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Abstract

As Moore’s law has been continuously improving the microprocessor’s speed, performance is no

longer the only focus. Software robustness has become one of the increasingly important issues.

However, recent impressive advances in computer architecture have not led to significant improve-

ment in software robustness. Since software robustness is mainly affected by software bugs, the

focuses of this research are to provide efficient and simple architectural support to improve dy-

namic monitoring for detecting memory-related bugs, and to propose a new bug detection method

and an incremental consistency check framework that both leverage the proposed architectural

support.

In this dissertation, we propose the Intelligent Watcher (iWatcher), a novel architectural scheme

to monitor dynamic execution automatically, flexibly and with minimal overhead. iWatcher asso-

ciates program-specified monitoring functions with memory locations. When any such location is

accessed, the monitoring function is automatically triggered with low overhead. To further reduce

overhead and support rollback, iWatcher can optionally leverage Thread-Level Speculation (TLS).

The experimental results with seven buggy applications (with various bugs) show that iWatcher

detects all the bugs evaluated in our experiments with only a 0.1-179% execution overhead.

We also propose a new statistics-based method, called program counter (PC)-based invariance,

to detect memory-related bugs on the fly, and a simple architectural extension, called theCheck

Look-aside Buffer (CLB), that takes advantage of the bloom filter and the temporal object access

locality to reduce the monitoring overhead in iWatcher. The PC-based invariance idea captures the

invariant of the set of PCs that normally access a given key variable, and detects accesses by outlier

instructions that are often caused by memory corruption, buffer overflow, stack smashing or other
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memory-related bugs. we build an automatic, low-overhead, low-false-alarm, PC-based invariant

detection tool called AccMon (Access Monitor, pronounced as “A-k-Mon”) that uses a combination

of architectural, run-time system, and compiler support to catch hard-to-find memory-related bugs.

AccMon leverages the iWatcher framework with the CLB extension to monitor accesses to key

variables. Our experimental results with seven buggy applications (with a total of ten bugs) show

that AccMon can detect all ten bugs with few false alarms (0 for five applications and 2-8 for two

applications), whereas several tested existing tools fail to detect some bugs. AccMon also has low

overhead (0.24-2.88 times), which is an order of magnitude lower than Purify.

We also use the binary instrumentation tool PIN to build a pure software implementation of

PC-based invariant detection called AccMon-S. AccMon-S does not require hardware support, but

has much higher execution overheads (10.4-57.8 times), so it can only be used for in-house bug

detection instead of bug detection during production runs. Besides detecting all ten bugs tested

in AccMon, AccMon-S also detected two real bugs in two large real-word server applications,

Apache and Squid, with few false alarms (0-4).

We also present an incremental checking framework, called iChecker, that leverages iWatcher

to provide an iChecker library for efficient, incremental, run-time consistency checks of mutable

data structures in C programs. The basic idea of iChecker is to perform a consistency check with a

local check (on the parts that need to be checked due to the modifications since the last consistency

check) instead of with a global check. The evaluation using four case studies shows that iChecker

reduces the checking overhead by 1.1–155 times (23.3 on average) over global checks for large

data structures. The required code modifications for iChecker are 25–108 lines (including the

global checkers), which are 10–56 lines more than the modifications for traditional global checks.
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Chapter 1

Introduction

Software bugs significantly affect system reliability, availability and security. Software debugging

often relies on inserting run-time software checks. In many cases, however, program execution

typically slows down significantly, often by 10-100 times, and it is hard to find the root cause of a

bug. Moreover, most dynamic checkers cannot find those hard-to-find program-specific bugs.

Recent impressive performance improvements in computer architecture have not led to sig-

nificant gains in the case of software debugging. While recent work on architectural support for

software debugging provides a good foundation, it is still far from providing a complete solution.

This dissertation work takes another step toward the goal of improving software debugging

using architectural support. It proposes a novel architectural framework iWatcher for dynamic

monitoring. It proposes a new statistics-based bug detection method, and builds an automatic

detection tool AccMon for memory-related bugs using this method and leveraging the iWatcher

framework. Finally, it also proposes an incremental checking framework iChecker for data struc-

ture consistency check in C programs, again leveraging the iWatcher framework.

1.1 Motivation

As Moore’s law has been continuously improving the microprocessor’s speed, performance is no

longer the only focus. Instead, other issues, such as software robustness, hardware reliability and

low power/energy efficient design, etc., are becoming increasingly important.

Software robustness problems are mainly caused by software bugs, because bugs significantly

affect system reliability, availability and security. The increasing software complexity causes more
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software bugs and also makes them harder to detect. Despite costly efforts to improve software-

development methodologies, software bugs in deployed programs continue to thrive, often ac-

counting for up to 40% of computer system failures [MS00]. Software bugs can crash systems,

making services unavailable or, in the form of “silent” bugs, corrupt information or generate wrong

outputs. According to NIST [Nat02], software bugs cost the U.S. economy an estimated $59.5 bil-

lion annually, or 0.6% of the GDP!

There are different types of software bugs, such as memory-related bugs, concurrency bugs,

etc. Among them, memory-related bugs are the most security critical and the most common ones.

Memory-related bugs are caused by improper handling of memory objects and also major causes

of security problems. Attackers exploit memory bugs to execute malicious code on otherwise safe

computers, steal confidential information, or deplete the service by crashing or overloading it.

Based on CERT advisories, in 2001-2004, more than 50% of security vulnerabilities are caused by

memory-related bugs. Therefore, detecting memory bugs is very important for finding the security

vulnerabilities, particularly in programs written in an unsafe language such as C/C++, and it is also

the focus of this work.

Memory-related bugs can be further classified into: (1) Buffer overflow: Illegal access beyond

the buffer boundary. (2) Stack smashing: Illegally overwrite the function return address. (3)

Memory leak: Dynamically allocated memory have no reference to it, hence can never be freed.

(4) Uninitialized read: Read memory data before it is initialized. The reading result is illegal. (5)

Double free: One memory location freed twice. (6) Some program-specific (semantic) bugs: Bugs

that are inconsistent with the original design and the programmers’ intention, and also caused by

improper handling of memory object, such as wrong assignment. As we will see later, the bug in

linux-simple benchmark in chapter 4 is an example of such a bug, caused by copy-pasting.

1.1.1 Existing Software Debugging Techniques

Current debugging techniques consist largely of interactive debuggers, static checking, and dy-

namic monitoring, all of which have significant limitations. Interactive debuggers, such as gdb and
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the debug tool embedded in Microsoft Visual Studio, are widely used by most programmers to find

bugs. Since programmers know about the program, they can rely on the interactive debugger to

find program-specific bugs by hand. However, since running programs in a debugger is very slow,

and the programmer needs to manually examine the execution, interactive debugging is very time-

consuming, and requires large human effort and experience. Moreover, it is very hard to reproduce

a bug, because the bug may occur only after hours or even days of execution, only with a particular

combination of user input and/or hardware configurations, or only with a particular interleaving of

timing-related events.

Static checking performs checks statically. Examples of static approach include explicit model

checking [MPC+02, SD95] and program analysis [CLL+02, EA03, HCXE02]. Most static tools

require significant programmer involvement to write specifications or annotate programs. In addi-

tion, most static tools are limited by aliasing problems and other compile-time limitations. This is

especially the case for programs written in unsafe languages such as C or C++, the predominant

programming languages in industry. As a result, many bugs often remain in programs even after

aggressive static checking.

Dynamic monitoring monitors the execution and checks for rule or invariant violations. It

can be classified into two categories: programmer-specified monitoring and automatic monitor-

ing. Assertion and data structure consistency checks fall into programmer-specified monitoring,

because they require programmers to provide checks. In this work, consistency of a data structure

means that the states of the data structure satisfy certain properties during the entire program ex-

ecution except within some operations that intentionally violate the properties while evolving the

data structure from one consistent state to another. A traditional consistency check usually needs

to traverse the entire data structure to determine that the consistency properties hold, and is very

expensive.

Many dynamic monitors belong to the automatic monitoring category, including Purify [HJ92],

Valgrind [NS03], Intel Thread Checker [KAI], DIDUCE [HL02], Eraser [SBN+97], CCured [CHM+03,

NMW02], and other tools [ABS94, CPM+98, LYHR01, PF97, PF95]. The strength of dynamic
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approach is that the analysis is based on actual execution paths and accurate values of variables

and aliasing information.

Unfortunately, most dynamic checkers suffer from one or more of the following three limi-

tations. First, inefficiency: they are often computationally expensive. One major reason is their

large instrumentation cost [HL02, SBN+97], since almost all existing dynamic checkers insert

instrumentation in the code for checking rule or invariant violations. Another reason is that dy-

namic checkers that attempt to check accesses to certain locations may end up instrumenting more

places than necessary due to lack of accurate information at instrumentation time for languages like

C/C++. As a result, some dynamic checkers slow down a program by 6-30 times [HL02, SBN+97],

which makes such tools undesirable for production runs. Moreover, some timing-sensitive bugs

may never occur with these slowdowns.

Second, inaccuracy: most dynamic checkers rely on compilers or pre-processing tools to insert

instrumentation for checking accesses to certain locations, and, therefore, are limited by imperfect

variable disambiguation, especially for C/C++. Consequently, some accesses to a monitored lo-

cation may be missed by the instrumentation tool. Because of this reason, some bugs are caught

much later than when they actually occur, which makes it hard to find the root cause of the bug.

Third, limited bug coverage: many dynamic checkers can detect only those bugs that violate

some basic programming rules such as “an array pointer cannot move out-of-bounds”, and fail

to detect other bugs that are specific to the monitored software. For example, a forget-to-change

bug (see the linux-simple benchmark in Chapter 4) caused by copy-pasting in the latest version of

Linux can result in an incorrect pointer assignment to the wrong location. This bug does not violate

any programming-based rules and thereby cannot be detected by most existing dynamic checkers.

This work focuses on addressing the above three limitations of dynamic monitoring.

1.1.2 Architectural Support for Software Debugging

As micro-architectural innovations have significantly improved performance, interest has recently

risen in the architecture community to use transistors to improve software debugging. However,
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the current state of the art is very primitive, largely limited to watchpoints [Int04, SPA92] and event

or branch trace buffers [Int04, Spr02].

Watchpoints, such as those supported by Intel’s x86 [Int04] and Sun’s SPARC [SPA92], trigger

an exception every time that a programmer-specified memory location is accessed. While they

are a good starting point, they have several limitations. First, they do not provide low-overhead

checks that can be on all the time in a production run. This is because they trigger the exception

mechanism, which has very high overhead and disrupts the execution of the application. Second,

current architectures only support a handful of watchpoints (four in Intel x86).

Besides watchpoints, branch or event trace buffers [Int04, Spr02] can also potentially be used

for debugging purposes, such as providing more program state information in a crash. However,

they do not provide highly-processed information that could truly boost debuggability.

Recently, there have been some research proposals for micro-architectural support for software

debugging. For example, Prvulovic and Torrellas proposed ReEnact [PT03], which uses the state

buffering, rollback and re-execution features of Thread-Level Speculation (TLS) to detect data

races on the fly. Xu et al. designed the “flight data recorder” [XBH03], which enables off-line

deterministic replay and can be used for postmortem analysis of a bug. BugNet [NPC05] proposed

by Narayanasamy et al. further reduces the amount of data recorded for deterministic replaying

of an execution. Tuck et al. uses hardware and binary rewriting to protect pointers from buffer

overflow [TCV04]. While recent work is promising and provides a good foundation, they provide

relatively limited functionality (i.e., handle only certain types of bugs or provide only a trace) and

are also relatively expensive, which indicates architectural support for software debugging is still

far from providing a complete solution. This dissertation work takes another step toward the goal

of improving software debugging using architectural support.

Novel architectural support would provide several benefits for improving software debugging

over software-only solutions: (1) Efficiency: Architectural support can significantly lower the over-

head of dynamic monitoring because it does not need extensive code instrumentation. Note also

that such instrumentation can interfere with compiler optimizations. Moreover, it is possible to
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use extra hardware to speed up certain operations. (2) Accuracy: Architectural support can avoid

pointer aliasing problems and accurately capture all desired accesses to monitored memory ob-

jects. (3) Generality: Architectural support can be language-independent, cross-module and easy

to use with low-level system code such as the operating system. Moreover, it can be designed to

work directly with binary code without recompilation.

1.2 My Dissertation Work

My thesis is that using architectural support and novel techniques can improve the three main

aspects of dynamic monitoring: efficiency, accuracy, and coverage.

This dissertation work provides novel, general and simple architectural support for dynamic

monitoring, proposes a new bug detection method to catch those hard-to-catch program-specific

memory bugs, and proposes an incremental consistency check framework which both leverage the

proposed architectural support to reduce overhead. I made the following contributions in my work:

1. This work proposes the Intelligent Watcher (iWatcher), an efficient and flexible architectural

scheme to monitor dynamic execution automatically, flexibly and with minimal overhead.

iWatcher associates program-specified monitoring functions with memory locations. When

any such location is accessed, the monitoring function is automatically triggered with low

overhead. To further reduce overhead and support rollback, iWatcher can optionally leverage

Thread-Level Speculation (TLS). The experimental results with seven buggy applications

(with various bugs) show that iWatcher detects all the bugs evaluated in our experiments

with only a 0.1%-179% execution overhead. Overall, iWatcher’s reasonably small overhead

and ability to monitor many memory locations enable it to be used during both in-house

testing and production runs.

2. This work proposes a new statistics-based method, called program counter (PC)-based in-

variant, to detect memory-related bugs on the fly, and a simple architectural extension, called
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the Check Look-aside Buffer (CLB), that uses a Bloom filter [Blo70] and takes advantage of

the good temporal locality that exists in object accesses to reduce the monitoring overhead in

iWatcher. The PC-based invariant idea captures the invariant of the set of PCs that normally

access a given key variable, and detects accesses by outlier instructions that are often caused

by memory corruption, buffer overflow, stack smashing or other memory-related bugs. It

also builds an automatic, low-overhead, low-false-alarm, PC-based invariant detection tool

called AccMon (Access Monitor, pronounced as “A-k-Mon”) that uses a combination of

architectural, run-time system, and compiler support to catch hard-to-find memory-related

bugs. AccMon leverages the iWatcher framework with the CLB extension to monitor ac-

cesses to key variables. Our experimental results with seven buggy applications (with a

total of ten bugs) show that AccMon can detect all ten bugs with few false alarms (0 for

five applications and 2-8 for two applications), whereas several tested existing tools fail to

detect some bugs. AccMon also has low overhead (0.24-2.88 times), which is an order of

magnitude lower than Purify [HJ92].

3. This work also uses the binary instrumentation tool PIN [LCM+05] to build a pure software

implementation of PC-based invariant detection called AccMon-S. AccMon-S does not re-

quire hardware support, but has much higher execution overheads (10.39-57.83 times), so it

can only be used for in-house bug detection instead of bug detection during production runs.

Besides detecting all ten bugs tested in AccMon, AccMon-S also detected two real bugs in

two large real-word server applications, Apache and Squid, with few false alarms (0-4).

4. This work presents an incremental checking framework, called iChecker, that leverages

iWatcher to provide a library for efficient, incremental, run-time consistency checks of mu-

table data structures in C programs. The idea of iChecker is to perform a consistency check

with a local check (on the parts that need to be checked due to the modifications since the last

consistency check) instead of with a global check. The programmer only needs to indicate

the data structure to be checked and its associated local check function, and call a few library
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calls in limited places. It is iChecker’s responsibility to figure out on which portions of the

data structure to perform this local check function. The evaluation using four case studies

shows that iChecker reduces the checking overhead by 1.1–155 times (23.3 on average) over

global checks for large data structures with 0.3–17.9 times (11.2 on average) space over-

head. The required code modifications for iChecker are 25–108 lines (including the global

checkers), which are 10–56 lines more than the modifications for traditional global checks

and only account for 0.1%–21% of the original code.

1.3 Outline

The remainder of this dissertation is organized as follows. Chapter 2 discusses background and

related work. Chapter 3 proposes iWatcher for dynamic monitoring. Chapter 4 presents the PC-

based invariant detection idea, and the automatic tools AccMon (hardware support) and AccMon-S

(pure software) for detecting memory-related bugs. Chapter 5 presents iChecker, the incremental

check framework for mutable data structure consistency. Chapter 6 summarizes my current work

and outlines the future research plans.

The materials in some chapters have been published as journal and conference papers. Some

materials in Chapter 3 have been presented in [ZQL+04] and [ZZQ+05]. The materials in Chap-

ter 4 have been presented in [ZLF+04].
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Chapter 2

Background and Related Work

This chapter discusses background and previous work related to our work.

2.1 Background

2.1.1 Dynamic Execution Monitoring

Many methods have been proposed for dynamic code monitoring. The most commonly used ones

are assertions, dynamic checkers, and watchpoints.

