills		Boring No	IT-1 (B-9)		Sc	olution and Te	rminology (R. E. C	lover Solution	n)*
Project No	37:1404		Investigators:	RPH		Ksat = Q[sinh ⁻¹	(H/r) - (r ² /H ² +:	$1)^{.5} + r/H]/(2\pi H^2)$	[Basic Glover	Solution]
Project Location:	5201 Hayes St, NE	_	Date:	12/17/2014		Ksat _B = QV[sinh	⁻¹ (H/r) - (r ² /H ²	+1) ^{.5} + r/H]/(2πH ²) [Temperatu	ire-corrected]
Boring Depth:	6 ft	(m, cm, ft, in)	WCU Base Ht. h:	10.0	cm***	Ksat _B : (Coeffi	cient of Perme	ability, K) @ Base	Tmp. T _B °C:	20
Boring Diameter:	11.4	cm	WCU Susp. Ht. S:	0.0	cm	Q: Rate of flo	w of water fro	om the borehole		
Boring Radius r:	5.72	cm	Const. Wtr. Ht. H:	10.0	cm	H: Constant I	neight of wate	r in the borehole		
Soil/Water Tmp. T:	12	°C	H/r**:	1.7		r: Radius of	the cylindrical	borehole		
Dyn. Visc. @ T:	0.001236	kg/m·s	Dyn. Visc. @ T _B .:	0.001003	kg/m∙s	V: Dynamic v	iscosity of wat	ter @ T °C/Dyn. V	isc. of water @	ρ Τ _B °C
VOLUME	Volume Out	TIME	Interval Elapse	d Time	Flow Rate Q		Ksat	B Equivalent Valu	es	
(ml)	(ml)	(h:mm:ss A/P)	(hr:min:sec)	(min)	(ml/min)	(µm/sec)	(cm/sec)	(cm/day)	(in/hr)	(ft/day)
2,000		4:05:00 PM								
1,990	10	4:25:00 PM	0:20:00	20.00	0.50	0.1	1.22E-05	1.1	0.02	0.03
1,990	0	4:45:00 PM	0:20:00	20.00	0.00	0.0	0.00E+00	0.0	0.00	0.00
1,990	0	5:05:00 PM	0:20:00	20.00	0.00	0.0	0.00E+00	0.0	0.00	0.00
1,990	0	5:25:00 PM	0:20:00	20.00	0.00	0.0	0.00E+00	0.0	0.00	0.00
					_					_
Natural Moisture:	Consistency:	Very Dense	Total Time	Enter Ksat _B Value:	0.0	0.00E+00	0.0	0.00	0.00	
USDA Txt./USCS Class.:	Water Table Depth:	N/A	(min)		notes: Ksat _B IS de four stabilized va	eterm. by avera	g. and/or knong. the ing the Flow Rate Ω	e results for the	Time Granh	
Struct./% Pass. #200:	a tast bala lasated a	Init. Saturation Time.:	60.71 in Theory and D	80.00	or Dorcolation (C. N. Zar	gor od) LICER T	ha condition f-	r this solution aviets	when the distant	aco from the
bottom of the borehole to the	e water table or an in	npervious layer is at least 2X	the depth of the water in	the borehole.	**H/r ≥5 to ≥10. ***JP-ľ	вет. eu.j. 03bR. 1 V1: h = 15cm, JP-	M2: h = 10cm.	Johnson Permeame	ter, LLC Revised	5/26/2014

Consta	nt-Head Boreł	nole Permeameter	Test	Glover	Solution (Deep WT	or Imperviou	ıs Layer)	File Name: 0	oloverRE-deep-	-WT
Project Name:	Deanwood Hills		Boring No	IT-2 (B-10)		S	olution and Te	rminology (R. E. G	olover Solutior	ו)*
Project No	37:1404		Investigators:	RPH		Ksat = Q[sinh ⁻¹	¹ (H/r) - (r ² /H ² +:	$1)^{.5} + r/H]/(2\pi H^2)$	[Basic Glover	Solution]
Project Location:	5201 Hayes St, NE		Date	12/17/2014		Ksat _B = QV[sinl	n ⁻¹ (H/r) - (r ² /H ²	+1) ^{.5} + r/H]/(2πH ²) [Temperatu	re-corrected]
Boring Depth:	6 ft	(m, cm, ft, in)	WCU Base Ht. h:	10.0	cm***	Ksat _B : (Coeffi	cient of Perme	ability, K) @ Base	Tmp. T _B °C:	20
Boring Diameter:	11.4	cm	WCU Susp. Ht. S:	0.0	cm	Q: Rate of flo	ow of water fro	om the borehole		
Boring Radius r:	5.72	cm	Const. Wtr. Ht. H:	10.0	cm	H: Constant	height of wate	r in the borehole		
Soil/Water Tmp. T:	12	°C	H/r**	1.7		r: Radius of	the cylindrical	borehole		
Dyn. Visc. @ T:	0.001236	kg/m·s	Dyn. Visc. @ T _B .:	0.001003	kg/m·s	V: Dynamic v	viscosity of wat	ter @ T °C/Dyn. V	isc. of water @	T _B °C
VOLUME	Volume Out	TIME	Interval Elapse	d Time	Flow Rate Q		Ksat	_B Equivalent Valu	es	
(ml)	(ml)	(h:mm:ss A/P)	(hr:min:sec)	(min)	(ml/min)	(µm/sec)	(cm/sec)	(cm/day)	(in/hr)	(ft/day)
3,200		3:19:00 PM	1							
3,060	140	3:39:00 PM	0:20:00	20.00	7.00	1.7	1.71E-04	14.7	0.24	0.48
3,000	60	3:59:00 PM	0:20:00	20.00	3.00	0.7	7.31E-05	6.3	0.10	0.21
2,990	10	4:19:00 PM	0:20:00	20.00	0.50	0.1	1.22E-05	1.1	0.02	0.03
2,990	0	4:39:00 PM	0:20:00	20.00	0.00	0.0	0.00E+00	0.0	0.00	0.00
2,990	0	4:59:00 PM	0:20:00	20.00	0.00	0.0	0.00E+00	0.0	0.00	0.00
2,985	5	5:19:00 PM	0:20:00	20.00	0.25	0.1	6.09E-06	0.5	0.01	0.02
Natural Moisture:		Consistency:	Very Stiff	Total Time	Enter Ksat _B Value:	0.0	4.57E-06	0.4	0.01	0.01
USDA Txt./USCS Class.:	CL	Water Table Depth:	N/A	(min)		Notes: Ksat _B is c	leterm. by avera	g. and/or Rndng. th	e results for the	final three or
Struct./% Pass. #200:	120.00		four stabilized v	alues and analyz	ing the Flow Rate Q	vs Total Elapsed	Time Graph.			
*Glover, R. E. 1953. Flow from	n a test-hole located a	bove groundwater level. pp	. 69-71. in: Theory and Pr	oblems of Wat	er Percolation. (C. N. Zan	ger. ed.). USBR.	The condition fo	r this solution exists	when the distar	ice from the
bottom of the borehole to the	e water table or an in	npervious layer is at least 2X	the depth of the water in	the borehole.	**H/r ≥5 to ≥10. ***JP-f	V1: h = 15cm, JP	-M2: h = 10cm.	Johnson Permeame	ter, LLC Revised	5/26/2014

Constar	nt-Head Boreh	nole Permeameter	Test	Glover	Solution (Deep WT	or Imperviou	ıs Layer)	File Name: 0	loverRE-deep	·WT
Project Name:	Deanwood Hills		Boring No:	IT-3 (B-11)		S	olution and Te	rminology (R. E. (Glover Solution	າ)*
Project No	37:1404		Investigators:	RPH		Ksat = Q[sinh ⁻¹	¹ (H/r) - (r ² /H ² +:	$1)^{.5} + r/H]/(2\pi H^2)$	[Basic Glover	Solution]
Project Location:	5201 Hayes St, NE		Date:	12/16/2014		Ksat _B = QV[sinl	n ⁻¹ (H/r) - (r²/H²	+1) ^{.5} + r/H]/(2πH ²) [Temperatu	re-corrected]
Boring Depth:	6.25 ft	(m, cm, ft, in)	WCU Base Ht. h:	10.0	cm***	Ksat _B : (Coeffi	cient of Perme	ability, K) @ Base	Tmp. T _B °C:	20
Boring Diameter:	11.4	cm	WCU Susp. Ht. S:	0.0	cm	Q: Rate of flo	ow of water fro	om the borehole		
Boring Radius r:	5.72	cm	Const. Wtr. Ht. H:	10.0	cm	H: Constant	height of wate	r in the borehole		
Soil/Water Tmp. T:	6	°C	H/r**	1.7		r: Radius of	the cylindrical	borehole		
Dyn. Visc. @ T:	0.001473	kg/m·s	Dyn. Visc. @ T _B .:	0.001003	kg/m·s	V: Dynamic v	viscosity of wat	ter @ T °C/Dyn. V	isc. of water @	T _B °C
VOLUME	Volume Out	TIME	Interval Elapse	d Time	Flow Rate Q		Ksat	_Β Equivalent Valu	es	
(ml)	(ml)	(h:mm:ss A/P)	(hr:min:sec)	(min)	(ml/min)	(µm/sec)	(cm/sec)	(cm/day)	(in/hr)	(ft/day)
3,200		9:15:00 AN		1		[
3,110	90	9:35:00 AN	0:20:00	20.00	4.50	1.3	1.31E-04	11.3	0.19	0.37
3,100	10	9:55:00 AN	0:20:00	20.00	0.50	0.1	1.45E-05	1.3	0.02	0.04
3,100	0	10:15:00 AN	0:20:00	20.00	0.00	0.0	0.00E+00	0.0	0.00	0.00
3,100	0	10:35:00 AN	0:20:00	20.00	0.00	0.0	0.00E+00	0.0	0.00	0.00
3,095	5	10:55:00 AN	0:20:00	20.00	0.25	0.1	7.26E-06	0.6	0.01	0.02
Natural Moisture:		Consistency:	Stiff	Total Time	Enter Ksat _B Value:	0.0	2.42E-06	0.2	0.00	0.01
USDA Txt./USCS Class.:	(min)		NOTES: KSat _B is C	leterm. by avera	g. and/or Kndng. the	e results for the	Tinal three or			
Struct./% Pass. #200:		Init. Saturation Time.:	CO 74 in The control C	100.00						a from the
bottom of the borehole to the	e water table or an in	npove groundwater level. pp opervious laver is at least 2X	the depth of the water in	oblems of Wat the borehole.	er Percolation. (C. N. Zan $**H/r \ge 5$ to ≥ 10 . $***JP-N$	ger. ea.). USBR. V1: h = 15cm. JP	-M2: $h = 10$ cm.	r this solution exists Johnson Permeame	when the distar ter. LLC Revised	5/26/2014

Consta	nt-Head Borel	nole Permeameter	Test	Glover	Solution (Deep WT	or Imperviou	ıs Layer)	File Name: (GloverRE-deep	-WT
Project Name:	Deanwood Hills		Boring No:	IT-4 (B-12)		S	olution and Te	rminology (R. E. (Glover Solution	n)*
Project No	37:1404		Investigators:	RPH		Ksat = Q[sinh ⁻¹	(H/r) - (r ² /H ² +	$1)^{.5}$ + r/H]/(2 π H ²)	[Basic Glover	Solution]
Project Location:	5201 Hayes St, NE		Date:	12/18/2014		Ksat _B = QV[sinh	⁻¹ (H/r) - (r²/H²	² +1) ^{.5} + r/H]/(2πH ²	²) [Temperatu	re-corrected]
Boring Depth:	6.25 ft	(m, cm, ft, in)	WCU Base Ht. h:	10.0	cm***	Ksat _B : (Coeffi	cient of Perme	eability, K) @ Base	e Tmp. T _B °C:	20
Boring Diameter:	11.4	cm	WCU Susp. Ht. S:	0.0	cm	Q: Rate of flo	ow of water fro	om the borehole		
Boring Radius r:	5.72	cm	Const. Wtr. Ht. H:	10.0	cm	H: Constant	height of wate	r in the borehole		
Soil/Water Tmp. T:	5	°C	H/r**:	1.7		r: Radius of	the cylindrical	l borehole		
Dyn. Visc. @ T:	0.001520	kg/m·s	Dyn. Visc. @ T _B .:	0.001003	kg/m·s	V: Dynamic v	iscosity of wa	ter @ T °C/Dyn. V	'isc. of water @) T _B °C
VOLUME	Volume Out	TIME	Interval Elapse	d Time	Flow Rate Q		Ksat	_B Equivalent Valu	ies	
(ml)	(ml)	(h:mm:ss A/P)	(hr:min:sec)	(min)	(ml/min)	(µm/sec)	(cm/sec)	(cm/day)	(in/hr)	(ft/day)
3,200		10:00:00 AM								
2,880	320	10:20:00 AM	0:20:00	20.00	16.00	4.8	4.79E-04	41.4	0.68	1.36
2,560	320	10:40:00 AM	0:20:00	20.00	16.00	4.8	4.79E-04	41.4	0.68	1.36
2,260	300	11:00:00 AM	0:20:00	20.00	15.00	4.5	4.50E-04	38.8	0.64	1.27
2,010	250	11:20:00 AM	0:20:00	20.00	12.50	3.7	3.75E-04	32.4	0.53	1.06
1,790	220	11:40:00 AM	0:20:00	20.00	11.00	3.3	3.30E-04	28.5	0.47	0.93
1,590	200	12:00:00 PM	0:20:00	20.00	10.00	3.0	3.00E-04	25.9	0.42	0.85
1,390	200	0:20:00	20.00	10.00	3.0	3.00E-04	25.9	0.42	0.85	
1,180	210	12:40:00 PM	0:20:00	20.00	10.50	3.1	3.15E-04	27.2	0.45	0.89
980	200	1:00:00 PM	0:20:00	20.00	10.00	3.0	3.00E-04	25.9	0.42	0.85
Natural Moisture:		Consistency:	Loose	Total Time	Enter Ksat _B Value:	3.6	3.63E-04	31.4	0.52	1.03
USDA Txt./USCS Class.:	ML	Water Table Depth:	N/A	(min)		Notes: Ksat _B is d	leterm. by avera	g. and/or Rndng. th	e results for the	final three or
Struct./% Pass. #200:		Init. Saturation Time.:		180.00		tour stabilized v	alues and analyz	ing the Flow Rate Q	Lvs Total Elapsed	i Time Graph.
*Glover, R. E. 1953. Flow from	n a test-hole located a	above groundwater level. pp	. 69-71. in: Theory and Pr	oblems of Wat	er Percolation. (C. N. Zan	ger. ed.). USBR.	The condition fo	r this solution exists	when the distar	the from the $\sqrt{26}/2014$
Natural Moisture: USDA Txt./USCS Class.: Struct./% Pass. #200: *Glover, R. E. 1953. Flow fror bottom of the borehole to th	ML n a test-hole located a	Consistency: Water Table Depth: Init. Saturation Time.: above groundwater level. pp npervious layer is at least 2X	Loose N/A . 69-71. in: Theory and Pr the depth of the water in	Total Time (min) 180.00 roblems of Wat	Enter Ksat _B Value: er Percolation. (C. N. Zan **H/r ≥5 to ≥10. ***JP-F	3.6 Notes: Ksat _B is d four stabilized v ger. ed.). USBR. ⁻ V1: h = 15cm, JP	3.63E-04 leterm. by avera alues and analyz The condition fo -M2: h = 10cm.	31.4 g. and/or Rndng. th zing the Flow Rate C or this solution exists Johnson Permeame	0.52 er results for the tws Total Elapsec s when the distar eter, LLC Revisec	final three d Time Gra nce from tl

Consta	nt-Head Boreł	nole Permeameter	Test	Glover	Solution (Deep WT	or Imperviou	ıs Layer)	File Name: 0	iloverRE-deep	-WT
Project Name:	Deanwood Hills		Boring No:	IT-5 (B-12)		S	olution and Te	rminology (R. E. C	Slover Solutior	ו)*
Project No	37:1404		Investigators:	RPH		Ksat = Q[sinh ⁻¹	¹ (H/r) - (r ² /H ² +:	$1)^{.5} + r/H]/(2\pi H^2)$	[Basic Glover	Solution]
Project Location:	5201 Hayes St, NE		Date:	12/18/2014		Ksat _B = QV[sinl	n ⁻¹ (H/r) - (r²/H²	+1) ^{.5} + r/H]/(2πH ²) [Temperatu	re-corrected]
Boring Depth:	6.25 ft	(m, cm, ft, in)	WCU Base Ht. h:	10.0	cm***	Ksat _B : (Coeffi	cient of Perme	ability, K) @ Base	Tmp. T _B °C:	20
Boring Diameter:	11.4	cm	WCU Susp. Ht. S:	0.0	cm	Q: Rate of flo	ow of water fro	om the borehole		
Boring Radius r:	5.72	cm	Const. Wtr. Ht. H:	10.0	cm	H: Constant	height of wate	r in the borehole		
Soil/Water Tmp. T:	5	°C	H/r**	1.7		r: Radius of	the cylindrical	borehole		
Dyn. Visc. @ T:	0.001520	kg/m·s	Dyn. Visc. @ T _B .:	0.001003	kg/m·s	V: Dynamic v	viscosity of wat	ter @ T °C/Dyn. V	isc. of water @	Ο Τ _B ^o C
VOLUME	Volume Out	TIME	Interval Elapse	d Time	Flow Rate Q		Ksat	B Equivalent Valu	es	
(ml)	(ml)	(h:mm:ss A/P)	(hr:min:sec)	(min)	(ml/min)	(µm/sec)	(cm/sec)	(cm/day)	(in/hr)	(ft/day)
3,200		10:01:00 AM		1		[
3,170	30	10:21:00 AM	0:20:00	20.00	1.50	0.4	4.50E-05	3.9	0.06	0.13
3,170	0	10:41:00 AM	0:20:00	20.00	0.00	0.0	0.00E+00	0.0	0.00	0.00
3,170	0	11:01:00 AM	0:20:00	20.00	0.00	0.0	0.00E+00	0.0	0.00	0.00
3,170	0	11:21:00 AM	0:20:00	20.00	0.00	0.0	0.00E+00	0.0	0.00	0.00
Natural Moisture:		Consistency:	Loose	Total Time	Enter Ksat _B Value:	0.0	0.00E+00	0.0	0.00	0.00
JSDA Txt./USCS Class.: <u>ML</u> Water Table Depth: <u>N/A</u>				(min)		Notes: Ksat _B is c	leterm. by avera	g. and/or Rndng. the	e results for the	final three or
Struct./% Pass. #200:		80.00		tour stabilized v	alues and analyz	ing the Flow Rate Q	vs Total Elapsed	i Time Graph.		
*Glover, R. E. 1953. Flow from	n a test-hole located a	above groundwater level. pp	. 69-71. in: Theory and Pr	oblems of Wat	er Percolation. (C. N. Zan	ger. ed.). USBR.	The condition fo	r this solution exists	when the distan	the from the $5/26/2014$
		ipervious layer is at ledst ZA	the depth of the water if	i the buiendle.	1/1 = J LU = 10. JP-1	vi I. II – I.JUII, JP	-IVIZ. II - TUCIII.	Journson Fermedille	LEI, LLC NEVISEU	5/20/2014