Assertions Assertions are inserted by programmers to perform sanity checks at certain places. If

the condition specified in an assertion is false, the program aborts. Assertions are one of the most

commonly used methods for debugging. However, they can add significant overhead to program

execution. Moreover, it is often hard to identify all the places where assertions should be placed.

Dynamic Checkers Dynamic checkers are automated tools that detect common bugs at run time.

For example, DIDUCE [HL02] automatically infers likely program invariants, and uses them to

detect program bugs. Purify [HJ92] and Valgrind [NS03] monitor memory accesses to detect

memory leaks and some simple instances of memory corruption, such as freeing a buffer twice or

reading an uninitialized memory location. StackGuard [CPM+98] can detect some buffer overflow

bugs, which have been a major cause of security attacks. Eraser [SBN+97] can detect data races

by dynamically tracking the set of locks held during program execution. These tools usually use

compilers or code-rewriting tools such as ATOM [SE94], EEL [LS95] and Dyninst [BH00] to

9



instrument programs with checks.

While this approach is promising, dynamic checkers often suffer from the following limita-

tions: (1) aliasing problems, especially in C or C++ programs, (2) high run-time overhead, (3)

hard-coded bug detection functionality, (4) language specificity, and (5) difficulty to work with

low-level code.

Hardware-Assisted Watchpoints Hardware-assisted watchpoints [Int01, KH92, SPA92] use

simple hardware support to watch a user-selected memory location. When a watched location

is accessed by the program, an exception is handled by an interactive debugger such as gdb. Then,

the state of the process can be examined by programmers using the debugger. The hardware sup-

port is provided through a few special debug registers. Watchpoints are designed to be used in

an interactive debugger. For non-interactive execution monitoring, they are both inflexible and

inefficient. They do not provide a way to associate an automatic check to the access of a watched

location. Moreover, they require an expensive exception when a watched location is accessed.

Finally, most architectures only support a few watchpoints (four in Intel’s x86).

2.1.2 Classifying Dynamic Monitoring Methods

We classify the dynamic monitoring methods into two categories:

• Code-Controlled Monitoring (CCM). Monitoring is performed only at special points in the

program. Assertions and most dynamic checkers belong to CCM because they only check at

assertions or instrumentation points.

• Location-Controlled Monitoring (LCM). Monitoring is associated directly with memory

locations and therefore all accesses to such memory locations are monitored. Hardware-

assisted watchpoints and iWatcher belong to this category.

If we want to monitor the accesses to particular memory locations, which is a common tech-

nique used for bug detection, LCM has two advantages over CCM: (1) LCM monitors all accesses
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to a watched memory location using all possible variable names or pointers, whereas CCM may

miss some accesses because of pointer aliasing; (2) LCM monitors only those memory instructions

that truly access a watched memory location, whereas CCM may need to instrument at many un-

necessary points due to the lack of accurate information at instrumentation time. Therefore, LCM

can be used to detect both invariant violations and illegal accesses to a memory location, whereas

it may be difficult and too expensive for CCM to check for illegal accesses. The main advantage

of CCM is that it does not require hardware support while LCM typically needs it. In the case that

we want to perform monitoring at specific execution points, CCM will be enough.

2.1.3 Invariant-Based Bug Detection

Similar to previous invariant-based bug detection work such as DAIKON [ECGN99, ECGN00]

and DIDUCE [HL02], AccMon can be used in two scenarios. The first one is debugging programs

that fail on some inputs. It is common for many programs to work correctly on some inputs

(especially those tested in-house) but to fail on others. Invariant detection tools can be used to

automatically provide debugging information on failing cases by checking for invariants inferred

from successful cases. The second one is debugging failures in long-running programs. Some

bugs occur only after the program has executed for a long time. These bugs are very common in

server programs, and are usually hard to track down because they cannot be easily (or quickly)

reproduced. Automatic invariant detection and checking tools can use a period of execution time

before the bug occurs to extract invariants, and then continuously check for violations of these

invariants during the remainder of the execution to detect bugs.

For the above two usage models, the dynamic invariant detection and checking process has two

phases: the training phase and the bug-detection phase. The training phase tries to extract invariants

from the program’s execution using good inputs in the first usage scenario, or from the initial

execution (before a bug occurs) in the second usage scenario. The bug-detection phase checks

for violations of invariants during the execution on failing or untested inputs, or the remaining

execution after the training phase.
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2.1.4 Thread-Level Speculation (TLS)

TLS is an architectural technique for speculative parallelization of sequential programs [CMT00,

SBV95, SCZM00, THA+99]. TLS support can be built on a multithreaded architecture, such as

simultaneous multithreading (SMT) or chip multiprocessor (CMP) machines. With TLS, the exe-

cution of a sequential program is divided into a sequence of microthreads (also called tasks, slices,

or epochs). These microthreads are then executed speculatively in parallel, while special hardware

detects violations of the program’s sequential semantics. A violation results in squashing the in-

correctly executed microthreads and re-executing them. To enable squash and re-execution, the

memory state of each speculative microthread is typically buffered in caches or special buffers.

When a microthread finishes its execution and becomes safe, it can commit. Committing a mi-

crothread implies merging its state with the safe memory. To guarantee sequential semantics,

microthreads commit in order.

iWatcher can leverage TLS to reduce monitoring overhead and to support rollback and re-

execution of a buggy code region [PT03]. For our design, we assume an SMT machine, and that

the speculative memory state is buffered in caches. However, our iWatcher design can be easily

ported to other TLS architectures.

If we use TLS in iWatcher, each cache line is tagged with the ID of the microthread to which

the line belongs. Moreover, for each speculative microthread, the processor contains a copy of the

initial state of the architectural registers. This copy is generated when the speculative microthread

is spawned and is freed when the microthread commits. It is used in case the microthread needs to

be rolled back.

The TLS mechanisms for in-cache state buffering and rollback can be reused to support incre-

mental rollback and re-execution of the buggy code [PT03]. To do this, the basic TLS is modified

slightly by postponing the commit time of a successful microthread. In the basic TLS, a mi-

crothread can commit when it completes and all its predecessors have committed. We say that

such a microthread is ready. To support the rollback of buggy code, a ready microthread commits
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only in one of two cases: when we need space in the cache and when the number of uncommitted

microthreads exceeds a certain threshold. With this support, a ready but uncommitted microthread

can still be asked to rollback. This feature can be used to support one of the iWatcher modes

(Section 3.3.5).

2.2 Related Work

2.2.1 Dynamic Monitoring

Many tools have been proposed for dynamic execution monitoring. Well-known examples include

Purify [HJ92], Intel thread checker [KAI], Eraser [SBN+97], StackGuard [CPM+98], DIDUCE [HL02],

Valgrind [NS03], CCured [CHM+03, NMW02], and many others [ABS94, LYHR01, PF97, PF95].

StackGuard only detects attacks against stack return addresses — not general memory-related

bugs. Eraser and Intel thread checker target multithreaded programming, and detect data races in

multithreaded programs. SafeC [ABS94] presents a pointer and array access checking technique.

By using a novel safe pointer structure and adding monitor instructions, most spatial and temporal

access errors can be detected. It has the limitations of the programming-rule-based approach as

mentioned below.

Most of these tools rely on instrumentation to perform dynamic checks. Consequently, to check

all possible accesses to a given location, they typically need to instrument more than necessary.

Moreover, most dynamic checkers impose significant run-time overhead. Our work innovates with

general, efficient and flexible location-controlled monitoring capability.

As discussed in Chapter 4, most dynamic bug detection methods can be classified into two

types: programming-rule-based (PRB) and statistics-rule-based (SRB). These two are not compet-

ing techniques. Instead, they complement each other since both offer unique advantages that can

be integrated to detect a wider range of bugs. Since both approaches focus on different types of

rules, the types of bugs caught by them often differ. For example, a wrong pointer assignment
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bug caused by copy-paste does not violate any PRB rules, but may violate a SRB rule, such as a

PC-based invariant. However, SRB usually requires inferring rules from normal runs, which may

not always be possible. Therefore, PRB is more useful for catching relatively simple bugs that

obviously violate programming rules, whereas SRB is more applicable to detecting those “silent”

bugs that successfully pass through many regression tests before the software is released. These

regression tests allow statistical rules to be extracted.

Schnarr and Larus have proposed using unused processor cycles to reduce overhead for code-

controlled monitoring [SL96]. Our work differs from theirs in that iWatcher provides convenient,

flexible architectural support to perform location-controlled monitoring, and uses TLS to hide

monitoring overheads.

Oplinger and Lam have used TLS to hide the overhead for dynamic monitoring [OL02]. iWatcher

also exploits the benefits of recently proposed TLS architecture. However, in iWatcher, the thread

spawning is automatically done by the hardware, whereas their study uses compilers to insert the

thread-spawning into the programs.

2.2.2 Data-Consistency Checking

A closely related work to ours is that of Demsky et al. [DR03, DR05]. They propose a specification-

based approach that automatically translates a programmer-provided specification of consistency

properties into a global consistency checks (and repair code) for C/C++ programs. Our work

differs in that we require the programmer to provide a local checking function written in C instead

of a specification written in a different language. Moreover, our framework automatically supports

incremental checks to reduce overhead and their work still performs expensive global checks.

Previous studies on consistency check also appeared in other domains, for example database

systems [CFPT94, UD90], file systems, and operating systems [GJKW97, MA87]. These works

provide application-specific solutions, whereas ours provides a general framework that can be used

for almost any C programs.
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2.2.3 Incremental Computation

Incremental computation computes the new output (for a new input) incrementally by reusing

parts of the old computation (for an old input), instead of recomputing the entire output from the

scratch. Incremental computation works well when a small change in input implies a small change

in output, and there is only a small change in input. A widely used approach for incremental

computation is based on the dependency graph of the computation [DRT81, YS88, ABH02]. The

previous work proposed some foundational techniques but applied them in the context of attribute

grammars [DRT81], specialized new languages [YS88] (that, for example, have no recursion or

loops) or functional languages [ABH02].

Another approach for incremental computation is to generate the incremental code from the

original code [LT95, ZL98]. Liu and Teitelbaum proposed a systematic approach for deriving

incremental programs [LT95], and Zhang and Lin made the derivation semi-automated [ZL98].

The crucial difference between the previous work and our work is that our work applies to

the C language that has mutable data structures and performs the computation with statements

that mutate the state. In comparison, functional languages have mostly immutable structures and

perform the computation by evaluating the expressions. To the best of our knowledge, there has

been no work for incremental computation of imperative, C-like languages.

2.2.4 Other Related Work

Our work is related to previous work on fine-grain access control [S+94, WCA02]. For example,

Mondrian Memory Protection (MMP) [WCA02] provides access control at word granularity using

a “protection look-aside buffer” (PLB) to record protection information. MMP can potentially be

used to implement location-controlled monitoring. However, like hardware-assisted watchpoints,

it needs to raise an exception and, therefore can add significant overhead.

Our work is also related to some of the classic work on capability-based architectures [Fab74,

Lev84], protection-enhanced architectures [KCE92], hardware support for security [FS01, L+00,
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SCG+03, XKPI02], TLS [CMT00, SBV95, SCZM00, THA+99], and hardware support for instruction-

level profiling [DHW+97].

Besides iWatcher and dynamic instrumentation tool PIN [LCM+05], PC-based invariant de-

tection can also be implemented by using other software-based instrumentation tools such as

ATOM [SE94] or Dyninst [HMC94], hardware watchpoints [Int01, Joh82, SPA92, Wah92], or

other tools [DHW+97]. However, we expect that these tools would result in significant overheads,

similar to the overheads of our software implementation AccMon-S. In addition, it is possible to

use special hardware [WCA02] that provides fine-grain access control to monitor memory accesses

in AccMon. We use iWatcher for the reasons given in Section 3.4.

Our work is also related to address profiling techniques for performance optimization. Calder

et al proposed a data placement strategy based on temporal relations by profiling memory ac-

cesses [CCJA98]. Barrett et al used address profiling to predict the life time of heap variables and

then used this information to reduce the memory page fault rate [BZ93]. In our work, we monitor

memory accesses to detect software bugs.

There are several works that use Bloom filters in hardware. They use a Bloom filter to minimize

load/store queue (LSQ) searches [SDB+03], to identify cache misses early in the pipeline [PLL02],

and to filter cache-coherence traffic in snoopy bus-based SMP systems to reduce energy consump-

tion [MMFC01].

Our work is also related to computation reuse [SS97, CmWH99, dCFF00, HL03] and mem-

oization [Pug88, HLY00, MFH95, ABH03], which exploit computation redundancy by reusing

previously computed values. Our work differs from these works in that we focus on incrementally

checking data structure consistency for mutable data structures, whereas the above work focuses

on simply reusing the previously computed values.
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Chapter 3

iWatcher: Architectural Support for

Dynamic Monitoring

3.1 Overview

Recent impressive advances in microprocessor performance have failed to deliver significant gains

in ease of software debugging. This is a major shortcoming of the state of the art, given that

software bugs have major implications on computer system availability, reliability and security.

Specifically, software bugs account for as much as 40% of computer system failures [MS00], more

than 50% of security vulnerabilities in 2001-2004 based on CERT advisories, and cost the U.S.

economy $59.5 billion annually, or 0.6% of the GDP [Nat02]!

As we discussed in section 1.1, code debugging is largely done using software techniques: in-

teractive debugger, static checking and dynamic monitoring. They all have significant limitations.

This chapter focuses on addressing the first two limitations of dynamic monitoring: inefficiency

(large run-time overhead) and inaccuracy, due to using instrumentation. The inaccuracy will cause

that some bugs are caught much later than when they actually occur, which makes it hard to find

the root cause of the bug. The following C code gives a simple example.

int x, *p;

/* assume invariant: x == 1 */

...

p = foo(); /* a bug: p points to x incorrectly */

*p = 5; /* line A: unintended corruption of x */

...
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InvariantCheck(x == 1); /* line B */

z = Array[x];

...

While x is corrupted in line A, the bug is not detected until the invariant check at line B. Due to

the difficulty of performing perfect pointer disambiguation, it may be hard for a dynamic checker

to know that it needs to insert an invariant check right after line A.

To assist software debugging, several processor architectures such as Intel x86 and Sun SPARC

provide support for watchpoints to monitor several programmer-specified memory locations [Int01,

KH92, SPA92, WLG93]. When a watched memory location is accessed, the hardware triggers an

exception that is handled by the debugger. It is then up to the programmer to manually check the

program state. While watchpoints are a good starting point, they have several limitations. First,

they do not support low-overhead checks on variable values automatically. Since exceptions are

expensive, it would be very inefficient to use them for dynamic bug detection during production

runs. Second, most architectures only support a handful of watchpoints (four in Intel x86). There-

fore, it is hard to use watchpoints for dynamic monitoring in production runs, which requires

efficiency and watching many memory locations.

As micro-architectural innovations have significantly improved performance, interest has re-

cently risen in the architecture community to use transistors to improve software debugging. Sev-

eral works [PT03, XBH03, NPC05, TCV04] have been conducted along this direction. While

recent work is promising and provides a good foundation, it is still far from providing a complete

solution.

This chapter introduces the Intelligent Watcher (iWatcher), a novel architectural framework to

monitor dynamic execution automatically, flexibly and with minimal overhead. iWatcher asso-

ciates program-specified monitoring functions with memory locations. When any such location is

accessed, the monitoring function is automatically triggered with low overhead. To further reduce

overhead and support rollback, iWatcher can optionally leverage Thread-Level Speculation (TLS).

The main advantages of iWatcher are:
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• It monitors all accesses to the watched memory locations. Consequently, it catches hard-

to-find bugs such as updates through aliased pointers and stack-smashing attacks commonly

exploited by viruses.

• It has low overhead because it (i) only monitors memory instructions that truly access the

watched memory locations, and (ii) uses minimal-overhead hardware-supported triggering

of monitoring functions.

• It is general and flexible in that it can support a wide range of checks, including program-

specific checks. Therefore, iWatcher can be used to build detection tools covering variety of

bugs. Moreover, iWatcher is language independent, cross-module and cross-developer.

• It can optionally leverage TLS to hide monitoring overhead and provide rollback support.

Specifically, with TLS, a monitoring function is executed in parallel with the rest of the

program, and the program can be rolled back if a bug is found.

In contrast, due to aliasing problems, it is very hard for software-only dynamic checkers to

monitor all accesses to the watched memory locations and only those.

We evaluate iWatcher using seven buggy applications with various real and injected bugs in-

cluding accessing freed locations, memory leaks, buffer overflow, value-invariant violations, and

smashed stacks. iWatcher detects all the bugs evaluated in our experiments with only a 0.1-179%

execution overhead. Overall, iWatcher’s reasonably small overhead and ability to monitor many

memory locations enable it to be used in both in-house testing and production runs. In contrast, a

well-known open-source bug detector called Valgrind induces orders of magnitude more overhead,

and can only detect a subset of the bugs. Moreover, even with 20% of the dynamic loads moni-

tored in a program, iWatcher only adds 72-182% overhead. We also show that TLS is effective at

reducing overheads for programs with substantial monitoring. Finally, supporting four contexts in

an SMT is enough to achieve the best performance in our experiments.