Consta	nt-Head Boreł	nole Permeameter	Test	Glover	Solution (Deep WT	or Imperviou	ıs Layer)	File Name: 0	iloverRE-deep	WT
Project Name:	Deanwood Hills		Boring No:	IT-6 (B-5)		S	olution and Te	rminology (R. E. G	olover Solutior	າ)*
Project No	37:1404		Investigators:	RPH		Ksat = Q[sinh ⁻¹	¹ (H/r) - (r ² /H ² +:	$1)^{.5} + r/H]/(2\pi H^2)$	[Basic Glover	Solution]
Project Location:	5201 Hayes St, NE		Date:	12/16/2014		Ksat _B = QV[sinl	n ⁻¹ (H/r) - (r ² /H ²	+1) ^{.5} + r/H]/(2πH ²) [Temperatu	re-corrected]
Boring Depth:	6.25 ft	(m, cm, ft, in)	WCU Base Ht. h:	10.0	cm***	Ksat _B : (Coeffi	cient of Perme	ability, K) @ Base	Tmp. T _B °C:	20
Boring Diameter:	11.4	cm	WCU Susp. Ht. S:	0.0	cm	Q: Rate of flo	ow of water fro	om the borehole		
Boring Radius r:	5.72	cm	Const. Wtr. Ht. H:	10.0	cm	H: Constant	height of wate	r in the borehole		
Soil/Water Tmp. T:	12	°C	H/r**:	1.7		r: Radius of	the cylindrical	borehole		
Dyn. Visc. @ T:	0.001236	kg/m·s	Dyn. Visc. @ T _B .:	0.001003	kg/m·s	V: Dynamic v	iscosity of wat	ter @ T °C/Dyn. V	isc. of water @	T _B °C
VOLUME	Volume Out	TIME	Interval Elapse	d Time	Flow Rate Q		Ksat	_B Equivalent Valu	es	
(ml)	(ml)	(h:mm:ss A/P)	(hr:min:sec)	(min)	(ml/min)	(µm/sec)	(cm/sec)	(cm/day)	(in/hr)	(ft/day)
2,000		2:15:00 PN		1						
1,995	5	2:41:00 PN	0:26:00	26.00	0.19	0.0	4.69E-06	0.4	0.01	0.01
1,995	0	3:01:00 PN	0:20:00	20.00	0.00	0.0	0.00E+00	0.0	0.00	0.00
1,995	0	3:21:00 PM	0:20:00	20.00	0.00	0.0	0.00E+00	0.0	0.00	0.00
1,995	0	3:41:00 PM	0:20:00	20.00	0.00	0.0	0.00E+00	0.0	0.00	0.00
1,995	0	4:01:00 PN	0:20:00	20.00	0.00	0.0	0.00E+00	0.0	0.00	0.00
Natural Moisture:	·	Consistency:	Stiff	Total Time	Enter Ksat _B Value:	0.0	0.00E+00	0.0	0.00	0.00
USDA Txt./USCS Class.:	Txt./USCS Class.: CL Water Table Depth: N/A					Notes: Ksat _B is c	leterm. by avera	g. and/or Rndng. th	e results for the	final three or
Struct./% Pass. #200:	uct./% Pass. #200: Init. Saturation Time.:					four stabilized v	alues and analyz	ing the Flow Rate Q	vs Total Elapsed	Time Graph.
*Glover, R. E. 1953. Flow from	a test-hole located a	above groundwater level. pp	. 69-71. in: Theory and Pr	oblems of Wat	er Percolation. (C. N. Zan	ger. ed.). USBR.	The condition fo	r this solution exists	when the distar	nce from the
bottom of the borehole to the	e water table or an in	npervious layer is at least 2X	the depth of the water in	n the borehole.	**H/r ≥5 to ≥10. ***JP-ľ	V1: h = 15cm, JP	-M2: h = 10cm.	Johnson Permeame	ter, LLC Revised	5/26/2014

Constar	nt-Head Boreh	ole Permeameter	Test	Glover	Solution (Deep WT	or Imperviou	s Layer)	File Name: 0	iloverRE-deep	-WT
Project Name:	Deanwood Hills		Boring No	IT-7 (B-13)		So	olution and Te	rminology (R. E. C	lover Solutio	n)*
Project No	37:1404		Investigators:	RPH		Ksat = Q[sinh ⁻¹	(H/r) - (r ² /H ² +:	$1)^{.5} + r/H]/(2\pi H^2)$	[Basic Glover	Solution]
Project Location:	5201 Hayes St, NE		Date	12/17/2014		Ksat _B = QV[sinh	⁻¹ (H/r) - (r ² /H ²	+1) ^{.5} + r/H]/(2πH ²) [Temperatu	ire-corrected]
Boring Depth:	6.25 ft	(m, cm, ft, in)	WCU Base Ht. h:	10.0	cm***	Ksat _B : (Coeffic	cient of Perme	ability, K) @ Base	Tmp. T _B °C:	20
Boring Diameter:	11.4	cm	WCU Susp. Ht. S:	0.0	cm	Q: Rate of flo	w of water fro	om the borehole		
Boring Radius r:	5.72	cm	Const. Wtr. Ht. H:	10.0	cm	H: Constant h	neight of wate	r in the borehole		
Soil/Water Tmp. T:	12	°C	H/r**:	1.7		r: Radius of	the cylindrical	borehole		
Dyn. Visc. @ T:	0.001236	kg/m·s	Dyn. Visc. @ T _B .:	0.001003	kg/m·s	V: Dynamic v	iscosity of wat	ter @ T °C/Dyn. V	isc. of water @	₽ T _B °C
VOLUME	Volume Out	TIME	Interval Elapse	d Time	Flow Rate Q		Ksat	B Equivalent Valu	es	
(ml)	(ml)	(h:mm:ss A/P)	(hr:min:sec)	(min)	(ml/min)	(µm/sec)	(cm/sec)	(cm/day)	(in/hr)	(ft/day)
3,200		3:32:00 PM		[
3,060	140	3:52:00 PM	0:20:00	20.00	7.00	1.7	1.71E-04	14.7	0.24	0.48
3,050	10	4:12:00 PM	0:20:00	20.00	0.50	0.1	1.22E-05	1.1	0.02	0.03
3,050	0	4:32:00 PM	0:20:00	20.00	0.00	0.0	0.00E+00	0.0	0.00	0.00
3,050	0	4:52:00 PM	0:20:00	20.00	0.00	0.0	0.00E+00	0.0	0.00	0.00
		0		Total Time -	Frater Kest Mak		0.007.00			
	Consistency	very Stiff	iotai lime (min)	Enter Ksat _B Value:	0.0	U.UUE+00	U.O	0.00 e results for the	0.00	
USDA Txt./USCS Class.:	N/A	(11111)		four stabilized va	alues and analyz	ing the Flow Rate O	vs Total Elapser	d Time Graph.		
STRUCT./% Pass. #200:	a test-hole located a	Init. Saturation lime.:	69-71 in: Theory and Pr	80.00	er Percolation (C N 7an	ger ed) LISBR T	The condition fo	r this solution evicts	when the dista	nce from the
bottom of the borehole to the	e water table or an in	npervious layer is at least 2X	the depth of the water in	the borehole.	**H/r ≥5 to ≥10. ***JP-f	M1: h = 15cm, JP-	M2: h = 10cm.	Johnson Permeame	ter, LLC Revised	5/26/2014

Constant-Head Borehole Permeameter Test				Glover Solution (Deep WT or Impervious Layer) File Name: GloverRE-d				loverRE-deep	-WT		
Project Name:	Deanwood Hills		Boring No	IT-8 (B-13)		Solution and Terminology (R. E. Glover Solution)*					
Project No	37:1404		Investigators:	RPH		Ksat = Q[sinh ⁻¹ (H/r) - $(r^2/H^2+1)^{-5} + r/H]/(2\pi H^2)$ [Basic Glover Solution]					
Project Location:	5201 Hayes St, NE		Date:	12/17/2014		Ksat _B = QV[sinh ⁻¹ (H/r) - (r^2/H^2 +1) ⁻⁵ + r/H]/(2 π H ²) [Temperature-corrected]					
Boring Depth:	6 ft	(m, cm, ft, in)	WCU Base Ht. h:	10.0	cm***	Ksat _B : (Coeffic	cient of Perme	ability, K) @ Base	Tmp. T _B °C:	20	
Boring Diameter:	11.4	cm	WCU Susp. Ht. S:	0.0	cm	Q: Rate of flo	w of water fro	om the borehole			
Boring Radius r:	5.72 cm		Const. Wtr. Ht. H:	10.0	cm	H: Constant h	neight of wate	r in the borehole			
Soil/Water Tmp. T:	12	°C	H/r**:	1.7		r: Radius of	the cylindrical	borehole			
Dyn. Visc. @ T:	0.001236	kg/m·s	Dyn. Visc. @ T _B .:	0.001003	kg/m·s	V: Dynamic v	iscosity of wat	ter @ T °C/Dyn. V	isc. of water @	₽ T _B °C	
VOLUME	Volume Out	TIME	Interval Elapse	d Time	Flow Rate Q		Ksat	B Equivalent Valu	es		
(ml)	(ml)	(h:mm:ss A/P)	(hr:min:sec)	(min)	(ml/min)	(µm/sec)	(cm/sec)	(cm/day)	(in/hr)	(ft/day)	
2,000		11:51:00 AM		[T		
1,997	3	12:11:00 PM	0:20:00	20.00	0.15	0.0	3.66E-06	0.3	0.01	0.01	
1,995	2	12:31:00 PM	0:20:00	20.00	0.10	0.0	2.44E-06	0.2	0.00	0.01	
1,995	0	12:51:00 PM	0:20:00	20.00	0.00	0.0	0.00E+00	0.0	0.00	0.00	
1,995	0	1:11:00 PM	0:20:00	20.00	0.00	0.0	0.00E+00	0.0	0.00	0.00	
				Total Time -	Fator Kest Mal		0.007.00	• •			
	<u> </u>	Consistency	very Stiff	iotai lime (min)	Enter Ksat _B Value:	0.0	U.UUE+00	U.O	0.00 e results for the	0.00	
USDA Txt./USCS Class.:	CL	Water Table Depth:	N/A	(11117)		four stabilized va	lues and analyz	ing the Flow Rate O	vs Total Elapser	d Time Graph.	
Struct./% Pass. #200:	a test-hole located a	Init. Saturation lime.:	69-71 in Theory and Pr	8U.UU oblems of Wat	er Percolation (C N 7an	ger ed) LISBR T	he condition fo	r this solution evists	when the dista	nce from the	
bottom of the borehole to the	e water table or an in	npervious layer is at least 2X	the depth of the water in	the borehole.	**H/r ≥5 to ≥10. ***JP-f	V1: h = 15cm, JP-	M2: h = 10cm.	Johnson Permeame	ter, LLC Revised	5/26/2014	

Constant-Head Borehole Permeameter Test				Glover Solution (Deep WT or Impervious Layer) File Name: GloverRE-dee				JoverRE-deep	-WT		
Project Name:	Deanwood Hills		Boring No	IT-9 (B-14)		Solution and Terminology (R. E. Glover Solution)*					
Project No	37:1404		Investigators:	RPH		Ksat = Q[sinh ⁻¹ (H/r) - (r^2/H^2 +1) ⁻⁵ + r/H]/($2\pi H^2$) [Basic Glover Solution]					
Project Location:	5201 Hayes St, NE		Date:	12/17/2014		$Ksat_{B} = QV[sinh^{-1}(H/r) - (r^{2}/H^{2}+1)^{-5} + r/H]/(2\pi H^{2})$ [Temperature-corrected]					
Boring Depth:	6 ft	(m, cm, ft, in)	WCU Base Ht. h:	10.0	cm***	Ksat _B : (Coeffi	cient of Perme	ability, K) @ Base	Tmp. T _B °C:	20	
Boring Diameter:	11.4	cm	WCU Susp. Ht. S:	0.0	cm	Q: Rate of flo	w of water fro	om the borehole			
Boring Radius r:	5.72	cm	Const. Wtr. Ht. H:	10.0	cm	H: Constant I	neight of wate	r in the borehole			
Soil/Water Tmp. T:	12	°C	H/r**:	1.7		r: Radius of	the cylindrical	borehole			
Dyn. Visc. @ T:	0.001236	kg/m·s	Dyn. Visc. @ T _B .:	0.001003	kg/m·s	V: Dynamic v	iscosity of wat	ter @ T °C/Dyn. V	isc. of water @	ρ Τ _B °C	
VOLUME	Volume Out	TIME	Interval Elapse	d Time	Flow Rate Q		Ksat	B Equivalent Valu	es		
(ml)	(ml)	(h:mm:ss A/P)	(hr:min:sec)	(min)	(ml/min)	(µm/sec)	(cm/sec)	(cm/day)	(in/hr)	(ft/day)	
3,200		11:54:00 AM									
3,055	145	12:14:00 PM	0:20:00	20.00	7.25	1.8	1.77E-04	15.3	0.25	0.50	
3,050	5	12:34:00 PM	0:20:00	20.00	0.25	0.1	6.09E-06	0.5	0.01	0.02	
3,050	0	12:54:00 PM	0:20:00	20.00	0.00	0.0	0.00E+00	0.0	0.00	0.00	
3,050	0	1:14:00 PM	0:20:00	20.00	0.00	0.0	0.00E+00	0.0	0.00	0.00	
Natural Moisture:		Consistency:	Medium Dense	Total Time	Enter Ksat _B Value:	0.0	0.00E+00	0.0	0.00	0.00	
USDA Txt./USCS Class.: ML Water Table Depth:		N/A	(min)		NOTES: KSat _B is d	eterm. by avera	g. and/or Kndng. the	e results for the	Tinal three or		
Struct./% Pass. #200:		Init. Saturation Time.:	(0.71 in The second b	80.00							
bottom of the borehole to th	e water table or an in	npervious layer is at least 2X	the depth of the water in	the borehole.	**H/r ≥5 to ≥10. ***JP-f	ger. ea.j. USBR. V1: h = 15cm, JP-	M2: $h = 10$ cm.	Johnson Permeame	ter, LLC Revised	5/26/2014	

Constant-Head Borehole Permeameter Test				Glover Solution (Deep WT or Impervious Layer) File Name: GloverRE-de				loverRE-deep	-WT		
Project Name:	Deanwood Hills		Boring No:	IT-10 (B-14)		Solution and Terminology (R. E. Glover Solution)*					
Project No	37:1404		Investigators:	RPH		Ksat = Q[sinh ⁻¹ (H/r) - (r^2/H^2 +1) ⁻⁵ + r/H]/($2\pi H^2$) [Basic Glover Solution]					
Project Location:	5201 Hayes St, NE		Date:	12/16/2014		Ksat _B = QV[sinh ⁻¹ (H/r) - (r^2/H^2 +1) ^{.5} + r/H]/(2 π H ²) [Temperature-corrected]					
Boring Depth:	6.25 ft	(m, cm, ft, in)	WCU Base Ht. h:	10.0	cm***	Ksat _B : (Coeffic	cient of Perme	ability, K) @ Base	Tmp. T _B °C:	20	
Boring Diameter:	11.4	cm	WCU Susp. Ht. S:	0.0	cm	Q: Rate of flo	w of water fro	om the borehole			
Boring Radius r:	5.72	cm	Const. Wtr. Ht. H:	10.0	cm	H: Constant height of water in the borehole					
Soil/Water Tmp. T:	6	°C	H/r**:	1.7		r: Radius of	the cylindrical	borehole			
Dyn. Visc. @ T:	0.001473	kg/m·s	Dyn. Visc. @ T _B .:	0.001003	kg/m·s	V: Dynamic v	iscosity of wat	ter @ T °C/Dyn. V	isc. of water @	PT _B °C	
VOLUME	Volume Out	TIME	Interval Elapse	d Time	Flow Rate Q		Ksat	B Equivalent Valu	es		
(ml)	(ml)	(h:mm:ss A/P)	(hr:min:sec)	(min)	(ml/min)	(µm/sec)	(cm/sec)	(cm/day)	(in/hr)	(ft/day)	
3,200		12:13:00 PM									
3,180	20	12:33:00 PM	0:20:00	20.00	1.00	0.3	2.90E-05	2.5	0.04	0.08	
3,170	10	12:53:00 PM	0:20:00	20.00	0.50	0.1	1.45E-05	1.3	0.02	0.04	
3,170	0	1:13:00 PM	0:20:00	20.00	0.00	0.0	0.00E+00	0.0	0.00	0.00	
3,170	0	1:33:00 PM	0:20:00	20.00	0.00	0.0	0.00E+00	0.0	0.00	0.00	
3,170	0	1:53:00 PM	0:20:00	20.00	0.00	0.0	0.00E+00	0.0	0.00	0.00	
Natural Moisture:		Consistency:	Medium Dense	Total Time	Enter Ksat₅ Value:	0.0	0.00E+00	0.0	0.00	0.00	
USDA Txt./USCS Class.:	ML	Water Table Depth:	N/A	(min)		Notes: Ksat _B is de	eterm. by avera	g. and/or Rndng. the	e results for the	final three or	
Struct./% Pass. #200:	-	Init. Saturation Time.:		100.00		four stabilized va	alues and analyz	ing the Flow Rate Q	vs Total Elapsec	d Time Graph.	
*Glover, R. E. 1953. Flow from	a test-hole located a	bove groundwater level. pp	. 69-71. in: Theory and Pr	oblems of Wat	er Percolation. (C. N. Zan	ger. ed.). USBR. T	he condition for	r this solution exists	when the distar	nce from the	
bottom of the borehole to the	e water table or an in	npervious layer is at least 2X	the depth of the water in	the borehole.	**H/r ≥5 to ≥10. ***JP-ľ	V1: h = 15cm, JP-	M2: h = 10cm.	Johnson Permeame	ter, LLC Revised	5/26/2014	