The remainder of this chapter is organized as follows. Sections 3.2, 3.3, and 3.4 describe

iWatcher’s functionality, architectural design, and advantages, respectively. Section 3.5 describes
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how to use iWatcher to detect various bugs. Sections 3.6 and 3.7 present the evaluation methodol-

ogy and experimental results. Section 3.8 summarizes this chapter.

3.2 iWatcher Functionality

iWatcher provides high-flexibility and low-overhead dynamic execution monitoring. It associates

program-specified monitoring functions with memory locations. When any such location is ac-

cessed, the monitoring function associated with it is automatically triggered and executed.

iWatcher provides two system calls to turn on and off monitoring on a memory location, namely

iWatcherOn and iWatcherOff. These calls can be inserted in programs either automatically by an

instrumentation tool or manually by programmers. The following is the iWatcherOn interface:

iWatcherOn(MemAddr, Length, WatchFlag, ReactMode,

MonitorFunc, Param1, Param2, ... ParamN)

/* MemAddr: starting address of the memory region*/

/* Length: length of the memory region */

/* WatchFlag: types of accesses to be monitored */

/* ReactMode: reaction mode */

/* MonitorFunc: monitoring function */

/* Param1...ParamN: parameters of MonitorFunc */

If a program makes such a call, iWatcher associates monitoring function MonitorFunc()

with a memory region of Length bytes starting at MemAddr. The WatchF lag specifies what

types of accesses to this memory region should be monitored. Its value can be “READONLY”,

“WRITEONLY”, or “READWRITE”, in which case the monitoring function is triggered on a read

access, write access or both, respectively.

At a triggering access (an access to a monitored memory location), the hardware automatically

initiates the monitoring function associated with this memory location. The architecture passes
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the values of Param1 through ParamN to the monitoring function. In addition, it also passes

information about the triggering access, including the program counter, the type of access (load or

store; word, half-word, or byte access), reaction mode, and the memory location being accessed.

It is the monitoring function’s responsibility to perform the check.

A monitoring function can have side effects and can read and write variables without any

restrictions. To avoid recursive triggering of monitoring functions, no memory access performed

inside a monitoring function can trigger another monitoring function.

From the programmers’ point of view, the execution of a monitoring function follows sequen-

tial semantics, just like a very lightweight exception handler (Section 3.3 describes why monitoring

in iWatcher is very lightweight). The semantic order is: the triggering access, the monitoring func-

tion, and the rest of the program after the triggering access.

Upon successful completion of a monitoring function, the program continues normally. If the

monitoring function fails (returns FALSE), different actions are taken depending on the ReactMode

parameter specified in iWatcherOn(). iWatcher supports three modes: ReportMode, BreakMode

and RollbackMode:

• ReportMode: The outcome of the check is reported and the program continues. This mode

can be used for profiling and error reporting without interfering with the execution of the

program.

• BreakMode: The program pauses at the state right after the triggering access and control is

passed to an exception handler. Users can potentially attach an interactive debugger, which

can be used to find more information.

• RollbackMode: The program rolls back to the most recent checkpoint, typically much be-

fore the triggering access. This mode can be used to support replay of a code section to

analyze an occurring bug [PT03], or to support transaction-based programming [OL02].

A program can associate multiple monitoring functions with the same location. In this case,
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upon an access to the watched location, all monitoring functions are executed following sequential

semantics according to their setup order.

When a program is no longer interested in monitoring a memory region, it turns off the moni-

toring using

iWatcherOff(MemAddr, Length, WatchFlag, MonitorFunc)

/* MemAddr: starting address of the watched region*/

/* Length: length of the watched region */

/* WatchFlag: types of accesses to be unmonitored */

/* MonitorFunc: the monitoring function */

After this operation, the MonitorFunc associated with this memory region of Length bytes

starting at MemAddr and WatchF lag is deleted from the system. Other monitoring functions

associated with this region are still in effect.

Besides using the iWatcherOff() call to turn off monitoring for a specified memory region, the

program can also use a MonitorF lag global switch that enables or disables monitoring on all

watched locations. This switch is useful when monitoring overhead is a concern. When the switch

is disabled, no location is watched and the overhead imposed is negligible.

Note that iWatcher only provides a very flexible mechanism for dynamic execution monitor-

ing. It is not iWatcher’s responsibility to ensure that a monitoring function is written correctly,

just like an assert(condition) call cannot guarantee that the condition in the code is correct. Pro-

grammers can use invariant-inferring tools such as DIDUCE [HL02] and DAIKON [ECGN00] to

automatically insert iWatcherOn() and iWatcherOff() calls into programs.

With this support, we can rewrite the example of Section 3.1 using iWatcherOn() and iWatcherOff()

operations. There is no need to insert the invariant check. iWatcherOn() is inserted at the very be-

ginning of the program so that the system can continuously check x’s value whenever and however

the memory location is accessed. This way, the bug is caught at line A.

22



int x, *p;

/* assume invariant: x = 1 */

iWatcherOn(&x, sizeof(int), READWRITE,

BreakMode, &MonitorX, &x, 1);

...

p = foo(); /* a bug: p points to x incorrectly */

*p = 5; /* line A: a triggering access */

...

z = Array[x]; /* line B: a triggering access */

...

iWatcherOff(&x, sizeof(int), READWRITE, &MonitorX);

bool MonitorX(int *x, int value){

return (*x == value);

}

3.3 Architectural Design of iWatcher

To implement the functionality described above, there are at least four challenges: (1) How to

monitor a location? (2) How to detect a triggering access? (3) How to trigger a monitoring func-

tion? (4) How to support the three reaction modes? In this section, we first give an overview of the

implementation and then show how it addresses these challenges.

3.3.1 Overview of the Implementation

iWatcher is implemented using a combination of hardware and software. Logically, it has four

main parts. First, to detect triggering accesses on small monitored memory regions, we tag cache
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Figure 3.1: iWatcher hardware architecture.

lines in both L1 and L2 caches with WatchFlags; to detect triggering accesses on large moni-

tored memory regions, we use a small Range Watch Table (RWT). Second, the hardware triggers

monitoring functions on the fly and provides a special Main check function register to store the

common entry point for all monitoring functions. Third, we use software to manage the associa-

tions between watched locations and monitoring functions. Finally, we optionally leverage TLS to

reduce overheads.

Figure 3.1 gives an overview of the iWatcher hardware. Each L1 and L2 cache line is aug-

mented with WatchFlags. They identify words belonging to small monitored memory regions.

There are two WatchFlag bits per word in the line: a read-monitoring one and a write-monitoring

one. If the read (write)-monitoring bit is set for a word, all loads (stores) to this word automatically

trigger the corresponding monitoring function. The processor also has a Main check function reg-

ister that holds the address of the Main check function(), which is the common entry point to all

program-specified monitoring functions. In addition, iWatcher also has a Victim WatchFlag Table

(VWT), which stores the WatchFlags for watched lines of small regions that have at some point

been displaced from L2.

To detect accesses to large (multiple pages) monitored memory regions, iWatcher uses a set

of registers organized in the RWT. Each RWT entry stores the start and end virtual addresses of

a large region being monitored, plus two bits of WatchFlags and one valid bit. We will see that
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the RWT is used to prevent large monitored regions from overflowing the L2 cache and the VWT.

The lines of these regions are not brought into the cache on an iWatcherOn() call. Moreover, the

WatchFlags of these lines do not need to be set in the L1 or L2 cache unless the lines are also

included in a small monitored region. When the RWT is full, additional large monitored regions

are treated the same way as small regions.

The software component of iWatcher includes the iWatcherOn/Off() system calls, which set

or remove associations of memory locations with monitoring functions. iWatcher uses a software

table called Check Table to store detailed monitoring information for each watched memory loca-

tion. The information stored includes MemAddr, Length, WatchFlag, ReactMode, MonitorFunc,

and Parameters. Using software simplifies the hardware. An iWatcherOn/Off() call adds or re-

moves the corresponding entry to or from the Check Table.

The iWatcher software also implements the Main check function() library call, whose start-

ing address is stored in the Main check function register. When a triggering access occurs, the

hardware sets the program counter to the address in this register. The Main check function() is

responsible to call the program-specified monitoring function(s) associated with the accessed lo-

cation. To do this, it needs to search the Check Table and find the corresponding function(s).

To reduce monitoring overhead, iWatcher can optionally leverage TLS to speculatively execute

the main program in parallel with monitoring functions. Moreover, iWatcher can also leverage

TLS to roll back the buggy code with low overhead, for subsequent replay.

While TLS was also used by Oplinger and Lam to hide overheads [OL02], iWatcher uses a dif-

ferent TLS spawning mechanism. Specifically, iWatcher uses dynamic hardware spawning, which

requires no code instrumentation. Oplinger and Lam, instead, insert thread-spawning instructions

in the program statically. In general, their approach is less efficient and may hurt some conventional

compiler optimizations. Many of the new issues that appear with dynamic hardware spawning are

discussed in Sections 3.3.3 and 3.3.4.
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3.3.2 Watching a Range of Addresses

When a program calls iWatcherOn() for a memory region equal or larger than LargeRegion, iWatcher

tries to allocate an RWT entry for this region. If there is already an entry for this region in the RWT,

iWatcherOn() sets the entry’s WatchFlags to the logical OR of its old value and the WatchFlag ar-

gument of the call. If, instead, the region to be monitored is smaller than LargeRegion, iWatcher

loads the watched memory lines into the L2 cache (if they are not already in L2). We do not explic-

itly load the lines into L1 to avoid unnecessarily polluting L1. As a line is loaded from memory,

iWatcher accesses the VWT to read-in the old WatchFlags, if they exist there. Then, it sets the

WatchFlag bits in the L2 line to be the logical OR of the WatchFlag argument of the call and the

old WatchFlags. If the line is already present in L2 and possibly L1, iWatcher simply sets the

WatchFlag bits in the line to the logical OR of the WatchFlag argument and the current WatchFlag.

In all cases, iWatcherOn() also adds the monitoring function to the Check Table.

When a program calls iWatcherOff(), iWatcher removes the corresponding monitoring function

entry from the Check Table. Moreover, if the monitored region is large and there is a corresponding

RWT entry, iWatcherOff() updates this RWT entry’s WatchFlags. The new value of the WatchFlags

is computed from the remaining monitoring functions associated with this memory region, accord-

ing to the information in the Check Table. If there is no remaining monitoring function for this

range, the RWT entry is invalidated. If, instead, the memory region is small, iWatcher finds all the

lines of the region that are currently cached and updates their WatchFlags based on the remaining

monitoring functions. iWatcher also updates (and, if appropriately removes) any corresponding

VWT entries.

Caches and VWT are addressed by the physical addresses of watched memory regions. If there

is no paging by the OS, the mapping between physical and virtual addresses is fixed for the whole

program execution. In our prototype implementation, we assume that watched memory locations

are pinned by the OS, so that the page mappings of a watched region do not change until the

monitoring for this region is disabled using iWatcherOff().
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Note that the purpose of using RWT for large regions is to reduce L2 pollution and VWT space

consumption: lines from this region will only be cached when referenced (not during iWatcherOn())

and, since they will not set their WatchFlags in the cache, they will not use space in the VWT on

cache eviction.

It is possible that iWatcherOn()/iWatcherOff() access some memory locations sometimes as

part of a large region and sometimes as a small region. In this case, the iWatcherOn() or iWatcherOff()

software handlers, as they add or remove entries to or from the Check Table, are responsible for

ensuring the consistency between RWT entries and L2/VWT WatchFlags.

3.3.3 Detecting Triggering Accesses

iWatcher needs to identify those loads and stores that should trigger monitoring functions. A load

or store is a triggering access if the accessed location is inside any large monitored region recorded

in the RWT, or the WatchFlags of the accessed line in L1/L2 are set.

In practice, the process of detecting a triggering access is complicated by the fact that mod-

ern out-of-order processors introduce access reordering and pipelining. To help in this process,

iWatcher augments each reorder buffer (ROB) entry with a Trigger bit, and each load-store queue

entry with 2 bits that store WatchFlag information.

To keep the hardware reasonably simple, the execution of a monitoring function should only

occur when a triggering load or store reaches the head of the ROB. At that point, the values of

the architectural registers that need to be passed to the monitoring function are readily available.

In addition, the memory system is consistent, as it contains the effect of all preceding stores.

Moreover, there is no danger of mispredicted branches or exceptions, which could require the

cancellation of an early-triggered monitoring function.

For a load or store, when the TLB is looked up early in the pipeline, the hardware also checks

the RWT for a match. This introduces negligible visible delay. If there is a match, the access is a

triggering one. If there is no match, the WatchFlags in the caches will be examined to determine if

it is a triggering access.
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A load typically accesses the memory system before reaching the head of the ROB. It is at

that time that a triggering load will detect the set WatchFlags in the cache. Consequently, in our

design, as a load reads the data from the cache into the load queue, it also reads the WatchFlag bits

into the special storage provided in the load queue entry. In addition, if the RWT or the WatchFlag

bits indicate that the load is a triggering one, the Trigger bit associated with the load’s ROB entry

is set. When the load (or any instruction) finally reaches the head of the ROB and is about to retire,

the hardware checks the Trigger bit. If it is set, the hardware triggers the corresponding monitoring

function.

Stores present a special difficulty. A store is not sent to the memory system until it reaches the

head of the ROB. At that point, it is retired immediately, but it may still cause a cache miss, in

which case it may take a long time to actually complete. In iWatcher, this would mean that, for

stores that do not hit in the RWT, the processor may have to wait a long time to know whether it is

a triggering access. During that time, no subsequent instruction could be retired, as the processor

may have to trigger a monitoring function. To reduce this delay as much as possible, we change

the microarchitecture so that, as soon as a store address is resolved early in the ROB, a prefetch

is issued to the memory system. Such prefetch brings the data into the cache, and the WatchFlag

bits are read into the special storage in the store queue entry. If the RWT or the WatchFlag bits in

the caches indicate that the store is a triggering one, the Trigger bit in the ROB entry is also set.

With this support, the processor is much less likely to have to wait when the store reaches the head

of the ROB. While issuing this prefetch may have implications for the memory consistency model

supported in a multiprocessor environment, we consider the topic to be beyond the scope of this

chapter.

Note that bringing the WatchFlag information into the load-store queue entries enables correct

operation for loads that get their data directly from the load-store queue. For example, if a store in

the load-store queue has the read-monitoring WatchFlag bit set, then a load that reads from it will

set its own Trigger bit.
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3.3.4 Executing Monitoring Functions

When a triggering load or store is retired, the architectural registers and the program counter are

automatically saved, and execution is redirected to the address in the Main check function register.

After the monitoring function completes, execution resumes from the saved program counter.

As an optimization, we can leverage the TLS mechanism. Specifically, when a triggering load

or store is retired, the iWatcher hardware automatically spawns a new microthread (denoted as

microthread 1 in Figure 3.2(a)) to speculatively execute the rest of the program after the trigger-

ing access, while the current microthread (denoted as microthread 0 in Figure 3.2(a)) executes the

monitoring function non-speculatively. To provide sequential semantics (the remainder of the pro-

gram is semantically after the monitoring function), data dependencies are tracked by TLS and any

violation of sequential semantics results in the squash of the speculative microthread (microthread

1).

(a) Executing a monitoring

function.

(b) Triggering a monitoring

function from a speculative

microthread.

Figure 3.2: Examples of monitoring function execution with TLS support.

Microthread 0 executes the monitoring function by starting from the address stored in the

Main check function register. It is the responsibility of the Main check function() to find the

monitoring function(s) associated with the triggering access and call all such function(s) one after

another. Note that, although semantically, a monitoring function appears to programmers like a

user-specified exception handler, the overhead of triggering a monitoring function is tiny with our

hardware support. Indeed, while triggering an exception handler typically needs OS involvement,

triggering a monitoring function in iWatcher is done completely in hardware: the hardware auto-
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matically fetches the first instruction from the Main check function(). iWatcher can skip the OS

because monitoring functions are not related to any resource management in the system and, in

addition, do not need to be executed in privileged mode. Moreover, the monitoring functions for

a program are in the same address space as the monitored program. Therefore, a “bad” program

cannot use iWatcher to mess up other programs.

Microthread 1 speculatively executes the continuation of the monitoring function, i.e., the re-

mainder of the program after the triggering access. To avoid the overhead of flushing the pipeline,

iWatcher dynamically changes the microthread ID of all the instructions currently in the pipeline

from 0 to 1. Note that, it is possible that some un-retired load instructions after the triggering

access may have already accessed the data in the cache and, as per TLS, already updated the mi-

crothread ID in the cache line to be 0. Since the microthread ID on these cache lines should now

be 1, the hardware re-touches the cache lines that were read by these un-retired loads, correctly

setting their microthread IDs to 1. There is no such problem for stores because they only update

the microthread IDs in the cache at retirement. In our experiments, these retouches account for

a very tiny fraction of all accesses, and practically always hit the L1 cache. So the performance

impact is negligible.