Constant-Head Borehole Permeameter Test				Glover Solution (Deep WT or Impervious Layer) File Name: GloverRE				loverRE-deep-	WT		
Project Name:	Deanwood Hills		Boring No:	IT-11 (B-15)		Solution and Terminology (R. E. Glover Solution)*					
Project No	37:1404		Investigators:	RPH		Ksat = Q[sinh ⁻¹ (H/r) - (r^2/H^2 +1) ⁻⁵ + r/H]/($2\pi H^2$) [Basic Glover Solution]					
Project Location:	5201 Hayes St, NE	_	Date:	12/17/2014		Ksat _B = QV[sinh ⁻¹ (H/r) - (r^2/H^2 +1) ⁻⁵ + r/H]/(2 π H ²) [Temperature-corrected]					
Boring Depth:	6.25 ft	(m, cm, ft, in)	WCU Base Ht. h:	10.0	cm***	Ksat _B : (Coeffi	cient of Perme	ability, K) @ Base	Tmp. T _B °C:	20	
Boring Diameter:	11.4	cm	WCU Susp. Ht. S:	0.0	cm	Q: Rate of flo	ow of water fro	om the borehole			
Boring Radius r:	5.72	cm	Const. Wtr. Ht. H: 10.0 cm			H: Constant height of water in the borehole					
Soil/Water Tmp. T:	12	°C	H/r**:	1.7	-	r: Radius of	the cylindrical	borehole			
Dyn. Visc. @ T:	0.001236	kg/m·s	Dyn. Visc. @ T _B .:	0.001003	kg/m·s	V: Dynamic	iscosity of wat	ter @ T °C/Dyn. V	isc. of water @	Τ _B °C	
VOLUME	Volume Out	TIME	Interval Elapse	d Time	Flow Rate Q		Ksat	B Equivalent Valu	es		
(ml)	(ml)	(h:mm:ss A/P)	(hr:min:sec)	(min)	(ml/min)	(µm/sec)	(cm/sec)	(cm/day)	(in/hr)	(ft/day)	
3,200		11:52:00 AM									
2,520	680	12:12:00 PM	0:20:00	20.00	34.00	8.3	8.29E-04	71.6	1.17	2.35	
1,685	835	12:32:00 PM	0:20:00	20.00	41.75	10.2	1.02E-03	87.9	1.44	2.88	
840	845	12:52:00 PM	0:20:00	20.00	42.25	10.3	1.03E-03	89.0	1.46	2.92	
3,200		12:52:00 PM									
2,340	860	1:12:00 PM	0:20:00	20.00	43.00	10.5	1.05E-03	90.5	1.49	2.97	
1,485	855	1:32:00 PM	0:20:00	20.00	42.75	10.4	1.04E-03	90.0	1.48	2.95	
645	840	1:52:00 PM	0:20:00	20.00	42.00	10.2	1.02E-03	88.4	1.45	2.90	
Natural Moisture:	1	Consistency	Very Soft	Total Time	Enter Ksat _R Value:	10.4	1.04E-03	89.7	1.47	2.94	
USDA Txt./USCS Class.:	CL	Water Table Depth:		(min)		Notes: Ksat _B is c	leterm. by avera	g. and/or Rndng. th	e results for the i	final three or	
Struct./% Pass. #200:		Init. Saturation Time.:		120.00		four stabilized v	alues and analyz	ing the Flow Rate Q	vs Total Elapsed	Time Graph.	
*Glover, R. E. 1953. Flow from	a test-hole located a	above groundwater level. pp	. 69-71. in: Theory and Pi	roblems of Wat	er Percolation. (C. N. Zan	ger. ed.). USBR.	The condition fo	r this solution exists	when the distan	ice from the	
bottom of the borehole to the	e water table or an in	npervious layer is at least 2X	the depth of the water in	n the borehole.	**H/r ≥5 to ≥10. ***JP-I	V1: h = 15cm, JP	-M2: h = 10cm.	Johnson Permeame	ter, LLC Revised	5/26/2014	

Constant-Head Borehole Permeameter Test				Glover Solution (Deep WT or Impervious Layer) File Name: GloverRE-deep-				WT			
Project Name:	Deanwood Hills		Boring No:	IT-12 (B-15)		Solution and Terminology (R. E. Glover Solution)*					
Project No	37:1404		Investigators:	RPH		Ksat = Q[sinh ⁻¹ (H/r) - $(r^2/H^2+1)^{-5} + r/H]/(2\pi H^2)$ [Basic Glover Solution]					
Project Location:	5201 Hayes St, NE		Date:	.: 12/18/2014		$Ksat_{B} = QV[sinh^{-1}(H/r) - (r^{2}/H^{2}+1)^{-5} + r/H]/(2\pi H^{2})$ [Temperature-corrected]					
Boring Depth:	6.25 ft	(m, cm, ft, in)	WCU Base Ht. h:	10.0	cm***	Ksat _B : (Coeffi	cient of Perme	ability, K) @ Base	Tmp. T _B °C:	20	
Boring Diameter:	11.4	cm	WCU Susp. Ht. S:	0.0	cm	Q: Rate of flo	ow of water fro	om the borehole			
Boring Radius r:	5.72	cm	Const. Wtr. Ht. H:	10.0	cm	H: Constant	height of wate	r in the borehole			
Soil/Water Tmp. T:	5	°C	H/r**:	1.7		r: Radius of	the cylindrical	borehole			
Dyn. Visc. @ T:	0.001520	kg/m·s	Dyn. Visc. @ T _B .:	0.001003	kg/m·s	V: Dynamic v	iscosity of wat	ter @ T °C/Dyn. V	isc. of water @	T _B °C	
VOLUME	Volume Out	TIME	Interval Elapse	d Time	Flow Rate Q		Ksat _B Equivalent Values				
(ml)	(ml)	(h:mm:ss A/P)	(hr:min:sec)	(min)	(ml/min)	(µm/sec)	(cm/sec)	(cm/day)	(in/hr)	(ft/day)	
3,200		8:16:00 AN	1								
3,195	5	8:36:00 AN	0:20:00	20.00	0.25	0.1	7.49E-06	0.6	0.01	0.02	
3,195	0	8:56:00 AN	0:20:00	20.00	0.00	0.0	0.00E+00	0.0	0.00	0.00	
3,195	0	9:16:00 AN	0:20:00	20.00	0.00	0.0	0.00E+00	0.0	0.00	0.00	
Natural Moisture:		Consistency:	Very Soft	Total Time	Enter Ksat _B Value:	0.0	0.00E+00	0.0	0.00	0.00	
USDA Txt./USCS Class.:	CL	Water Table Depth:	N/A	(min)		Notes: Ksat _B is d	leterm. by average and analyzed	g. and/or Rndng. the	e results for the i	final three or	
Struct./% Pass. #200:	a taat kat da a da	Init. Saturation Time.:	60 74 is T'	60.00							
тыоver, к. е. 1953. Flow from bottom of the borehole to the	i a test-noie located a e water table or an in	ibove groundwater level. pp opervious laver is at least 2X	the denth of the water in	the borehole	er Percolation. (C. N. Zan **H/r >5 to >10 ***IP-I	ger. ea.). USBR. V1: h = 15cm IP	I ne condition for -M2 · h = 10cm	r this solution exists Johnson Permeame	when the distar	100 from the	
Consta	Constant-Head Borehole Permeameter Test				Glover Solution (Deep WT or Impervious Layer) File Name: GloverRE-deep-WT					-WT	
------------------------------	---	--------------------------------	--------------------------------	--------------------------------	---	---	---	--	-------------------------------------	---------------------	
Project Name:	Deanwood Hills		Boring No	IT-13 (B-16)		So	olution and Te	rminology (R. E. C	Glover Solution	n)*	
Project No	37:1404		Investigators:	RPH		Ksat = Q[sinh ⁻¹	(H/r) - (r ² /H ² +)	$1)^{.5} + r/H]/(2\pi H^2)$	[Basic Glover	Solution]	
Project Location:	5201 Hayes St, NE		Date	12/18/2014		Ksat _B = QV[sinh	⁻¹ (H/r) - (r ² /H ²	+1) ^{.5} + r/H]/(2πH ²) [Temperatu	re-corrected]	
Boring Depth:	6.25 ft	(m, cm, ft, in)	WCU Base Ht. h:	10.0	cm***	Ksat _B : (Coeffic	cient of Perme	ability, K) @ Base	Tmp. T _B °C:	20	
Boring Diameter:	11.4	cm	WCU Susp. Ht. S:	0.0	cm	Q: Rate of flo	w of water fro	om the borehole			
Boring Radius r:	5.72	cm	Const. Wtr. Ht. H:	10.0	cm	H: Constant h	H: Constant height of water in the borehole				
Soil/Water Tmp. T:	5	°C	H/r**:	1.7		r: Radius of	the cylindrical	borehole			
Dyn. Visc. @ T:	0.001520	kg/m·s	Dyn. Visc. @ T _B .:	0.001003	kg/m·s	V: Dynamic v	iscosity of wa	ter @ T °C/Dyn. V	isc. of water @	ρ Τ _B °C	
VOLUME	Volume Out	TIME	Interval Elapse	d Time	Flow Rate Q	Ksat _B Equivalent Values					
(ml)	(ml)	(h:mm:ss A/P)	(hr:min:sec)	(min)	(ml/min)	(µm/sec)	(cm/sec)	(cm/day)	(in/hr)	(ft/day)	
3,200		8:17:00 AM									
3,200	0	8:37:00 AM	0:20:00	20.00	0.00	0.0	0.00E+00	0.0	0.00	0.00	
3,200	0	8:57:00 AM	0:20:00	20.00	0.00	0.0	0.00E+00	0.0	0.00	0.00	
3,200	0	9:17:00 AM	0:20:00	20.00	0.00	0.0	0.00E+00	0.0	0.00	0.00	
Natural Moisture:		Consistency:	Very Stiff	Total Time	Enter Ksat _B Value:	0.0	0.00E+00	0.0	0.00	0.00	
USDA Txt./USCS Class.:	CL	Water Table Depth:	N/A	(min)		Notes: Ksat _B is de	eterm. by avera	g. and/or Rndng. the	e results for the	tinal three or	
Struct./% Pass. #200:		Init. Saturation Time.:	60 74 ·	60.00	D		aiues anu analyz	ing the riow rate Q			
bottom of the borehole to th	e water table or an in	npervious layer is at least 2X	the depth of the water in	oblems of Wat the borehole.	er Percolation. (C. N. Zan **H/r ≥5 to ≥10. ***JP-N	ger. ea.). USBR. 1 V1: h = 15cm, JP-	M2: h = 10cm.	r this solution exists Johnson Permeame	when the distar ter, LLC Revised	100 from the	