It is possible that a speculative microthread issues a triggering access, as shown on Figure 3.2(b).

In this case, a more speculative microthread (microthread 2) is spawned to execute the rest of the

program, while the speculative microthread (microthread 1) enters the Main check function. Since

microthread 2 is semantically after microthread 1, a violation of sequential semantics will result in

the squash of microthread 2. In addition, if microthread 1 is squashed, microthread 2 is squashed

as well. Finally, if microthread 1 completes while speculative, iWatcher does not commit it; it can

only be committed after microthread 1 becomes safe.

Note that, in a CMP-based iWatcher, microthreads should be allocated for cache affinity. In our

Figure 3.2(a) example, speculative microthread 1 should be kept on the same CPU as the original

program, while microthread 0 should be moved to a different CPU. This is because microthread 1

continues to execute the program and is likely to reuse cache state.
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3.3.5 Different Reaction Modes

(a) ReportMode. (b) BreakMode. (c) RollbackMode.

Figure 3.3: Different reaction modes supported by iWatcher with the TLS optimization.

If a monitoring function fails, iWatcher takes different actions depending on the corresponding

ReactMode. ReactMode can be ReportMode, BreakMode, and RollbackMode.

In ReportMode, the outcome of the check is reported and the program continues. This mode is

used for profiling and error reporting without interfering with the execution of the program.

In BreakMode, the program pauses at the state right after the triggering access, and control

passes to an exception handler. Users can attach an interactive debugger, which can be used to find

more information.

Finally, in RollbackMode, the program rolls back to a previous checkpoint, typically much

earlier than the triggering access. This mode can be used to support the replay of a code section to

analyze a bug, or to support transaction-based programming.

Figure 3.3 illustrates the three supported reaction modes with the TLS optimization. Report-

Mode is the simplest one. iWatcher treats it the same way as if the monitoring function had

succeeded: microthread 0 commits and microthread 1 becomes safe. If the reaction mode is

BreakMode, iWatcher commits microthread 0 but squashes microthread 1. The program state

and the program counter (PC) of microthread 1 are restored to the state it had immediately after

the triggering access (Figure 3.3(b)). The cache updates of microthread 1 are discarded. At this

point, programmers can use an interactive debugger to analyze the bug.

If the reaction mode is RollbackMode, iWatcher squashes microthread 1 and also rolls back

microthread 0 to a previous checkpoint (the checkpoint at PC in Figure 3.3(c)). iWatcher can use
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the support similar to ReEnact [PT03] to provide this reaction mode.

3.3.6 Other Issues

Displacements and Cache Misses When a watched line of small regions is about to be displaced

from the L2 cache, its WatchFlags are saved in the VWT. The VWT is a small set-associative

buffer. If the VWT needs to take an entry while full, it selects a victim entry to be evicted, and

delivers an exception. The OS then turns on page protections for the pages that correspond to the

WatchFlags to be evicted from the VWT. Future accesses to these pages will trigger page protection

faults, which will enable the OS to insert their WatchFlags back into the VWT. However, in our

experiments, we find that a 1024-entry VWT is never full. The reason is that the VWT only keeps

the WatchFlags for watched lines of small regions that have at some point been displaced from L2.

On an L2 cache miss, as the line is read from memory, the VWT is checked for an address

match. If there is a match, the WatchFlags for the line are copied to the destination location in

the cache. We do not remove the WatchFlags from the VWT because the memory access may be

speculative and be eventually undone. If there is no match, the WatchFlags for the loaded line are

set to the default “un-watched” value. Note that this VWT lookup is performed in parallel with the

memory read and, therefore, introduces negligible visible delay.

If TLS is used, speculative lines cannot be displaced from the L2. If space is needed in a cache

set that only holds speculative lines, a speculative microthread is squashed to make room. More

details can be found in [PT03].

Check Table Implementation The Check Table is a software table. Our current implementation

uses one entry for each watched region. The entries are sorted by start address. To speed-up Check

Table lookup, we exploit memory access locality to reduce the number of table entries accessed

during one search. A table entry contains all arguments of the iWatcherOn() call. If there are

multiple monitoring functions associated with the same location, they are linked together. Since

the Check Table is a pure software data structure, it is easy to change its implementation. For
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example, a possible implementation could be to organize it as a hash table. It can be hashed with

the virtual address of the watched location.

3.4 Advantages of iWatcher

Based on the previous discussion, we can list the advantages of iWatcher. One of them is that it

provides location-controlled monitoring. Therefore, all accesses to a watched memory location

are monitored, including “disguised” accesses due to dangling pointers or wrong pointer manipu-

lations.

Another advantage of iWatcher is its low overhead. iWatcher only monitors memory opera-

tions that truly access a watched memory location. Moreover, iWatcher uses hardware to trigger

monitoring functions with minimal overhead. Finally, iWatcher optionally uses TLS to execute

monitoring functions in parallel with the rest of the program, effectively hiding most of the moni-

toring overhead.

iWatcher is flexible and extensible. Programmers or automatic instrumentation tools can add

monitoring functions. iWatcher is convenient even for manual instrumentation because program-

mers do not need to instrument every possible access to a watched memory location. Instead, they

only need to insert an iWatcherOn() call for a location when they are interested in monitoring this

location and an iWatcherOff() call when the monitoring is no longer needed. In between, all pos-

sible accesses to this location are automatically monitored. In addition, iWatcher supports three

reaction modes, giving flexibility to the system.

iWatcher is cross-module and cross-developer. A watched location inserted by one module or

one developer is automatically honored by all modules and all developers whenever the watched

location is accessed.

iWatcher is language independent since it is supported directly in hardware. Programs written

in any language, including C/C++, Java or other languages can use iWatcher. For the same rea-

son, iWatcher can also support dynamic monitoring of low-level system software, including the

33



Feature Assertions Hardware

Watchpoints

Software-Only Dynamic Checkers iWatcher

Valgrind Generic

Hardware sup-

port

No Simple No No Modest. Op-

tionally, TLS

Type of checks Code-

controlled

Location-

controlled

Code-

controlled

Code-

controlled

Location-

controlled

Reaction

modes

Abort Interrupt Report or

break

Report or

break

Report, break

or rollback

Programmer’s

effort

High High Low Low Moderate

or low (au-

tomatic

instrumenta-

tion)

Language

dependent

No No No Typically

yes

No

Flexibility Very

flexible.

Program

specific

Inflexible. Sup-

port only a few

watchpoints.

Rely on pro-

grammers or

debuggers for

checks

Moderately

flexible.

Currently,

it only sup-

ports limited

types of

checks

Moderately

flexible

Very flexible.

Program spe-

cific

Cross-module

and cross-

developer

No Yes Yes No Yes

Completeness Hard to

make sure

all accesses

are checked

Detects all ac-

cesses

Detects all

accesses

May miss

some ac-

cesses due

to aliasing

problems

Detects all

accesses

Overhead High Low Very high Typically

high

Low

Table 3.1: Comparison of iWatcher to three other approaches. Completeness refers to whether

an approach monitors all accesses to a watched memory location by construction. Examples of

software-only dynamic checkers include Purify, DIDUCE, Eraser, etc.

operating system.

iWatcher can be used to detect illegal accesses to a memory location. For example, it can be

used for security checks to prevent illegal accesses to some secured memory locations. In our

experiments, we have used iWatcher to protect the return address in a program stack to detect

stack-smashing attacks [CPM+98, FS01, One96, XKPI02].

Table 3.1 summarizes the differences between iWatcher and the three related approaches dis-

cussed in Section 2.1.
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3.5 Bug Detection

To detect bugs, programmers and some software debugging tools like DIDUCE [HL02] need to use

specific monitoring functions. In this section, to demonstrate how to write monitoring functions

for iWatcher, we describe some monitoring functions that are used in our experiments to detect

various bugs, including buffer overflow, memory leaks, stack smashing, accessing freed memory,

and invariant violations.

(1) Detecting Buffer Overflow (BO check): To detect buffer overflow for both dynamic

buffers and static arrays, some paddings are added at the two ends of each buffer. The padding

areas are then monitored by iWatcher. The monitoring function simply reports any accesses to

these padding areas as bugs. It may miss some bugs if the out-of-bound access does not hit the

padding areas. When a dynamic buffer is deallocated, its paddings are also freed and the corre-

sponding monitoring is turned off.

(2) Detecting Memory Leaks (ML check): Memory leak bugs are tackled by monitoring

all accesses to heap objects. Each heap access triggers the monitoring function, which updates

the time-stamp associated with the accessed object. The monitoring is turned off when an object

is deallocated. Periodically, the time-stamps are checked. The heap objects that have not been

accessed for a long time are likely to be memory leaks. Those objects are then ranked based on

their time-stamps.

(3) Detecting Accesses to Freed Locations (FREE check): All unallocated memory space in

the heap is monitored using iWatcher. Any access to this space triggers the monitoring function

that reports it as a bug. When a memory region is allocated, the monitoring for this memory region

is turned off. Of course, the monitor may miss bugs in some cases, such as a dangling pointer

points to a reallocated location.

(4) Detecting Various Memory Bugs (COMBO check): This is used to catch all the above

three types of bugs. The monitoring function is combination of the above three functions.
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(5) Detecting Stack Smashing (STACK check): To catch stack smashing bugs that are com-

monly exploited by viruses to launch security attacks, iWatcher monitors every stack location that

stores return addresses. More specifically, after entering a function, iWatcherOn() is called on

the return address location, and before the function returns, iWatcherOff() is called to turn off the

monitoring to this location. The monitoring function, if triggered, simply reports any access as a

bug.

(6) Detecting Invariant Violations (IV check): To detect an invariant violation, the specific

variable needs to be monitored. The monitoring function checks if the variable value satisfies the

program-specific invariant.

The first five are general checks. The monitoring can be fully automated using a tool to insert

the monitors into any programs. The last check is a program-specific monitoring, requiring specific

knowledge about the program semantics.

Monitoring dynamic objects is done by wrapping the memory allocation and deallocation func-

tions to insert iWatcherOn() and iWatcherOff() calls. For monitoring static arrays, the paddings

and iWatcherOn/Off() calls are added manually now, although they can be done automatically with

compiler support. For STACK check, we use the compiler support to identify the stack location

that stores the return address and add the iWatcherOn/Off() calls. The iWatcherOn/Off() calls

for IV check are inserted manually now, but can be automated using tools such as DAIKON and

DIDUCE.

3.6 Evaluation Methodology

3.6.1 Simulated Architecture

To evaluate iWatcher, we have built an execution-driven simulator that models a workstation with

a 4-context SMT processor augmented with TLS support and iWatcher functionality. The experi-

ments are conducted on this default architecture unless specifically mentioned. The parameters of
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the architecture are shown in Table 3.2. We model the overhead of spawning a monitoring-function

microthread as 5 cycles of processor stall visible to the main-program thread. The reaction mode

used in all experiments is ReportMode, so that all programs can run to completion.

CPU frequency 2.4GHz ROB size 360

Fetch width 16 I-window size 160

Issue width 8 Int FUs 6

Retire width 12 Mem FUs 4

Ld/st queue entries 32/thread FP FUs 4

Spawn overhead 5 cycles Reaction mode ReportMode

L1 cache 32KB, 4-way, 32B/line, 3 cycles latency

L2 cache 1MB, 8-way, 32B/line, 10 cycles latency

VWT 1024 entries, 8-way, 2B/entry

LargeRegion 64Kbytes

RWT 4 entries, 32bits for the start and end addresses

Memory 200 cycles latency

Table 3.2: Parameters of the simulated architecture. Latencies are given as unloaded round-trips

from the processor.

To isolate the benefits of TLS, we evaluate the same architecture without TLS support. In

this case, on a triggering access, the processor first executes the monitoring function, and then

proceeds to execute the rest of the program. For the evaluation without TLS support (with or

without iWatcher support), the single microthread running is given a 64-entry load-store queue.

To study TLS scalability, we vary the number of contexts from 2 to 8 in the SMT machine,

using the same number of shared resources as listed in Table 3.2. The number of contexts limits

the maximum number of concurrently running microthreads.

3.6.2 Valgrind

In our evaluation, we compare the functionality and overhead of iWatcher to Valgrind [NS03], an

open-source memory debugger for x86 programs. We choose Valgrind because it does not require

modifying the tested applications and is publicly available. Valgrind is a binary-code dynamic

checker to detect general memory-related bugs such as memory leaks, memory corruption and

buffer overflow. It simulates every single instruction of a program. Because of this, it finds errors

not only in the user code but also in all supporting dynamically-linked libraries. Valgrind takes
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control of a program before it starts. The program is then run on a synthetic x86 CPU, and every

memory access is checked. All detected errors are reported.

Valgrind provides an option to enable or disable memory leak detection. We also enhance

Valgrind to enable or disable variable uninitialization checks and invalid memory access checks

(checks for buffer overflow and invalid accesses to freed memory locations).

In our experiments, we run Valgrind on a real machine with a 2.6 GHz Pentium 4 processor,

32-Kbyte L1 cache, 2-Mbyte L2 cache, and 1-Gbyte main memory. Since iWatcher runs on a sim-

ulator, we cannot compare the absolute execution time of iWatcher with that of Valgrind. Instead,

we compare their relative execution overheads over runs without monitoring.

3.6.3 Tested Applications

We have conducted two sets of experiments. The first one uses seven applications with both

injected and real bugs to evaluate the functionality and overheads of iWatcher for software de-

bugging. The second one systematically evaluates the overheads of iWatcher and the effect of

architecture resources when monitoring applications without bugs.

The applications used in our first set of experiments contain various bugs, including memory

leaks, accesses to freed locations, buffer overflow, stack-smashing attacks, and value invariant

violations. These applications are: bc-1.06 (an arbitrary precision calculator language), gzip-1.2.4

(GNU zip, a popular compression utility provided by the GNU project), polymorph-0.4.0 (a tool

to convert Windows style file names to something more portable for UNIX systems), ncompress-

4.2.4 (a compression and decompression utility that is compatible with the original UNIX compress

utility), tar-1.13.25 (a tool to create and manipulate tar archives), cachelib (a cache management

library developed at the University of Illinois), and gzip (a SPECINT 2000 application running the

Test input data set). Of these programs, bc-1.06, gzip-1.2.4, polymorph-0.4.0, ncompress-4.2.4,

tar-1.13.25 and cachelib already had real bugs (the bugs come with the code and were introduced

by the original programmers), while we injected some common bugs into gzip.

Table 3.3 shows the details of the bugs and monitoring functions, as described in Section 3.5.

38



Application Type of Mon-

itoring

Bug Class, Location, and Origin Monitoring

Function

gzip-

STACK

general stack smashing: “huft free()”. Injected STACK -

check

gzip-

FREE

general accessing freed location: “huft free()”.

Injected

FREE -

check

gzip-BO1 general dynamic buffer overflow: “huft build()”.

Injected

BO check

gzip-ML general memory leak: “huft free()”. Injected ML check

gzip-

COMBO

general combination of the bugs in gzip-ML,

gzip-FREE, and gzip-BO1. Injected

COMBO -

check

gzip-BO2 general static array overflow: “huft build()”. In-

jected

BO check

gzip-IV1 program spe-

cific

value invariant violation: “huft build()”.

Injected

IV check

gzip-IV2 program spe-

cific

value invariant violation: “inflate()”. In-

jected

IV check

cachelib program spe-

cific

value invariant violation at option.c:line

90. Real

IV check

bc-1.06 general dynamic buffer overflow at storage.c:line

176 and util.c:line 557. Real

BO check

ncompress-

4.2.4

general stack smashing at compress42.c:line 886.

Real

STACK -

check

gzip-1.2.4 general static array overflow at gzip.c:line 1009.

Real

BO check

polymorph-

0.4.0

general stack smashing at polymorph.c:line 193

and 200. Real

STACK -

check

tar-

1.13.25

general dynamic buffer overflow at pre-

gargs.c:line 92. Real

BO check

Table 3.3: Bugs and monitoring functions. The applications with name in bold are new relative to

[Zhou et al. 2004].

We evaluate the case of single type of bugs: stack-smashing, accessing freed location, buffer over-

flow (dynamic buffer overflow and static array overflow), memory leak, and value-invariant viola-

tions. We also evaluate the case of a combination of bugs (memory leak, accessing a freed location,

and dynamic buffer overflow). Table 3.3 shows the bug information and monitoring functions.

For fair comparison between Valgrind and iWatcher, in Valgrind we enable only the type of

checks that are necessary to detect the bug(s) in the corresponding application. For example, for

gzip-ML, we enable only the memory leak checks. Similarly, for gzip-FREE, gzip-BO1, bc-1.06

and tar-1.13.25, we enable only the invalid memory access checks. In all our experiments, variable

uninitialization checks are always disabled.
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Finally, our second set of experiments evaluates iWatcher overheads and the effect of ar-

chitecture resources (microthread contexts) by monitoring memory accesses in two unmodified

SPECINT 2000 applications running the Test input data set. These applications are gzip and parser.

We first measure the overhead for iWatcher with a default 4-context SMT processor and without

TLS, as we vary the percentage of dynamic loads monitored by iWatcher and the length of the

monitoring function. Then, we measure the iWatcher overheads with different numbers (namely 2,

4, 6 and 8) of microthread contexts in the SMT processor.

3.7 Experimental Results

3.7.1 Overall Results

Table 3.4 compares the effectiveness and the overhead of Valgrind and iWatcher. For each of the

buggy applications considered, the table shows whether the schemes detect the bug and, if so, the

overhead they add to the program’s execution time. Recall from Section 3.6 that Valgrind’s times

are measured on a real machine, while iWatcher’s are simulated.

Application Valgrind iWatcher

Bug Detected? Overhead (%) Bug Detected? Overhead (%)

gzip-STACK No - Yes 80.0

gzip-FREE Yes 1466 Yes 8.7

gzip-BO1 Yes 1514 Yes 10.4

gzip-ML Yes 936 Yes 37.1

gzip-COMBO Yes 1650 Yes 42.7

gzip-BO2 No - Yes 10.5

gzip-IV1 No - Yes 10.5

gzip-IV2 No - Yes 9.6

cachelib No - Yes 3.8

bc-1.06 Yes 7367 Yes 178.9

ncompress-4.2.4 No - Yes 2.4

gzip-1.2.4 No - Yes 168.3

polymorph-0.4.0 No - Yes 0.1

tar-1.13.25 Yes 132 Yes 3.8

Table 3.4: Comparing the effectiveness and overhead of Valgrind and iWatcher.

Consider effectiveness first. Valgrind can detect accessing freed locations, dynamic buffer
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overflow, memory leak bugs, and the combination of them. iWatcher, instead, detects all the bugs

considered. iWatcher’s effectiveness is largely due to its flexibility to specialize the monitoring

function, and its low-overhead that enables more sophisticated monitoring functionality.

The table also shows that iWatcher has a much lower overhead than Valgrind. For bugs that

can be detected by both schemes, iWatcher only adds 4-179% overhead, a factor of 25-169 smaller

than Valgrind. For example, in gzip-COMBO, where both iWatcher and Valgrind monitor every

access to dynamically-allocated memory, iWatcher only adds 43% overhead, which is 39 times less

than Valgrind. iWatcher’s low overhead is the result of triggering monitoring functions only when

the watched locations are actually accessed, and of using TLS to hide monitoring overheads. The

difference in overhead between Valgrind and iWatcher is larger in gzip-FREE, where we are look-

ing for a pointer that de-references a freed-up location. In this case, iWatcher only monitors freed

memory buffers, and any triggering access uncovers the bug. As a result, iWatcher’s overhead is

169 times smaller than Valgrind’s. Similarly, for bc-1.06 and tar-1.13.25, the iWatcher’s overheads

are 41 and 35 times smaller than Valgrind’s, respectively. Finally, our results with Valgrind are

consistent with the numbers (12-48 times slowdown) reported in a previous study [NS03].

If we consider all the applications, we see that iWatcher’s overhead ranges from 0.1% to 179%.

This overhead comes from three effects. The first one is the contention of monitoring-function

microthreads and the main program for processor resources (such as functional units or fetch band-

width) and cache space. Such contention has a high impact when there are more microthreads that

want to execute concurrently than hardware contexts in the SMT processor. In this case, the main-

program microthread cannot run all the time. Instead, monitoring-function and main-program

microthreads share the hardware contexts on a time-sharing basis.

Columns 2 and 3 of Table 3.5 show the fraction of time that there is more than one microthread

running or more than four microthreads ready to run, respectively. These figures include the main-

program microthread. These figures are closely related to the product of the number of triggering

accesses per 1 million instructions (Column 4) times the average size of the monitoring function

(Column 7). The larger the product, the bigger these figures. Note that having more than four
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Application % Time with # Triggering # iWatcher- Size of Size of Max Monitored Total Monitored Max # of Moni-

Microthreads Accesses per On/Off() iWatcherOn/- Monitoring Memory Size at Memory Size tored Objects

> 1 > 4 1M Instr. per 1M Instr. Off() (Cycles) Func. (Cycles) a Time (Bytes) (Bytes) at a Time

gzip-STACK 0.1 0.0 0.2 8988.1 20.6 22.4 40 19558568 10

gzip-FREE 0.1 0.0 0.4 0.4 1291.3 24.4 246880 246880 239

gzip-BO1 0.1 0.0 0.4 0.9 210.4 177.0 80 1944 20

gzip-ML 23.1 16.9 13008.9 0.4 582.6 47.4 6613600 6847616 111

gzip-COMBO 26.2 15.2 13009.6 0.4 1082.3 45.2 6847616 6847616 243

gzip-BO2 0.1 0.0 0.2 1.6 59.0 24.8 32 3520 8

gzip-IV1 0.1 0.0 0.7 0.2 40.5 21.7 4 528 1

gzip-IV2 0.1 0.0 1.1 0.1 83.0 23.0 4 4 1

cachelib 0.4 0.0 91.6 0.2 128.9 16.5 40 40 10

bc-1.06 0.1 0.0 4.8 2594.0 412.7 412.0 3272 4336 818

ncompress-4.2.4 1.1 1.0 321.7 160.8 162.5 151.5 4 8 1

gzip-1.2.4 0.9 0.9 371.4 4827.8 280.7 429.0 208 208 52

polymorph-0.4.0 0.1 0.0 0.7 0.3 204.0 127.6 8 20 2

tar-1.13.25 0.1 0.0 0.6 15.4 363.4 174.0 96 96 24

Table 3.5: Characterizing iWatcher execution.

microthreads running does not mean that the main-program microthread starves: the scheduler will

attempt to share all the contexts among all microthreads fairly. From the table, we see that three

applications use more than 1 microthread for more than 1% of the time. Of those, there are two

that have more than 4 microthreads ready to run for a significant fraction of the time. Specifically,

this fraction is 15.2% for gzip-COMBO and 16.9% for gzip-ML. Note that these applications have

relatively high iWatcher overhead in Table 3.4.

A second source of overhead is the iWatcherOn/Off() calls. These calls consume processor

cycles and, in addition, bring memory lines into L2, possibly polluting the cache. The overhead

caused by iWatcherOn/Off() cannot be hidden by TLS. In practice, their effect is small due to the

small number of calls, except in gzip-STACK, bc-1.06 and gzip-1.2.4. Indeed, Columns 5 and 6

of Table 3.5 show the number of iWatcherOn/Off() calls per 1 million instructions and the average

size of an individual call. Except for gzip-STACK, bc-1.06 and gzip-1.2.4, the product of number

of calls per 1M instructions times the size per call is tiny compared to the execution cycles taken

by 1 million instructions. For these cases, it can be shown that, even if every line brought into L2

by iWatcherOn/Off() calls causes one additional miss, the overall effect on program execution time

is very small.

For gzip-STACK, bc-1.06 and gzip-1.2.4, the number of iWatcherOn/Off() calls per 1M in-
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structions is huge (8988, 2594 and 4828, respectively). These calls introduce a large overhead

that cannot be hidden by TLS. Moreover, iWatcherOn/Off() calls partially cripple some conven-

tional compiler optimizations such as register allocation. The result is worse code and additional

overhead. Overall, while for most applications the iWatcherOn/Off() calls introduce negligible

overhead, for gzip-STACK, bc-1.06 and gzip-1.2.4, they are responsible for most of the 80%,

179% and 168% overheads of iWatcher, respectively.

For the applications with STACK check (gzip-STACK, ncompress-4.2.4, and polymorph-0.4.0),

the dominant overhead is the iWatcherOn/Off() calls. Since iWatcherOn() is called before en-

tering any functions and iWatcherOff() is called before returning from any functions, the fre-

quency of iWatcherOn/Off() calls is correlated to the function call frequency. Therefore, so is the

iWatcher overhead for STACK check. For example, since gzip-STACK has much more frequent

iWatcherOn/Off() calls than ncompress-4.2.4 and polymorph-0.4.0, it has much higher overhead.

Finally, there is a third, less important source of overhead in iWatcher, namely the spawning

of monitoring-function microthreads. As indicated in Section 3.6, each spawn takes 5 cycles.

Column 4 of Table 3.5 shows the number of triggering accesses per million instructions. Each of

these accesses spawns a microthread. From the table, we see that this parameter varies a lot across

applications. For most of these applications, the triggering frequency is very small. Moreover,

for all applications, even if we had a higher spawn overhead, such as 10 or 20 cycles, the total

overhead is still insignificant.

Overall, we conclude that the overhead of iWatcher can be high (37-179%) if the applica-

tion needs to execute more concurrent microthreads than contexts provided by the SMT processor

(gzip-ML and gzip-COMBO), or the application calls iWatcherOn/Off() very frequently (gzip-

STACK, bc-1.06, and gzip-1.2.4). For the other applications analyzed, the overhead is small,

ranging from 0.1% to 10.5%.

Finally, the last three columns of Table 3.5 show other parameters of iWatcher execution: av-

erage monitoring function size, maximum monitored memory size at a time, and total monitored

memory size, respectively. We can see that 6 monitoring functions take less than 25 cycles, and
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there are 8 applications where monitoring functions take 45-429 cycles. In some cases such as

gzip-ML and gzip-COMBO, these relatively expensive monitoring functions occur in applications

with frequent triggering accesses. When this happens, the fraction of time with more than 4 mi-

crothreads is high, which results in high iWatcher overhead (Table 3.4).

The last two columns show that in some applications such as gzip-ML and gzip-COMBO,

iWatcher needs to monitor many addresses. In this case, the Check Table will typically contain

many entries. Note, however, that even in this case, the size of the monitoring function, which

includes the Check Table lookup, is still modest. This is because our Check Table lookup algorithm

is efficient for most applications evaluated in our experiments.

3.7.2 Benefits of TLS

As indicated in Section 3.6, our experiments are performed using ReportMode. In this reaction

mode, TLS speeds-up execution by running monitoring-function microthreads in parallel with

each other and with the main program. To evaluate the effect of not having TLS, we now repeat

the experiments executing both monitoring-function and main-program code sequentially, instead

of spawning microthreads to execute them in parallel.

Figure 3.4 compares the execution overheads of iWatcher and iWatcher without TLS for all the

applications. The amount of monitoring overhead that can be hidden by TLS in a program is the

product of Columns 4 and 7 in Table 3.5. For programs with substantial monitoring, TLS reduces

the overheads. For example, in gzip-COMBO, the overhead of iWatcher without TLS is 61.4%,

while it is only 42.7% with TLS. This is a 30% reduction. As monitoring functions perform more

sophisticated tasks such as DIDUCE’s invariant inference [HL02], the benefits of TLS will become

more pronounced.

For programs with little monitoring, the product of Columns 4 and 7 in Table 3.5 is small. For

these applications, TLS does not provide benefit, because there is not much overhead that can be

hidden by TLS.

Overall, we recommend supporting TLS, as it reduces the overhead of iWatcher in some ap-
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Figure 3.4: Comparing iWatcher and iWatcher without TLS.

plications. We also note that TLS can be instrumental in efficiently supporting RollbackMode

(Section 3.3.5).

3.7.3 Sensitivity Study

To measure the sensitivity of iWatcher’s overhead, we artificially vary the fraction of triggering

accesses and the size of the monitoring functions. We perform the experiments on the bug-free

gzip and parser applications.

In a first experiment, we trigger a monitoring function every N th dynamic load in the program1,

where N varies from 2 to 10. The function walks an array, reading each value and comparing

it to a constant for a total of 40 instructions. The resulting execution overheads for iWatcher

(with the default 4-context SMT processor), and iWatcher without TLS are shown in Figure 3.5

(bar iWatcher-TLS4 and iWatcher-NoTLS, respectively). The figure shows that the overhead of

iWatcher with TLS with frequent triggering accesses is tolerable. Specifically, the gzip overhead

is 72% for 1 trigger out of 5 dynamic loads, and 194% for 1 trigger out of 2 loads. The parser

overheads are a bit higher, namely 182% for 1 trigger out of 5 loads, and 409% for 1 trigger out

of 2 loads. If iWatcher does not support TLS, however, the overheads go up: 273% for gzip and

593% for parser for 1 trigger out of 2 loads.

1For parser, we skip the program’s initialization phase, which lasts about 280 million instructions, because its
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Figure 3.5: Varying the fraction of triggering loads.

In a second experiment, we vary the size of the monitoring function. We use the same function

as before, except that we vary the number of instructions executed from 4 to 800. The function is

triggered in 1 out of 10 dynamic loads. The resulting execution overheads are shown in Figure 3.6

(iWatcher-TLS4 and iWatcher-NoTLS). The figure again shows that iWatcher overheads with TLS

are modest. For 200-instruction monitoring functions, the overhead is 65% for gzip and 169%

for parser. In iWatcher without TLS, the overhead is 173% for gzip and 356% for parser. As we

increase the monitoring function size, the absolute benefits of TLS increase, as TLS can hide more

monitoring overhead.

3.7.4 Scalability Analysis

To evaluate the effect of architectural resources on iWatcher’s overhead, we use different numbers

(2, 4, 6 and 8) of microthread contexts for the two experiments performed in the sensitivity study

(Section 3.7.3). Note that, in these experiments, the SMT processors with different numbers of

behavior is not representative of steady state.
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Figure 3.6: Varying the size of the monitoring function.

contexts have the same number of shared resources.

The first experiment varies the fraction of triggering accesses, as we did in the first experiment

of Section 3.7.3. The second to fifth bars in Figure 3.5 show that the execution overheads for

iWatcher with TLS on a 2/4/6/8-context SMT processor, respectively. The results show that using

a 4-context SMT reduces iWatcher’s overhead more than using a 2-context SMT. However, using

a 6 or 8-context SMT shows little improvement over using a 4-context SMT. More specifically,

when using a 4-context SMT instead of a 2-context SMT, the gzip overhead decreases by 17.3%

for 1 trigger out of 5 dynamic loads, and by 11.4% for 1 trigger out of 2 loads. For parser, the

overhead reduction using a 4-context SMT rather than a 2-context SMT is 18.6% for 1 trigger out

of 5 loads, and 14.2% for 1 trigger out of 2 loads. However, the overheads with a 6 or 8-context

SMT are almost the same as the overheads with a 4-context SMT in all triggering fractions for

both gzip and parser.

The second experiment varies the size of the monitoring function, as the second experiment in

Section 3.7.3. The resulting execution overheads are shown in Figure 3.6, from the second to the
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fifth bars. The results again show that a 4-context SMT is enough to reduce the overheads to the

minimum for almost all cases. There is no need to use more than 4 contexts for this experiment.

For example, in the 200-instruction monitoring function case, the overhead reduction as we get

from two to four contexts is 35.5% for gzip and 23.8% for parser. However, the overheads are

pretty much the same from 4 contexts to 6 or 8 contexts.

3.8 Summary

This chapter has presented iWatcher, a novel architectural scheme for minimal-overhead location-

controlled monitoring. iWatcher detects all accesses to a watched memory location, including

those by aliased pointer dereferences. To reduce overhead, iWatcher optionally leverages Thread-

Level Speculation (TLS). We have evaluated iWatcher on applications with various bugs. iWatcher

detects all bugs evaluated in our experiments with only a 0.1-179% execution overhead. In con-

trast, a well-known open-source bug detector called Valgrind induces orders of magnitude more

overhead, and can only detect a subset of the bugs. Moreover, even with 20% of the dynamic

loads monitored in a program, iWatcher only adds 72-182% overhead. Finally, TLS is effective at

reducing overheads for programs with substantial monitoring, and a 4-context SMT is enough to

achieve the best performance in our experiments.
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Chapter 4

AccMon: Automatically Detecting

Memory-related Bugs

4.1 Overview

Many methods have been proposed to detect bugs dynamically during execution. These methods

can be classified into two categories: the programming-rule-based approach and the statistics-rule-

based approach. Methods in both categories check for violations of certain rules at run time, but

they focus on different types of rules. The programming-rule-based approach focuses on rules that

should be followed when programming in a specific language such as C/C++. “An array pointer

cannot move out-of-bounds” is an example of these rules. Much work has been conducted on this

approach, including Purify [HJ92], CCured [CHM+03, NMW02], SafeC [ABS94] and Jones and

Kelly’s tool [JK97].

The statistics-rule-based approach is a newly explored direction that extracts rules (e.g., invari-

ants) statistically from multiple successful executions (e.g., in-house regression tests) or multiple

periods of a single long-running execution, and then uses these rules to check for violations in a

later execution (or later in the same long-running execution). This approach is promising because

it can catch bugs that may not violate any programming rules. Many statistics-based rules such as

value-based invariants (i.e., a variable’s value always falls in a certain range during normal runs)

are related to applications semantics. Such information is difficult to infer from the code, and is

too tedious to be documented or annotated by programmers.