Consta	Constant-Head Borehole Permeameter Test				Solution (Deep WT	/T or Impervious Layer) File Name: GloverRE-deep-WT				
Project Name:	Deanwood Hills		Boring No	IT-14 (B-16)		S	olution and Te	rminology (R. E. C	olover Solutior	ı)*
Project No	37:1404		Investigators:	RPH		Ksat = Q[sinh ⁻	¹ (H/r) - (r ² /H ² +:	$1)^{.5} + r/H]/(2\pi H^2)$	[Basic Glover	Solution]
Project Location:	5201 Hayes St, NE		Date	12/16/2014		$Ksat_{B} = QV[sinh^{-1}(H/r) - (r^{2}/H^{2}+1)^{.5} + r/H]/(2\pi H^{2})$ [Temperature-corrected]				
Boring Depth:	6 ft	(m, cm, ft, in)	WCU Base Ht. h:	10.0	cm***	Ksat _B : (Coefficient of Permeability, K) @ Base Tmp. T _B °C: 20				
Boring Diameter:	11.4	cm	WCU Susp. Ht. S:	0.0	0.0 cm Q: Rate of flow of water from the borehole					
Boring Radius r:	5.72	cm	Const. Wtr. Ht. H:	10.0	cm	H: Constant	height of wate	r in the borehole		
Soil/Water Tmp. T:	6	°C	H/r**:	1.7		r: Radius of the cylindrical borehole				
Dyn. Visc. @ T:	0.001473	kg/m·s	Dyn. Visc. @ T _B .:	0.001003	kg/m·s	V: Dynamic	viscosity of wat	ter @ T °C/Dyn. V	isc. of water @	Τ _B °C
VOLUME	Volume Out	TIME	Interval Elapse	d Time	Flow Rate Q	Ksat _B Equivalent Values				
(ml)	(ml)	(h:mm:ss A/P)	(hr:min:sec)	(min)	(ml/min)	(µm/sec)	(cm/sec)	(cm/day)	(in/hr)	(ft/day)
2,010		12:05:00 PM		1				T		
1,635	375	12:25:00 PM	0:20:00	20.00	18.75	5.4	5.45E-04	47.0	0.77	1.54
1,260	375	12:45:00 PM	0:20:00	20.00	18.75	5.4	5.45E-04	47.0	0.77	1.54
940	320	1:06:00 PM	0:21:00	21.00	15.24	4.4	4.43E-04	38.2	0.63	1.25
630	310	1:26:00 PM	0:20:00	20.00	15.50	4.5	4.50E-04	38.9	0.64	1.28
330	300	1:46:00 PM	0:20:00	20.00	15.00	4.4	4.36E-04	37.6	0.62	1.23
2,000		1:46:00 PM								
1,700	300	2:06:00 PM	0:20:00	20.00	15.00	4.4	4.36E-04	37.6	0.62	1.23
Natural Moisture:		Consistency:	Very Stiff	Total Time	Enter Ksat _B Value:	4.4	4.43E-04	38.3	0.63	1.26
USDA Txt./USCS Class.:	CL	Water Table Depth:	N/A	(min)		Notes: Ksat _B is o	leterm. by avera	g. and/or Rndng. the	e results for the	final three or
Struct./% Pass. #200:		Init. Saturation Time.:		121.00		four stabilized v	alues and analyz	ing the Flow Rate Q	vs Total Elapsed	Time Graph.
*Glover, R. E. 1953. Flow from	n a test-hole located a	above groundwater level. pp	. 69-71. in: Theory and Pr	oblems of Wat	er Percolation. (C. N. Zan	ger. ed.). USBR.	The condition fo	r this solution exists	when the distar	ice from the
bottom of the borehole to the	e water table or an in	npervious layer is at least 2X	the depth of the water in	the borehole.	**H/r ≥5 to ≥10. ***JP-I	V1: h = 15cm, JP	-M2: h = 10cm.	Johnson Permeame	ter, LLC Revised	5/26/2014

Constant-Head Borehole Permeameter Test					over Solution (Deep WT or Impervious Layer) File Name: GloverRE-deep-WT				WT	
Project Name:	Deanwood Hills		Boring No:	IT-15 (B-17)		S	olution and Te	rminology (R. E. G	Slover Solutior	ı)*
Project No	37:1404		Investigators:	RPH		Ksat = Q[sinh ⁻¹	(H/r) - (r ² /H ² +	$1)^{.5} + r/H]/(2\pi H^2)$	[Basic Glover	Solution]
Project Location:	5201 Hayes St, NE		Date:	12/18/2014		Ksat _B = QV[sinh ⁻¹ (H/r) - (r ² /H ² +1) ^{.5} + r/H]/(2 π H ²) [Temperature-corrected]				
Boring Depth:	6.25 ft.	(m, cm, ft, in)	WCU Base Ht. h:	10.0	cm***	Ksat _B : (Coeffi	cient of Perme	ability, K) @ Base	Tmp. T _B °C:	20
Boring Diameter:	11.4	cm	WCU Susp. Ht. S:	0.0	cm	Q: Rate of flo	Q: Rate of flow of water from the borehole			
Boring Radius r:	5.72	cm	Const. Wtr. Ht. H:	10.0	cm	H: Constant	height of wate	r in the borehole		
Soil/Water Tmp. T:	6	°C	H/r**:	1.7		r: Radius of	the cylindrical	borehole		
Dyn. Visc. @ T:	0.001473	kg/m·s	Dyn. Visc. @ T _B .:	0.001003	kg/m·s	V: Dynamic v	iscosity of wa	ter @ T °C/Dyn. V	isc. of water @	Τ _B °C
VOLUME	Volume Out	TIME	Interval Elapse	d Time	Flow Rate Q		Ksat	B Equivalent Valu	es	
(ml)	(ml)	(h:mm:ss A/P)	(hr:min:sec)	(min)	(ml/min)	(µm/sec)	(cm/sec)	(cm/day)	(in/hr)	(ft/day)
3,200		12:55:00 PN		1						
3,120	80	1:15:00 PN	0:20:00	20.00	4.00	1.2	1.16E-04	10.0	0.16	0.33
3,080	40	1:35:00 PN	0:20:00	20.00	2.00	0.6	5.81E-05	5.0	0.08	0.16
3,070	10	1:55:00 PN	0:20:00	20.00	0.50	0.1	1.45E-05	1.3	0.02	0.04
3,070	0	2:15:00 PN	0:20:00	20.00	0.00	0.0	0.00E+00	0.0	0.00	0.00
3,070	0	2:35:00 PM	0:20:00	20.00	0.00	0.0	0.00E+00	0.0	0.00	0.00
3,070	0	2:55:00 PN	0:20:00	20.00	0.00	0.0	0.00E+00	0.0	0.00	0.00
Natural Moisture:		Consistency:	Very Loose	Total Time	Enter Ksat _B Value:	0.0	3.63E-06	0.3	0.01	0.01
USDA Txt./USCS Class.:	ML	Water Table Depth:	N/A	(min)		Notes: Ksat _B is d	leterm. by avera	g. and/or Rndng. th	e results for the	final three or
Struct./% Pass. #200: Init. Saturation Time.:				120.00		four stabilized v	alues and analyz	ing the Flow Rate Q	vs Total Elapsed	Time Graph.
*Glover, R. E. 1953. Flow from	a test-hole located a	above groundwater level. pp	. 69-71. in: Theory and Pr	oblems of Wat	er Percolation. (C. N. Zan	ger. ed.). USBR.	The condition fo	r this solution exists	when the distar	ce from the
bottom of the borehole to th	e water table or an in	npervious layer is at least 2X	the depth of the water in	n the borehole.	**H/r ≥5 to ≥10. ***JP-ľ	VI1: h = 15cm, JP	-M2: h = 10cm.	Johnson Permeame	ter, LLC Revised	5/26/2014