Only a few studies have been conducted on the statistics-rule-based approach, and almost all

are software-only solutions. Liblit et al [LAZJ03] uses statistical analysis to find the difference

between abnormal and normal runs for the purpose of providing more information for postmortem
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bug analysis. DAIKON [ECGN99, ECGN00] and DIDUCE [HL02] focus on detecting bugs on the

fly by automatically extracting invariants and detecting violations during execution. Both DAIKON

and DIDUCE consider only value-based invariants, and therefore can miss bugs that do not violate

these invariants.

Novel architectural support would provide several benefits for bug detection over software-only

solutions: (1) Efficiency: Architectural support can significantly lower the overhead of dynamic

monitoring because it does not need extensive code instrumentation. Note also that such instru-

mentation can interfere with compiler optimizations. Moreover, it is possible to use extra hardware

to speed up certain operations. Both iWatcher and AccMon are examples that demonstrate this

benefit. (2) Accuracy: Architectural support can avoid pointer aliasing problems and accurately

capture all desired accesses to monitored memory objects. (3) Generality: Architectural support

can be language-independent, cross-module and easy to use with low-level system code such as

the operating system. Moreover, it can be designed to work directly with binary code without

recompilation.

This chapter proposes two innovative ideas in architectural support for software bug detection.

First, we find many memory-related bugs, such as stack smashing, buffer overflow, memory cor-

ruption and some semantic bugs (e.g., wrong pointer assignment), share a common symptom that a

key variable is accessed by an “illegal” instruction which usually do not access this variable in bug-

free runs. We call such “illegal” instruction an outlier instruction. Based on this phenomena, we

propose a new statistics-based method, called program counter (PC)-based invariance, to detect

memory-related bugs on the fly. We also observe that in most programs, a given variable is typi-

cally accessed by only a few instructions, which can be used to identify the outlier instructions. We

validate this observation using statistical analysis with nine applications (See Section 4.2). Based

on this observation, if we can capture the invariant of the set of PCs that normally access a given

key variable, it is possible to detect accesses by outlier instructions, and thus detect bugs. This is

regardless of the values that these instructions assign to the variables.

Second, we propose a simple architectural extension, called the Check Look-aside Buffer (CLB),

50



that uses a Bloom filter [Blo70] to reduce the monitoring overhead in iWatcher. This extension

takes advantage of the good temporal locality that exists in object accesses to filter out a large

percentage of monitored accesses. This extension reduces the overhead by up to 80.6% in our

experiments.

Based on the above two ideas, we have built an automatic, low-overhead, low-false-alarm, PC-

based invariant detection tool called AccMon (Access Monitor, pronounced as “A-k-Mon”) that

uses a combination of architectural, run-time system, and compiler support to catch hard-to-find

memory-related bugs. First, AccMon leverages the iWatcher framework with the CLB extension

to monitor accesses to key variables. Second, the run-time system automatically infers PC-based

invariants and detects violations of these invariants. Third, AccMon uses compiler support to

provide certain optimizations to reduce the amount of monitoring and prune false alarms. We also

use the binary instrumentation tool PIN [LCM+05] to build a pure software implementation of

PC-based invariant detection tool called AccMon-S.

Our experimental results with nine buggy applications (with a total of twelve bugs) show that

AccMon and AccMon-S can detect all ten bugs in the seven non-server applications with few false

alarms (0 for five applications and 2-8 for two applications), whereas several tested existing tools

fail to detect some bugs. In particular, AccMon and AccMon-S catches a bug in the bc application

that has never been reported. Moreover, AccMon-S also detects the two bugs in the two server

programs, apache and squid, with 0-4 false alarms (AccMon cannot run these servers due to the

limitation of our simulator infrastructure). AccMon also has low overhead (0.24-2.88 times), which

is an order of magnitude lower than Purify [HJ92]. Our results also show that the CLB architectural

extension and other optimizations significantly reduce overheads.

AccMon complements other existing memory-bug detection tools, including programming-

rule-based approaches and statistics-rule-based approaches. This is because AccMon provides

several unique advantages, some or all of which are unavailable in other tools:

• Since AccMon is a statistics-based approach, it does not need pointer-type/object informa-

tion. Therefore, it can detect bugs that either do not have such information (e.g., because of
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fine-grained pointer manipulation through various type-casting), or do not violate pointer-

type/object association (such as a wrong pointer assignment bug caused by copy-paste).

Our experiments identify two such bugs that are detected by AccMon but are missed by

programming-rule-based tools such as Purify [HJ92] and CCured [CHM+03, NMW02].

• Since AccMon uses architectural support to detect accesses to monitored memory objects,

it can detect memory corruption that occurs in third-party libraries whose source code is

unavailable. We have found one such bug in our experiments that is detected by AccMon

but missed by the other tested tools.

• AccMon does not rely on variable values, and therefore can detect bugs that do not violate

value-based invariants. In our experiments, AccMon detects six bugs that are very difficult

to catch using value-based invariant detection tools such as DAIKON [ECGN99, ECGN00]

and DIDUCE [HL02].

• Since AccMon relies on architectural support, it is language-independent and easy to use for

low-level system code, e.g., operating system code. In our experiments, AccMon is able to

catch an extracted version of a real bug that exists in the latest version of Linux.

• Although the current AccMon implementation uses source code in order to exploit certain

compiler-based optimizations, it can directly use binary code without recompilation.

• AccMon’s overhead is low. Moreover, AccMon uses the iWatcher framework that can dy-

namically turn on/off monitoring with little overhead, completely eliminating the overhead

in unmonitored code. Therefore, AccMon can be used on production runs.

This remainder of this chapter is organized as follows. Section 4.2 discusses the rationale

for PC-based invariants. Section 4.3 presents the main idea and the details of our AccMon tool.

Experimental methodology and results are presented in Section 4.5 and 4.6, respectively, followed

by the summary in Section 4.7.
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4.2 PC-Based Invariants

When observing the behavior of programs, we found an interesting characteristic: program loca-

tion and data accessed are highly correlated. This characteristic has two aspects. First, for most

memory objects, only a few instructions access a given object. Second, in short-running programs,

for runs with different inputs, the sets of instructions that access a given object are remarkably

similar; in long-running programs, the set of instructions that access a given object is relatively

stable across different execution periods (of duration long enough to capture at least one cycle of

most computation phases). The latter is especially the case for long-running server programs.

Intuitively, this characteristic makes sense. In most programs, a memory object is accessed at

only a few places. For example, a linked list is usually accessed by the list manipulation functions.

Also, from the programmers’ point of view, it is very difficult to write or understand a program

where a memory object can be accessed in many places. For convenience, we refer to the set of

instructions that normally access a given memory object as its AccSet.

Based on this observation, this chapter proposes a new type of invariant, the Program Counter-

based (PC-based) invariant. Generally speaking, a PC-based invariant captures the relationship

between a memory object and its AccSet. Based on this relationship, it is possible to detect “illegal”

accesses by an outlier instruction (an instruction that is not in the AccSet of the accessed memory

object) due to buffer overflow, stack smashing, dangling pointers, memory corruption or other

memory-related bugs.

To validate this observation and understand the characteristics of AccSets, we have analyzed

the behavior of twelve programs (six real applications used in our evaluation of AccMon and six

SPEC2000 benchmarks). In particular, we examine the average size and stability of AccSets. If the

average AccSet size is large, it will be hard to detect bugs because the confidence of identifying an

outlier instruction will be low. Similarly, if most AccSets are not stable across different inputs or

different execution periods, they cannot be used to detect bugs because they may introduce many

false alarms.
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Figure 4.1: Cumulative distribution of global objects’ AccSet size for six SPEC2000 benchmarks

and six real applications. Each cumulative distribution curve gives the percentage of global data

objects whose AccSet sizes are smaller than or equal to a given size. A high percentage for a small

size means that most objects have small AccSets sizes. Note that the SPEC-gzip and gzip-1.2.4

applications are different.

To find the average size and stability of AccSets, we collect the AccSets for all global and

heap objects (global and heap variables) in the twelve programs, using multiple runs with different

inputs. We then examine the cumulative distribution of the AccSet sizes and measure the similarity

of AccSets across 5 runs with different inputs.

Figure 4.1 and Figure 4.2 show the cumulative distributions of the global objects’ AccSet sizes

and the global and heap objects’ AccSet sizes, respectively, for the six SPEC2000 benchmarks

and six real applications. Considering only global objects, for the six SPEC2000 benchmarks,

90%-96% of the global objects in vpr, parser and twolf have AccSet sizes less than 5, and 80%-

85% of the global objects in mcf, gzip and bzip2 have AccSet sizes less than 15. For the six real

applications, around 85-100% of the global objects have AccSet sizes less than 10. Looking at

both global and heap objects together, for the six SPEC2000 benchmarks, 85%-90% of the global
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Figure 4.2: Cumulative distribution of global and heap objects’ AccSet size for six SPEC2000

benchmarks and six real applications. Each cumulative distribution curve gives the percentage of

global and heap data objects whose AccSet sizes are smaller than or equal to a given size. are

different.

and heap objects in vpr, parser and twolf have AccSet sizes less than 15, and 80%-85% of the

global and heap objects in gzip and bzip2 have AccSet sizes less than 15. The AccSet sizes for

are larger, but still 67% of the global and heap objects have AccSet sizes less than 11. For the six

real applications, around 85-100% of the global and heap objects have AccSet sizes less than 10.

In other words, in general the average AccSet size is small, and therefore AccSets can be used to

detect outlier accesses with reasonable confidence.

To measure the stability of AccSets across multiple runs with different inputs, we introduce

a metric called Similarity. For a given data object OBJ and n runs, the similarity for this object

across the n runs is defined as

Similarity(OBJ) =
| ∩ (S1, S2, . . . , Sn)|

| ∪ (S1, S2, . . . , Sn)|
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Figure 4.3: Cumulative distribution of global objects’ AccSet similarity across 5 runs for six

SPEC2000 benchmarks and six real applications. Each cumulative distribution curve shows the

percentage of global data objects whose AccSets have a similarity greater than or equal to a given

value. A high percentage at a value close to 1 indicates that most global objects’ AccSets are

similar across different runs. Note that the x-axis starts at 1 and goes to 0.

where Si is the AccSet of OBJ in run i. The similarity of an object is the size of the intersection

of its AccSets across different runs divided by the size of the union of its AccSets in all the runs.

It measures the fraction of common instructions in the total possible instructions that access this

object. If the AccSet for an object is very stable, the similarity metric is close to one. If it is very

unstable, the similarity metric is close to zero.

Figure 4.3 and Figure 4.4 show the cumulative distributions of the global objects’ AccSet sim-

ilarity and the global and heap objects’ AccSet similarity for different runs. The figures show that

in general most objects have a similarity close to one, which indicates that most AccSets are stable

across different runs. For the six SPEC2000 benchmarks, 93-100% of the global objects’ AccSets

in five of them (except bzip2) have similarity values greater than 0.96. In bzip2, 79% of the global

objects’ AccSets have have similarity values greater than 0.9. 85-96% of the global and heap ob-
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Figure 4.4: Cumulative distribution of global and heap objects’ AccSet similarity across 5 runs for

six SPEC2000 benchmarks and six real applications. Each cumulative distribution curve shows the

percentage of global and heap data objects whose AccSets have a similarity greater than or equal

to a given value.

jects’ AccSet in gzip, parser, mcf and twolf have similarity values greater than 0.91, and 83% and

75% of the global and heap objects’ AccSet in vpr and bzip2 have similarity values greater than

0.91, respectively. For the six real applications, as shown in Figures 4.3(c) and 4.3(d), around

84-100% of the global objects’ AccSets have similarity values greater than 0.97. In Figures 4.4(c)

and 4.4(d), 84-100% of the global and heap objects’ AccSet have similarity values greater than

0.97 in gzip, tar and polymorph, and 70-88% of the global and heap objects’ AccSet have similar-

ity values greater than 0.7 in ncompress, man and bc. These results show that AccSets are quite

stable across multiple runs with different inputs.

Further validation of our observations on PC-based invariants is provided by the data in Sec-

tion 4.6.
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4.3 Design of AccMon

Based on the above observation, a violation of a PC-based invariant usually indicates a potential

bug in the program. For example, if a memory location is accessed by an instruction which has

never accessed this location during normal execution, it is likely that this access is “illegal”, re-

sulting from a memory-related bug. In this section, we design a tool to automatically detect these

cases. We call this tool AccMon.

4.3.1 Overview

AccMon uses some architectural support as well as some compiler and run-time software infras-

tructure. The main functionality of each of the components of AccMon is shown in Table 4.1.

AccMon uses iWatcher to catch all memory accesses to monitored memory objects and trigger

a monitoring function at such accesses [ZQL+04]. The monitoring function will check if the PC

used to access the object is in the object’s AccSet. If the TLS option of iWatcher is enabled, the

main program is speculatively executed in parallel while the monitoring function runs, to reduce

overhead.

Component Main Functionality

Architecture iWatcher Catch accesses to monitored objects, invoke monitor-

ing functions to check if a PC belongs to the AccSet

of an object, and execute the main program in parallel

with monitoring functions

CLB Filter most accesses that do not violate PC-based in-

variants

Compiler Insert iWatcherOn/Off to monitor key memory ob-

jects, and provide hints to reduce overheads and false

alarms

Run-time system Extract invariants, detect violations and rank errors

Table 4.1: Functionality of the components of AccMon.

To further reduce monitoring overhead, we propose the Check Look-aside Buffer (CLB). The

CLB is a hardware cache that, for most recently-accessed monitored objects, filters out the accesses
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that do not violate the PC-based invariant. To do that, the CLB keeps the AccSets for several

recently-accessed monitored objects. The memory address and PC of each load and store are

checked against the contents of the CLB. If the memory address is found and the PC is part of the

AccSet of the address, the monitoring function is not executed. If, instead, the memory address

is found but the PC is not part of its AccSet, an access that violates the PC-based invariant has

been found. Finally, if the memory address is not found in the CLB and iWatcher indicates that

this access is to a monitored object (i.e., a triggering access), the monitoring function is executed

to check if the access violates the PC-based invariant. In addition, the run-time system inserts this

address and its AccSet into the CLB. If necessary, the AccSet of a memory object in the CLB can

be dynamically augmented with a new PC (See Section 4.3.2 for details).

The CLB resides in the processor. Figure 4.5 shows how it interacts with the different pipeline

stages and the iWatcher trigger bit. More details are given in Section 4.3.2.
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Addr
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trigger monitoring function?

Figure 4.5: Interaction of the CLB with the processor pipeline and the iWatcher trigger bit.

We modify the Cetus compiler [LJE03] to select memory objects to be monitored and to pro-

vide hints to reduce the number of false alarms and the run-time overhead. In our current imple-

mentation, we monitor global data objects, heap objects, and a few key stack objects, such as the

stack locations that store return addresses. The compiler uses iWatcherOn to request iWatcher to

monitor an object, and iWatcherOff to stop doing it. While the monitoring is on, iWatcher will

automatically catch accesses to monitored objects.

The compiler also provides hints to reduce overheads and false alarms. For example, the com-
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piler passes information to the run-time system regarding what instructions use pointers or access

arrays. These instructions are more likely to induce bugs if their PCs are detected as outliers.

The compiler can also temporarily disable system-wide monitoring using DisableMonitoring()

in certain functions that do not have pointers or array accesses.

Note that although our current implementation uses a compiler to insert iWatcherOn/Off() into

the source code, AccMon can also leverage a binary-instrumentation tool to avoid recompilation if

source code is unavailable. However, source level instrumentation can provide some advantages,

such as the optimizations described above and in Section 4.3.4. Since most debugging is done in-

house, recompilation may not be a major issue. In addition, since monitoring can be dynamically

turned off for most production runs by the underlying iWatcher architecture, code can be shipped

with iWatcherOn/Off instrumentation.

The run-time system executes the monitoring function that detects and checks invariants. There

are two distinct phases: the training phase and the bug-detection phase. During the training phase,

the monitoring function dynamically builds AccSets for the monitored objects. In addition, it also

tracks the number of occurrences of each PC in an AccSet. This information will be used later,

in the bug-detection phase, to determine the confidence level for an outlier PC. During the bug-

detection phase, the monitoring function checks each triggering access that does not hit in the CLB,

to see if it is an outlier. In addition, the monitoring function dynamically adjusts the confidence

level as execution progresses. Section 4.3.3 describes the basic algorithms in more detail.

At the end of the bug-detection phase, AccMon produces an error report with a ranked list of

detected violations. The violations are sorted by their confidence levels as computed by AccMon.