Consta	Constant-Head Borehole Permeameter Test					Glover Solution (Deep WT or Impervious Layer) File Name: GloverRE-deep-WT				
Project Name:	Deanwood Hills		Boring No:	IT-16 (B-17)		S	olution and Te	rminology (R. E. C	Slover Solutior	າ)*
Project No	37:1404		Investigators:	RPH		Ksat = Q[sinh ^{-*}	¹ (H/r) - (r ² /H ² +:	$1)^{.5} + r/H]/(2\pi H^2)$	[Basic Glover	Solution]
Project Location:	5201 Hayes St, NE		Date:	12/18/2014		$Ksat_B = QV[sinh^{-1}(H/r) - (r^2/H^2+1)^{-5} + r/H]/(2\pi H^2)$ [Temperature-corrected]				
Boring Depth:	5.75 ft	(m, cm, ft, in)	WCU Base Ht. h:	10.0	cm***	Ksat _B : (Coeffi	icient of Perme	eability, K) @ Base	Tmp. T _B °C:	20
Boring Diameter:	11.4	cm	WCU Susp. Ht. S:	0.0	cm	Q: Rate of fl	Q: Rate of flow of water from the borehole			
Boring Radius r:	5.72	cm	Const. Wtr. Ht. H:	10.0	10.0 cm H: Constant height of water in the borehole					
Soil/Water Tmp. T:	6	°C	H/r**	1.7 r: Radius of the cylindrical borehole						
Dyn. Visc. @ T:	0.001473	kg/m·s	Dyn. Visc. @ T _B .:	0.001003	kg/m·s	V: Dynamic	viscosity of wat	ter @ T °C/Dyn. V	isc. of water @	Ο Τ _B ^o C
VOLUME	Volume Out	TIME	Interval Elapse	d Time	Flow Rate Q		Ksat	_в Equivalent Valu	es	
(ml)	(ml)	(h:mm:ss A/P)	(hr:min:sec)	(min)	(ml/min)	(µm/sec)	(cm/sec)	(cm/day)	(in/hr)	(ft/day)
3,030		12:05:00 PN		1	Γ			1		
3,020	10	12:25:00 PN	0:20:00	20.00	0.50	0.1	1.45E-05	1.3	0.02	0.04
3,015	5	12:45:00 PN	0:20:00	20.00	0.25	0.1	7.26E-06	0.6	0.01	0.02
3,015	0	1:05:00 PM	0:20:00	20.00	0.00	0.0	0.00E+00	0.0	0.00	0.00
3,010	5	1:45:00 PN	0:40:00	40.00	0.13	0.0	3.63E-06	0.3	0.01	0.01
3,010	0	2:25:00 PN	0:40:00	40.00	0.00	0.0	0.00E+00	0.0	0.00	0.00
Natural Moisture:		Consistency:	Very Loose	Total Time	Enter Ksat _B Value:	0.0	1.21E-06	0.1	0.00	0.00
USDA Txt./USCS Class.:	ML	Water Table Depth:	N/A	(min)		Notes: Ksat _B is c	leterm. by avera	g. and/or Rndng. th	e results for the	final three or
Struct./% Pass. #200: Init. Saturation Time.:				140.00		four stabilized v	alues and analyz	ing the Flow Rate Q	vs Total Elapsed	Time Graph.
*Glover, R. E. 1953. Flow from	n a test-hole located a	above groundwater level. pp	. 69-71. in: Theory and Pr	oblems of Wat	er Percolation. (C. N. Zan	ger. ed.). USBR.	The condition fo	r this solution exists	when the distar	nce from the
bottom of the borehole to th	e water table or an in	npervious layer is at least 2X	the depth of the water in	the borehole.	**H/r ≥5 to ≥10. ***JP-ľ	V1: h = 15cm, JP	-M2: h = 10cm.	Johnson Permeame	ter, LLC Revised	5/26/2014

Consta	Constant-Head Borehole Permeameter Test				Solution (Deep WT	n (Deep WT or Impervious Layer) File Name: GloverRE-deep-WT				-WT
Project Name:	Deanwood Hills		Boring No:	IT-17 (B-17)		So	olution and Te	rminology (R. E. G	Glover Solutior	າ)*
Project No	37:1404		Investigators:	RPH		Ksat = Q[sinh ⁻¹	(H/r) - (r ² /H ² +	$1)^{.5} + r/H]/(2\pi H^2)$	[Basic Glover	Solution]
Project Location:	5201 Hayes St, NE	_	Date	12/18/2014		$Ksat_{B} = QV[sinh^{-1}(H/r) - (r^{2}/H^{2}+1)^{.5} + r/H]/(2\pi H^{2})$ [Temperature-corrected]				
Boring Depth:	6.25 ft	(m, cm, ft, in)	WCU Base Ht. h:	10.0	cm***	Ksat _B : (Coefficient of Permeability, K) @ Base Tmp. T_B °C: 20				
Boring Diameter:	11.4	cm	WCU Susp. Ht. S:	0.0	0.0 cm Q: Rate of flow of water from the borehole					
Boring Radius r:	5.72	cm	Const. Wtr. Ht. H:	10.0	cm	H: Constant	height of wate	r in the borehole		
Soil/Water Tmp. T:	6	°C	H/r**:	1.7		r: Radius of	the cylindrical	borehole		
Dyn. Visc. @ T:	0.001473	kg/m·s	Dyn. Visc. @ T _B .:	0.001003	kg/m∙s	V: Dynamic v	iscosity of wa	ter @ T °C/Dyn. V	isc. of water @	Υ _B °C
VOLUME	Volume Out	TIME	Interval Elapse	d Time	Flow Rate Q		Ksat	B Equivalent Valu	es	
(ml)	(ml)	(h:mm:ss A/P)	(hr:min:sec)	(min)	(ml/min)	(µm/sec)	(cm/sec)	(cm/day)	(in/hr)	(ft/day)
3,230		10:41:00 AM								
3,180	50	11:01:00 AM	0:20:00	20.00	2.50	0.7	7.26E-05	6.3	0.10	0.21
3,160	20	11:11:00 AM	0:10:00	10.00	2.00	0.6	5.81E-05	5.0	0.08	0.16
3,110	50	11:31:00 AM	0:20:00	20.00	2.50	0.7	7.26E-05	6.3	0.10	0.21
3,050	60	11:51:00 AM	0:20:00	20.00	3.00	0.9	8.71E-05	7.5	0.12	0.25
3,000	50	12:11:00 PM	0:20:00	20.00	2.50	0.7	7.26E-05	6.3	0.10	0.21
2,950	50	12:31:00 PM	0:20:00	20.00	2.50	0.7	7.26E-05	6.3	0.10	0.21
2,910	40	12:51:00 PM	0:20:00	20.00	2.00	0.6	5.81E-05	5.0	0.08	0.16
2,850	60	1:11:00 PM	0:20:00	20.00	3.00	0.9	8.71E-05	7.5	0.12	0.25
Natural Moisture		Consistency	Very Loose	Total Time	Fnter Ksat, Value	0.8	7 62F-05	6.6	0 11	0.22
	MI	Water Table Denth		(min)		U.O Notes: Ksat _₽ is d	leterm. by avera	g. and/or Rndng. th	e results for the	final three or
Struct./% Pass #200		Init. Saturation Time	IV/A	150.00		four stabilized v	alues and analyz	ing the Flow Rate Q	vs Total Elapsec	l Time Graph.
*Glover, R. E. 1953. Flow from	a test-hole located a	above groundwater level. pp	. 69-71. in: Theory and Pr	oblems of Wat	I er Percolation. (C. N. Zan	ger. ed.). USBR. ⁻	The condition fo	r this solution exists	when the distar	nce from the
bottom of the borehole to th	e water table or an in	npervious layer is at least 2X	the depth of the water in	the borehole.	**H/r ≥5 to ≥10. ***JP-f	M1: h = 15cm, JP	-M2: h = 10cm.	Johnson Permeame	ter, LLC Revised	5/26/2014