Programmers can go through the list to check for potential bugs. Programmers can also mark

certain errors as false alarms, and add the newly-observed PCs that cause false alarms into AccSets,

so that AccMon can learn from its mistakes to reduce the number of false alarms in future runs.
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4.3.2 CLB with a Bloom Filter

The main purpose of the CLB is to reduce overheads by filtering most of the valid accesses to

monitored objects. Such valid accesses do not need to trigger the monitoring function. By filtering

most of the valid accesses, AccMon can significantly reduce the number of times the monitoring

function is executed. Since the overhead for the bug-detection phase is more important than the

overhead for the training phase, the CLB is only used for the bug-detection phase in our current

prototype of AccMon.

Designing the CLB is challenging. A major constraint is that the CLB needs to be very fast.

Indeed, as shown in Figure 4.5, the CLB is tightly coupled with the processor pipeline. Moreover, it

is accessed by every load and store instruction. In a wide-issue processor, the CLB is accessed very

often and has little time to make a decision. Consequently, it cannot be built as a large associative

table.

In addition, the CLB ideally needs to keep a lot of information. Since AccMon monitors every

global data object, heap object and stack return address, there can be many monitored objects. For

example, we have up to 10,000 such objects in our experiments. Suppose that, on average, each

AccSet contains 10 PCs, where each PC is 4 bytes. In this case, an AccSet requires at least 48 bytes,

since it needs 8 bytes to record the memory object’s start and end address. Therefore, maintaining

all AccSets would require a 480,000-byte CLB. Such information would need to be organized in a

two-level manner: A memory address would first index the table and find the matching CLB entry;

then, the PC would be used to index the AccSet of the address to find if the PC was there.

Clearly, keeping all this information in a fast CLB is impractical. Moreover, it is unclear how

to handle AccSets that contain more than 10 PCs.

To address these challenges, AccMon uses two strategies to make the CLB hardware practical:

the first one is to use a Bloom filter to avoid storing all the PCs of an AccSet in each entry; the

second one is to treat the CLB as a cache, which maintains only the AccSets of recently-accessed

monitored objects.
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We use a Bloom filter for the CLB because it can quickly test whether a PC belongs to the

AccSet of the accessed object, and it uses only a few bytes to maintain a relatively large set. The

Bloom filter was first proposed by Bloom [Blo70] to support fast membership testing of a set. It

uses multiple hash functions to map an element into a bit vector. For each member element, its

corresponding bits in the vector are set to 1. To test whether an element is a member or not, its

corresponding bits based on the hash functions are tested. If one of the bits is 0, the element does

not belong to the set. Otherwise, the element may belong to the set. A Bloom filter never has false

negatives, but it may introduce false positives due to hash collisions. However, if the vector is long

enough and enough bits are used for hashing, the probability of false positives is very low.

Figure 4.6 shows the implementation of the CLB. Similar to a TLB, the CLB is a fully-

associative table with only a few entries (4 or 8 in our experiments). At each memory instruc-

tion, the memory address is used to index the CLB. Each CLB entry has 24 bytes, storing the

start address, end address and the Bloom filter vector for a recently-accessed monitored memory

object. The CLB uses 128 bits as the Bloom filter vector. At each memory instruction, 20 bits

(bit 2 to bit 21, starting from the least significant bit) are taken from this instruction’s PC. The 20

bits are broken into 4 parts, with 5 bits each. Each part is used to directly index 32 bits in the

Bloom filter vector of the corresponding CLB entry. This partial address indexing idea was also

used in [PLL02]. We use a direct index instead of a hash function to simplify the logic as much as

possible.

If all indexed bits in the four parts have value 1, we conclude that this PC is in the AccSet.

Therefore, this access is assumed to be valid and can be filtered even if it is recorded as a triggering

access by iWatcher (Figure 4.5). Since we directly index bits 2-21 of a PC to four bits in the Bloom

filter vector, the collision rate is almost zero, and so is the rate of false positives introduced by the

CLB. A false positive occurs when an outlier PC is incorrectly flagged as part of the AccSet.

Treating the CLB as a cache exploits the good temporal locality of object accesses. Most

programs have well-clustered memory accesses: an object such as an array or a structure tends to

be accessed many times in a short period of time. If we keep recently accessed monitored objects
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Figure 4.6: Implementation of the CLB using a Bloom filter.

in the CLB (with one entry per object), we only need a small table with a few entries to filter most

valid accesses to monitored objects. As shown later in Table 4.8 in Section 4.6.2, the CLB hit ratios

for most of the evaluated applications are very high, namely 80.1%-99.9% and 83.8%-99.9% for a

4-entry and an 8-entry CLB, respectively.

The CLB uses the least recently used (LRU) algorithm for replacement. After the CLB misses a

triggering access, the AccMon run-time system inserts the accessed object’s AccSet into the CLB.

If the CLB is full, the LRU entry in the CLB is replaced. This is controlled by the run-time system

because CLB misses are handled by the AccMon monitoring function in the run-time system.

4.3.3 Basic Algorithms

The basic training and bug-detection algorithms, implemented mainly in AccMon’s run-time sys-

tem, have three parts: (1) extracting invariants, (2) checking for violations of invariants, and (3)

ranking results. All three parts need to access a core software data structure called “PC-based in-

variants Table” (PCT), which maintains the AccSet for each monitored memory object. The PCT

is maintained as a hash table and can be searched using a memory object’s name, as described in

Section 4.3.4. Initially, the PCT is empty. Each PCT entry contains both an AccSet and an occur-

rence counter for each PC in the AccSet. This information is used to calculate confidence and rank

results, as described later.
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During the training phase with bug-free runs (or bug-free execution phases for long-running

programs), AccMon builds the AccSet for each monitored object. At an access to an object obj by

an instruction, AccMon first looks up obj in the PCT. If this obj is not in the PCT, it is inserted

in it. In any case, the instruction’s PC is added to the obj’s AccSet if that PC is not already a

member. The PC’s occurrence counter is also incremented. At the end of each training run, the

PCT is saved on disk and is reloaded to memory at the beginning of the next training run. Since

all triggering accesses made during the training phase need to go through the run-time system, the

CLB is disabled during the training phase.

During the bug-detection phase, AccMon detects violations of PC-based invariants. In this

phase, the CLB is enabled. When an object obj is accessed by a PC, the CLB is checked for obj. If

the access is not filtered by the CLB (either because the CLB misses this obj or the corresponding

Bloom filter indicates that this PC is not in obj’s AccSet) and the access is a triggering one, the

AccMon monitoring function is triggered to determine if this is an outlier access. To do that,

AccMon first checks the PCT to see if the PC is already in obj’s AccSet. If it is, then obj and its

AccSet are inserted into the CLB. Otherwise, the AccMon monitoring function reports the access

as a suspect and stores it in a table (the Suspect Table). Subsequent accesses by the same PC to the

same object are not reported.

To reduce the programmers’ effort in analyzing the error report produced by AccMon, the

errors are ranked based on their confidence values. A programmer only needs to check the top

(e.g. 10) reported errors to find bugs. For an outlier access to object obj, its confidence value

should depend on the number of observed accesses to obj, and obj’s AccSet size. If obj has been

accessed only a few times, an outlier access to obj is less likely to be a bug. Instead, it is more

likely to be a false alarm caused by insufficient training. Similarly, if obj’s AccSet is large, the

possibility for this outlier to be a bug is also relatively low. Similar intuition is also shared by

other work [ECC01, HL02].

Moreover, we also consider the historical behavior of the outlier instruction. If the instruction

has been previously identified as an outlier for other memory objects, it is more likely to be a bug
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because this instruction may have corrupted many other objects.

Combining all these factors, the confidence value of an error is computed by using the formula:

Confidence =
NumAccesstotal × (NumOccurrencepc + 1)

AccSetSize + 1

where NumAccesstotal is the total number of times obj has been accessed, NumOccurrencepc

is the number of times this outlier PC has been identified as an outlier for other objects as well,

and AccSetSize is obj’s AccSet size. While it is possible to further refine our ranking function, our

results show that this ranking function is already very good.

4.3.4 Design Issues

Monitoring and Naming Objects

AccMon currently monitors all global data objects, all heap objects and key stack objects, e.g. stack

locations used to store return addresses. To monitor heap objects, we intercept all memory alloca-

tion functions and insert instructions to call iWatcherOn immediately after a memory-allocation,

and iWatcherOff immediately before a memory-free. For realloc(), iWatcherOff is called before it

and iWatcherOn after it. Note that, the monitoring scheme for heap objects is language and run-

time dependent. Our scheme assumes that heap objects are explicitly allocated and freed and they

are not moved during their lifetime. A different scheme is required for languages with garbage

collection.

We must name each memory object in the PCT. The primary constraint on the naming strategy

is that the name of an object cannot change across different runs. For global data objects, their

virtual memory addresses are used as their names. A global object’s address is decided at compile

time and will not change across different runs.

However, this simple naming strategy does not work for heap and stack objects because their

virtual addresses can change across different runs. Instead, we use a call-chain naming strategy,

which has been used in some previous work [BZ93, CCJA98, LW94] for other purposes. When
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a heap object is allocated, it is named based on the current call-chain, i.e., the XOR-folding of

the call-site address chain. As suggested in the literature [BZ93, CCJA98, LW94], it is sufficient

to use the last four call-sites in the call chain to distinguish heap/stack objects from one another.

Although several heap objects may have the same call-chain, e.g. those allocated in a for loop,

it is not important for our case since those objects are naturally similar and usually have similar

AccSets.

Pruning False Alarms

It is possible that some corner cases caused by rarely touched paths end up being reported as

violations of an invariant. These are false alarms. Too many false alarms make a debugging tool

unusable.

To reduce false alarms, we use, in addition to confidence levels, simple heuristics. Specifically,

by analyzing the behavior of buggy code, we have found that most invalid accesses in C/C++

occur in pointer dereferences and array accesses. The invariant violations caused by pointer or

array accesses are more likely to be bugs, while violations caused by other accesses are more

likely to be corner cases caused by rarely executed paths.

Based on the above observation, we use the Cetus compiler [LJE03] to identify pointer-based

dereferences and array accesses. The Cetus compiler generates a list of PCs that may be pointer-

based dereferences or array accesses. Of course, the compiler has to be conservative, otherwise

AccMon may miss some bugs. During the bug-detection phase, the AccMon monitoring function

checks a suspect PC against this list. If the PC is not in the list, the suspect access is unlikely to

be a bug. This optimization may cause some bugs to escape detection, but the probability is low

based on our program behavior analysis.

Reducing Overhead

Overhead is another major issue for software debugging. We consider the two phases in which

AccMon is used: the invariant training phase and the bug-detection phase. Since the training phase
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typically takes place in-house using successful regression test runs before the software is released,

or when a long-running server program has very light load (e.g. when it receives few requests),

the overhead during this phase is less critical. In contrast, minimizing the overhead in the bug-

detection phase is very important because such overhead may prevent some time-related bugs

from occurring. In addition, it also affects the length of program execution that can be realistically

monitored.

There are two ways to reduce overheads in AccMon: reducing the number of accesses moni-

tored, and reducing the overhead of monitoring an access. The following three optimizations can

be used by AccMon to reduce overheads. The first two belong to the first type and the third one

belongs to the second type:

• Monitor only store accesses. Since corrupting writes are typically more harmful than illegal

reads, it may be enough to monitor only store instructions. This can be achieved by setting

the WatchF lag in the iWatcherOn call appropriately [ZQL+04]. It is possible that this

will lead to some bugs going undetected, but we feel that the probability is relatively low.

In any case, users can disable or enable this optimization based on their overhead tolerance

level.

• Disable monitoring in certain functions. If a function contains no pointer dereference or

array access, we can turn off the monitoring of memory accesses. This optimization is per-

formed using EnableMonitoring() and DisableMonitoring(). We have not implemented

this optimization in AccMon yet.

• Software optimization. Besides using the CLB to filter out most valid accesses to monitored

objects, AccMon software can also be optimized to reduce the overhead of the monitoring

function. For example, in our current implementation, we use a hash table to manage the

PCT.
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4.4 Software Implementation – AccMon-S

To demonstrate the efficiency of the hardware implementation, and to evaluate the PC-based in-

variant detection idea with real server applications (our simulation of AccMon described in Section

4.5 does not support running server programs), we also implemented the PC invariants purely in

software using the PIN binary instrumentation tool [LCM+05].

Like AccMon, the key task of AccMon-S is to collect and maintain PC invariants information,

and use this information for bug detection. Specifically, for all global variables, all heap variables,

and all stack locations storing the return addresses, AccMon-S learns the set of PCs accessing

these variables during normal executions (at training phase), and then uses the PC sets to check

for possible violations during the detection phase. The global variables are identified by using

the symbol table, the heap variables are identified by wrapping memory allocation calls, and the

stack return address locations are gotten using the PIN tool. In software, PC sets information is

collected by PIN at every access to the interested locations (all accesses will be checked if they

go to an interested location, and if yes, collect the PC), and maintained in the PCT table. This is

training. For detection, the PCT table will be checked for possible violations. Again, every access

will be intercepted, and if it goes to an interested location, checked for PC invariant violation.

4.5 Evaluation Methodology

4.5.1 Methodology Overview

We use cycle-accurate execution-driven simulations to model a workstation with iWatcher [ZQL+04]

and AccMon functionality. The parameters of the architecture are shown in Table 4.2. The ar-

chitecture includes a 4-context SMT processor with optional TLS support. The experiments for

software implementation AccMon-S are conducted on real machines with a 2.4GHz Pentium 4

processor, 512KB L2 cache, 1GB of memory, and a 100Mbps Ethernet connection. For server

applications, we run servers on one machine and clients on another.
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CPU frequency 2.4GHz CLB entries 4 or 8

Thread contexts 4 ROB size 360

Fetch width 16 Instruction window 160

Issue width 8 Int FUs 6

Retire width 12 Ld/St FUs 4

Ld/St queue entries 32/thr FP FUs 4

L1 cache 32K, 4-way, 32B/line, 3 cycles latency

L2 cache 1M, 8-way, 32B/line, 10 cycles latency

Main memory 200 cycles latency

Table 4.2: Architecture modeled.

We compare AccMon and AccMon-S to the Purify [HJ92] and CCured [CHM+03, NMW02]

(version 1.2.5) tools. Purify instruments the object code at link time and does not require source

code changes. It can detect several types of memory-related bugs, including uninitialized reads,

writing to freed memory and memory leaks. CCured is a hybrid static and dynamic bug detection

tool. It first attempts to enforce a strong type system in C programs via static analysis. The portions

of the program that cannot be guaranteed by the CCured type system are instrumented with run-

time checks to monitor the safety of the execution.

Because CCured requires significant manual changes to an application’s source code to con-

form to its standard, we have not run all applications with CCured. We modified six applications

to run with CCured. For application tar, apache and squid, we are unable to run it with CCured

despite great manual effort. Therefore, we estimate the behavior based on CCured’s functional-

ity, but we cannot predict the overhead. In contrast, AccMon and AccMon-S do not require any

manual modification of an application’s source code.

We run Purify and CCured on the same real machine as that used for AccMon-S. Since Ac-

cMon runs on a simulator, we cannot compare the absolute execution time of AccMon with that

of AccMon-S, Purify and CCured. Instead, we compare their execution overheads relative to runs

without any monitoring.

Since existing value-based invariant detection tools such as DIDUCE [HL02] do not work

with C/C++ programs, we cannot quantitatively compare AccMon and AccMon-S with DIDUCE.
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Instead, we carefully evaluated each application to see whether value-based invariants can easily

be used to catch the bugs. To be as fair as possible, we even used tricks (such as assuming perfect

pointer aliasing knowledge) beyond those envisioned in the papers [ECGN99, ECGN00, HL02]

describing these tools.

4.5.2 Evaluated Applications

We have conducted two sets of experiments. The first set uses buggy applications to evaluate the

functionality and overheads of AccMon and AccMon-S for software debugging. Note that, the two

real buggy server applications apache and squid are only used to evaluate AccMon-S, since our

simulator does not support running them so far. The second set further evaluates the overheads of

AccMon with bug-free SPEC benchmarks.

For the first set of experiments, we selected nine buggy programs that exhibit a broad spec-

trum of memory-related bugs. Table 4.3 gives the details about these applications and their bug

characteristics. Two of them are real server applications, namely apache and squid. Some of the

non-server applications, such as tar-1.13.25 and bc-1.06, are relatively large, with more than 17K

lines of code. Note that, we use the server applications to only evaluate AccMon-S, since our

AccMon simulator does not support server programs.