Consta	nt-Head Boreh	ole Permeameter	Test	Glover	Glover Solution (Deep WT or Impervious Layer) File Name: GloverRE-deep-				WT	
Project Name:	Deanwood Hills		Boring No	IT-18 (B-18)		S	olution and Te	rminology (R. E. C	Slover Solutior	ı)*
Project No	37:1404		Investigators:	RPH		Ksat = Q[sinh	¹ (H/r) - (r ² /H ² +	$1)^{.5} + r/H]/(2\pi H^2)$	[Basic Glover	Solution]
Project Location:	5201 Hayes St, NE		Date	12/18/2014		$Ksat_B = QV[sinh^{-1}(H/r) - (r^2/H^2+1)^{.5} + r/H]/(2\pi H^2)$ [Temperature-corrected]				
Boring Depth:	6.25 ft	(m, cm, ft, in)	WCU Base Ht. h:	10.0	cm***	Ksat _B : (Coeff	icient of Perme	ability, K) @ Base	Tmp. T _B °C:	20
Boring Diameter:	11.4	cm	WCU Susp. Ht. S:	0.0	cm	Q: Rate of flow of water from the borehole				
Boring Radius r:	5.72	cm	Const. Wtr. Ht. H:	Wtr. Ht. H: 10.0 cm H: Constant height of water in the borehole						
Soil/Water Tmp. T:	5	°C	H/r**:	* 1.7 r: Radius of the cylindrical borehole						
Dyn. Visc. @ T:	0.001520	kg/m·s	Dyn. Visc. @ T _B .:	Visc. @ T _B .: 0.001003 kg/m·s V: Dynamic viscosity of water @ T °C/Dyn. Visc. of					isc. of water @	Τ _B °C
VOLUME	Volume Out	TIME	Interval Elapse	ed Time Flow Rate Q		Ksat _B Equivalent Values				
(ml)	(ml)	(h:mm:ss A/P)	(hr:min:sec)	(min)	(ml/min)	(µm/sec)	(cm/sec)	(cm/day)	(in/hr)	(ft/day)
3,200		8:19:00 AM								
2,750	450	8:39:00 AM	0:20:00	20.00	22.50	6.7	6.74E-04	58.3	0.96	1.91
2,330	420	8:59:00 AM	0:20:00	20.00	21.00	6.3	6.29E-04	54.4	0.89	1.78
2,110	220	9:19:00 AM	0:20:00	20.00	11.00	3.3	3.30E-04	28.5	0.47	0.93
1,900	210	9:39:00 AM	0:20:00	20.00	10.50	3.1	3.15E-04	27.2	0.45	0.89
1,710	190	9:59:00 AM	0:20:00	20.00	9.50	2.8	2.85E-04	24.6	0.40	0.81
1,540	170	10:19:00 AM	0:20:00	20.00	8.50	2.5	2.55E-04	22.0	0.36	0.72
1,350	190	10:39:00 AM	0:20:00	20.00	9.50	2.8	2.85E-04	24.6	0.40	0.81
1,165	185	10:59:00 AM	0:20:00	20.00	9.25	2.8	2.77E-04	24.0	0.39	0.79
970	195	11:19:00 AM	0:20:00	20.00	9.75	2.9	2.92E-04	25.2	0.41	0.83
Natural Moisture:	22.2	Consistency:	Very Loose	Total Time	Enter Ksat _B Value:	3.0	2.96E-04	25.6	0.42	0.84
USDA Txt./USCS Class.:	Loam/ML	Water Table Depth:	N/A	(min)		Notes: Ksat _B is o	determ. by avera	g. and/or Rndng. the	e results for the f	final three or
Struct./% Pass. #200:	70.2 %	Init. Saturation Time.:		180.00		four stabilized values and analyzing the Flow Rate Q vs Total Elapsed Time Graph.				
*Glover, R. E. 1953. Flow from	n a test-hole located a	bove groundwater level. pp	. 69-71. in: Theory and Pr	oblems of Wat	er Percolation. (C. N. Zan	ger. ed.). USBR.	The condition fo	r this solution exists	when the distan	ice from the
bottom of the borehole to th	e water table or an im	pervious layer is at least 2X	the depth of the water in	the borehole.	**H/r ≥5 to ≥10. ***JP-f	V1: h = 15cm, JF	P-M2: h = 10cm.	Johnson Permeame	ter, LLC Revised	5/26/2014

Consta	Constant-Head Borehole Permeameter Test					Glover Solution (Deep WT or Impervious Layer) File Name: GloverRE-deep-WT				
Project Name:	Deanwood Hills		Boring No:	IT-19 (B-18)		S	olution and Te	rminology (R. E. (olover Solutior	ı)*
Project No	37:1404		Investigators:	RPH		Ksat = Q[sinh ⁻¹	¹ (H/r) - (r ² /H ² +:	$1)^{.5} + r/H]/(2\pi H^2)$	[Basic Glover	Solution]
Project Location:	5201 Hayes St, NE		Date:	12/18/2014		Ksat _B = QV[sinh ⁻¹ (H/r) - (r^2/H^2 +1) ^{.5} + r/H]/($2\pi H^2$) [Temperature-corrected]				
Boring Depth:	5.75 ft	(m, cm, ft, in)	WCU Base Ht. h:	10.0	cm***	Ksat _B : (Coeffi	cient of Perme	ability, K) @ Base	Tmp. T _B °C:	20
Boring Diameter:	11.4	cm	WCU Susp. Ht. S:	0.0	cm	Q: Rate of flo	Q: Rate of flow of water from the borehole			
Boring Radius r:	5.72	cm	Const. Wtr. Ht. H:	10.0	10.0 cm H: Constant height of water in the borehole					
Soil/Water Tmp. T:	6	°C	H/r**	1.7	1.7 r: Radius of the cylindrical borehole					
Dyn. Visc. @ T:	0.001473	kg/m·s	Dyn. Visc. @ T _B .:	0.001003	kg/m·s	V: Dynamic v	viscosity of wat	ter @ T °C/Dyn. V	isc. of water @	Τ _B °C
VOLUME	Volume Out	TIME	Interval Elapse	d Time	Flow Rate Q		Ksat	_B Equivalent Valu	es	
(ml)	(ml)	(h:mm:ss A/P)	(hr:min:sec)	(min)	(ml/min)	(µm/sec)	(cm/sec)	(cm/day)	(in/hr)	(ft/day)
3,200		10:04:00 AM		1		[
2,580	620	10:24:00 AM	0:20:00	20.00	31.00	9.0	9.00E-04	77.8	1.28	2.55
2,100	480	10:44:00 AM	0:20:00	20.00	24.00	7.0	6.97E-04	60.2	0.99	1.98
1,900	200	10:54:00 AN	0:10:00	10.00	20.00	5.8	5.81E-04	50.2	0.82	1.65
1,490	410	11:14:00 AN	0:20:00	20.00	20.50	6.0	5.95E-04	51.4	0.84	1.69
1,290	200	11:24:00 AN	0:10:00	10.00	20.00	5.8	5.81E-04	50.2	0.82	1.65
Natural Moisture:	18.4%	Consistency:	Very Loose	Total Time	Enter Ksat _B Value:	5.9	5.86E-04	50.6	0.83	1.66
USDA Txt./USCS Class.:	Loam/ML	Water Table Depth:	N/A	(min)		Notes: Ksat _B is c	leterm. by avera	g. and/or Rndng. th	e results for the f	final three or
Struct./% Pass. #200:	62.8%	Init. Saturation Time.:		80.00		four stabilized v	alues and analyz	ing the Flow Rate Q	vs Total Elapsed	Time Graph.
*Glover, R. E. 1953. Flow from	n a test-hole located a	above groundwater level. pp	. 69-71. in: Theory and Pr	oblems of Wat	er Percolation. (C. N. Zan	ger. ed.). USBR.	The condition fo	r this solution exists	when the distan	ce from the
bottom of the borehole to th	e water table or an in	npervious layer is at least 2X	the depth of the water in	n the borehole.	**H/r ≥5 to ≥10. ***JP-ľ	VI1: h = 15cm, JP	-M2: h = 10cm.	Johnson Permeame	ter, LLC Revised	5/26/2014

	SOIL DATA											
	Source	Sample	Depth	Percentages I	From Material Pass	ing a #10 Sieve	Classification					
	Source	No.		Sand	Silt	Clay	Classification					
•	B-18	S-3	4.00-6.00	39.7	42.5	17.8	Loam					
	B-18	S-4	6.00-8.00	30.9	46.9	22.1	Loam					

Client: Pennrose Properties, LLC Project: Deanwood Hills

Project No.: 37:1404

Figure

LATERAL EARTH PRESSURE DIAGRAM - DRAINED RETAINING WALLS

LATERAL EARTH PRESSURE DIAGRAM - DRAINED BELOW GRADE BUILDING WALLS

BELOW-GRADE WALL AND UNDERSLAB DRAINAGE DIAGRAM

SHEET

DATE

2 OF 4

02-17-15

DATE

02-17-15

DATE

02-17-15