The eight real buggy programs are from the open-source community. The bugs come with

the code and were introduced by the original programmers (except the two injected bugs in bc-

1.06). For some programs, we select an older version that had memory-related bugs. The eight

programs are: gzip, man, polymorph, ncompress, tar, bc, apache and squid. gzip (GNU zip) is a

popular compression utility provided by the GNU project. man is a utility in the UNIX family to

format and display online manual pages. polymorph is a tool to convert Windows’ style file names

to something more portable for UNIX systems. ncompress is a compression and decompression

utility that is compatible with the original UNIX compress utility. tar is a tool to create and

manipulate tar archives. bc is an arbitrary precision numeric processing language. apache is a

commonly used web server. squid is a web cache and proxy server.
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Application Lines Bug Bug Location Corrupted Bug Description

of Code Type Location

ncompress 1922 Real- compress42.c: Stack Input file name longer than 1024

-4.2.4 Reported line 886 bytes corrupts stack return address

linux 256 Extracted based on Semantic Wrong pointer assignment

-simple memory.c:116 Bug caused by copy-paste

polymorph 716 Real- polymorph.c: Stack Input file name longer than 2048

-0.4.0 Reported lines 193&200 bytes corrupts stack return address

gzip-1.2.4 8163 Real- gzip.c: Data/BSS Input file name longer than 1024

Reported line 1009 bytes overflows a global variable

tar-1.13.25 27137 Real- prepargs.c: Heap Unexpected loop bounds

Reported line 92 causes heap object overflow

man-1.5h1 4675 Real- man.c: Data/BSS Wrong bounds checking

Reported line 998 causes static object corrupted

Real- storage.c: Heap Misuse of bound variable

Reported line 176 corrupts heap objects

Real- util.c: Heap Overwrite the heap object bounds

Unreported line 577

bc-1.06 17042 bc-lib: - Data/BSS Data corrupted inside a

Injected third-party library

bc-free: - Heap Access a freed object that

Injected may be allocated for other data

apache 283K Real- mod alias.c: Stack AliasMatch expression in config file with more

-1.3.27 Reported line 311 than 10 captures corrupts stack return address

squid 93K Real- ftp.c: Heap Mis-calculation of the request length due to

-2.3.s5 Reported lines 1024&1027 special chars causes heap object overflow

Table 4.3: Applications and bugs analyzed. “Real-Reported” means that the bug was introduced

by the original programmers and has been reported and fixed. “Real-Unreported” means that the

bug was introduced by the original programmers but has never been reported before. “Injected”

means that the bug was injected by us. “Extracted” means that the bug was extracted from a real

program.

To demonstrate the unique bug-detection strengths of PC invariants, we inject two bugs in bc-

1.06. The first, bc-lib, demonstrates the case where a memory object is corrupted by a third-party

library whose source code is unavailable. Some programming-rule-based tools, such as CCured

or other similar tools, cannot instrument the library to detect the bug. The second, bc-free, is a

bug where a dangling pointer dereferences an object that is first freed and then reallocated. Since

CCured uses garbage collection to manage memory allocation, this bug will not occur when the

code is linked with CCured. Consequently, CCured is unable to detect this bug. However, when
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the program is not linked with CCured, the bug will re-occur.

We also construct an extracted version of a bug from a recent version of Linux

(linux-2.6.6/arch/sparc64/prom/memory.c). This bug is caused by copy-paste and results in an

incorrect pointer assignment. The wrong pointer assignment causes incorrect results in some cases.

Such copy-paste bugs are common in Linux [CYC+01, LLMZ04]. Since we cannot run Linux in

our simulator, we built a simple benchmark (linux-simple) to measure the effectiveness of PC

invariants on this type of bugs. Since this bug does not violate any programming rule, it is hard for

tools such as CCured and Purify to detect it.

In our experiments, we do not use any specific knowledge about the bugs. Instead, we blindly

monitor all global objects, heap objects and stack return addresses for all applications. AccMon

and AccMon-S can be used in any run (normal or abnormal) to detect potential bugs. To demon-

strate the capability of AccMon and AccMon-S to detect a bug, we need to use abnormal runs, as

do other run-time bug detection studies [CHM+03, ECGN99, ECGN00, HL02, NMW02]. To do

that, we use bug-exhibiting inputs to generate these abnormal runs. But this does not mean that

AccMon and AccMon-S need bug-exhibiting inputs to function.

The second set of experiments evaluates AccMon overheads using six bug-free SPEC2000

applications running the Test input data set, namely gzip, parse, vpr, mcf, twolf and bzip2.

4.6 Experimental Results

4.6.1 Overall Results

For the seven non-server buggy applications, AccMon and AccMon-S detect all ten bugs, and

found one previously unreported (to the best of our knowledge) bug. Table 4.4 compares the ef-

fectiveness and the overhead of AccMon, AccMon-S, Purify, CCured, and value-based invariant

detection tools. For the two server applications, AccMon-S detects the two test bugs. Table 4.5

compares AccMon-S, Purify, CCured, and value-based invariant detection tools on server pro-
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Application AccMon AccMon-S Purify CCured Value-Based

Invariants

Bug Over- Over- Bug Over- Bug Over- Bug

Detected? head head Detected? head Detected? head Detected?

ncompress-4.2.4 Yes 0.24X 10.39X No 8.33X Yes 0.17X Difficult*

linux-simple Yes 0.60X 57.83X No 32.84X No 5.50X Difficult

polymorph-0.4.0 Yes 0.76X 42.65X No 44.65X Yes 0.50X Difficult

gzip-1.2.4 Yes 0.94X 39.32X Yes 42.45X Yes 0.40X Easy

tar-1.13.25 Yes 1.04X 35.42X Yes 13.68X NR(Yes) NR Difficult

man-1.5h1 Yes 1.50X 26.08X Yes 4.83X Yes 0.69X Easy

Bug1: Yes Yes Yes Depends

bc-1.06 Bug2: Yes 2.88X 52.36X Yes 46.11X Yes 1.35X Difficult

bc-lib: Yes No No Depends

bc-free: Yes Yes No Difficult

Table 4.4: Overall results on non-server applications. For bc, Bug1 is in storage.c and Bug2 is

in util.c. For CCured, NR means that we have not modified the application’s source code to run

with CCured; NR(Yes) means that we estimate that CCured should be able to detect the bug if the

application were modified to conform to CCured’s requirements; *Difficult in column 9 means that

we could not find an effective way to detect the bug using value-based invariants.

Application AccMon-S Purify CCured Value-Based

Invariants

Bug Over- Bug Over- Bug Over- Bug

Detected? head Detected? head Detected? head Detected?

apache-1.3.27 Yes 32.17X No 37.50X NR(Yes) NR Difficult*

squid-2.3.s5 Yes 43.22X Yes 17.21X NR(Yes) NR Difficult

Table 4.5: Overall results for AccMon-S on servers. For CCured, NR means that we have not

modified the application’s source code to run with CCured; NR(Yes) means that we estimate that

CCured should be able to detect the bug if the application were modified to conform to CCured’s

requirements; *Difficult in column 8 means that we could not find an effective way to detect the

bug using value-based invariants.

grams.

The default setup for AccMon is a TLS-enabled iWatcher with an 8-entry CLB, and with only

write accesses monitored. The results of AccMon are obtained using this default setup unless oth-

erwise mentioned in Sections 4.6.2 and 4.6.3. AccMon’s initialization time to bring the PCT into

the cache is also included in AccMon’s overhead. The monitoring in iWatcher is always enabled

throughout the entire execution of a tested program (i.e., DisableMonitoring is never called). For
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AccMon-S, we evaluate its effectiveness using the same training and detection inputs as those for

AccMon, and it has the same debugging functionality as AccMon-S. Therefore, we only report its

overhead here. The default setup for AccMon-S has no software CLB because a software CLB

does not provide performance benefits, and monitors only write accesses.

The evaluation is done in two ways: actual experiments and best-knowledge analysis. If a tool

is available, and works with an application, we report the actual experimental results. But if the tool

does not target C/C++ programs, or cannot work with an application, we use our best knowledge

to estimate whether it can detect the bug or not. However, we cannot estimate its overhead. All

results with Purify, AccMon and AccMon-S are from actual experiments since these tools work

with all applications.

Application Training #Monitored #Monitored Monitored Max # of Ranking of # False

Overhead Accesses Accesses Sizes Monitored the Bug Alarms

after the CLB (Bytes) Objects

ncompress-4.2.4 1.20X 158995 13 806180 60 1 1

linux-simple 1.64X 11769 5 3352 43 1 0

polymorph-0.4.0 0.99X 520 4 10472 53 1 8

gzip-1.2.4 3.06X 274594 44441 396641 190 1 0

tar-1.13.25 1.52X 29729 102 88142 432 2 2

man-1.5h1 2.83X 27909 921 187898 644 1 0

bc-1.06 3.98X 260813 84716 467005 454 1,2,3,4 0

Table 4.6: Detailed results for AccMon on non-server programs. The column on number of mon-

itored accesses after the CLB is only for the bug-detection phase. Note that there are four bugs

detected for bc.

Table 4.6 shows the detailed AccMon results on the non-server programs. The detailed AccMon-

S results on these programs are very similar, except for AccMon-S’s training overheads, which are

very close to AccMon-S’s detection overheads (shown in Table 4.4). Table 4.7 shows the detailed

AccMon-S results for the server programs.

Functionality From Table 4.4, we see that AccMon and AccMon-S can catch bugs that can-

not be detected by other tools such as Purify, CCured and value-based invariant detection tools.

While AccMon catches all tested bugs, Purify misses four bugs: ncompress-4.2.4, linux-simple,
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Application Training #Monitored #Monitored Monitored Max # of Ranking of # False

Overhead Accesses Accesses Sizes Monitored the Bug Alarms

after the CLB (Bytes) Objects

apache-1.3.27 33.04X 50001 458 586190 189 1 0

squid-2.3.s5 43.86X 700014 31150 5243260 9049 1 4

Table 4.7: Detailed results for AccMon-S on server programs. The column on number of monitored

accesses after the CLB is only for the bug-detection phase.

polymorph-0.4.0 and bc-lib. Purify misses the bugs in ncompress-4.2.4 and polymorph-0.4.0 be-

cause it does not monitor stack accesses. Purify misses the bug in bc-lib because Purify cannot

detect the wrong pointer arithmetic that results in the corruption of a valid memory object instead

of Purify’s “red-zone” (padding inserted by Purify). Purify fails to detect the bug in linux-simple

because that bug does not violate any programming rule. Instead, it is just a simple incorrect

pointer assignment.

We have modified six applications to run with CCured (except tar-1.13.25). Of these six appli-

cations, CCured misses the bug in linux-simple, and the bc-free and bc-lib bugs in bc-1.06. The

reasons for missing the three bugs are, respectively: 1) the bug in linux-simple does not violate any

programming rule, 2) CCured uses garbage collection to manage memory allocation (explained in

Section 4.5), and 3) CCured cannot monitor accesses by a third-party library whose source code is

unavailable. For the bug in tar-1.13.25, we conservatively estimate that CCured would catch it.

Value-based invariant detection tools would miss six of the ten tested bugs because these bugs

do not violate any value-based invariant. To ensure a fair comparison, our evaluation with value-

based invariant detection tools is very conservative. We even used techniques beyond those de-

scribed in the previous value-based invariant papers, such as assuming perfect aliasing knowledge.

For the two servers (apache and squid), AccMon-S can catch the bugs (as shown in Table 4.5)

by using PC-based invariants. AccMon could also detect them if the simulator supported running

server programs, since it uses the same detection technique as AccMon-S.

Like all other bug detection tools, there are some bugs that AccMon and AccMon-S cannot

detect, for example, memory leaks, because PC-based invariants can only be used to catch bugs
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causing memory corruption; memory leaks do not corrupt the memory.

Overhead Table 4.4 shows that AccMon has an acceptable overhead, which is significantly lower

than Purify’s and AccMon-S’s. AccMon has an overhead of only 0.24-2.88 times, even though

most applications monitor hundreds of KBytes data (Table 4.6). This is an order of magnitude

less than Purify, which has an overhead of 4.83-46.11 times (the Purify results match the numbers

reported in [CHM+03]), and orders of magnitude less than AccMon-S’s overheads (10.39-57.83

times). For example, in ncompress-4.2.4, AccMon monitors a total of 0.8 MBytes of memory (Ta-

ble 4.6) and almost 92.1% of dynamic memory accesses (not shown in the tables), but it adds only

24% overhead (Table 4.4). For server applications, AccMon-S introduces 32 times of overhead for

apache and 43 times of overhead for squid (Table 4.5). We believe AccMon will have much less

overheads on servers too.

For those applications that can run on CCured, AccMon’s overhead is similar to that of CCured.

The only exception is linux-simple. CCured has performed very aggressive compiler-based opti-

mizations to reduce the amount of dynamic checks. We believe that AccMon’s overhead can be

further lowered with similar compiler-based optimizations. In addition, CCured requires non-

trivial modifications to an application’s source code to run. This requirement may not be practical

for some programs, especially large server programs.

CCured has a much higher overhead (5.5 times) than AccMon (0.60 times) for linux-simple.

The reason is that this program has many accesses to array structures, which cause many dynamic

checks to be inserted by CCured. In contrast, AccMon’s CLB hardware effectively filters out most

of these memory accesses and leaves a small number of accesses (only 5) to be checked by the

run-time system (See Table 4.6).

False Alarm Rate AccMon and AccMon-S have a very low false alarm rate, and the bugs are

ranked high in the error reports. Table 4.6 shows that for non-server applications, there are no false

alarms for four applications, and only 2-8 false alarms for two applications. Moreover, all bugs
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are ranked in the top 2 entries of the error reports. For server programs, there are no false alarms

for apache and only 4 false alarms for squid, as shown in Table 4.7. Therefore, a programmer can

easily identify real bugs.

4.6.2 Impact of the CLB

Figure 4.7 shows the impact of the CLB on AccMon’s overheads, and the sensitivity to the number

of entries in the CLB. We compare the overheads in three cases: without a CLB (CLB0), with

a 4-entry CLB (CLB4) and with an 8-entry CLB (CLB8). The overhead is broken down into

two parts: (1) the iWatcherOn/Off overhead (overhead for executing iWatcherOn/Off calls), and

(2) the monitoring plus other overhead. Since we support TLS, it is hard to further separate the

monitoring overhead from other overhead such as run-time system initialization (bringing the PCT

into the cache), the effect of instrumentation on compiler optimization, or the effect of resource

competition. However, we expect that the monitoring overhead dominates the other overheads for

most applications.

For AccMon-S, the software CLB has little impact on its overheads because of two reasons.

First, The overheads of AccMon-S come from not only the monitored accesses, but also the non-

monitored accesses, since it needs to look in the PCT table for every access to determine if the

access is monitored or not. A CLB can only reduce the overhead for monitored accesses, and does

not help with the non-monitored accesses, which are a large fraction of all accesses. Second, the

software CLB lookup time is much larger than the negligible hardware CLB lookup time, and close

to the PCT table lookup time. Therefore, it cannot save much even for monitored accesses.

Table 4.8 gives the 4-entry and 8-entry CLB hit ratios for the seven non-server applications in

AccMon, and the CLB hit ratios for all nine applications in AccMon-S. As we can see, the CLB

hit ratios in AccMon and AccMon-S are similar, and the slight differences are caused by different

binaries and memory allocation layouts.

Figure 4.7 shows that the CLB reduces AccMon’s overheads by a significant (28.9-80.6%)

amount. For example, the overhead of AccMon with gzip is reduced by a factor of 3.17 from
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Figure 4.7: Overhead introduced by AccMon with and without the CLB.

#en- ncom- linux- poly- gzip tar man bc apache squid

tries press simple morph

AccMon 4 99.9% 99.9% 99.2% 80.1% 51.5% 96.3% 43.2% - -

8 99.9% 99.9% 99.2% 83.8% 99.7% 96.7% 67.5% - -

AccMon-S 4 99.9% 99.8% 98.6% 75.2% 57.4% 99.4% 44.9% 99.70% 91.98%

8 99.9% 99.8% 98.8% 79.8% 98.7% 99.4% 64.9% 99.76% 94.97%

Table 4.8: CLB hit ratios for monitored accesses.

3.39 times to 1.07 times with a 4-entry CLB. This is because the 4-entry CLB filters 80% of the

triggering accesses in gzip, as indicated in Table 4.8. Only 20% of the triggering accesses are

processed by the AccMon monitoring function. This effect is shown in the 77.5% reduction in the

monitor+other overhead given in the breakdown of gzip in Figure 4.7.

Except in tar and bc, the overhead is reduced only slightly (0-12.1%) for most applications as

we go from a 4-entry CLB to an 8-entry CLB. The reason is that the CLB hit ratios only increase

slightly (0-3.7%) for these five applications. On the other hand, for tar and bc, an 8-entry CLB

reduces the overheads by 28.2% and 11.9%, benefiting from the 48.2% and 24.3% improvement

in the CLB hit ratios, respectively.

For apache and squid, since the hit ratios are very high (>90%) for both 4-entry CLB and

8-entry CLB, we can predict that if we could run the two servers on AccMon, their monitoring

overheads would be significantly reduced by using CLB.
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4.6.3 Impact of the Optimizations

Monitoring only Write Accesses AccMon’s overhead is reduced significantly (7.7-61.9%) by

monitoring only write accesses instead of all accesses. The rationale is discussed in section 4.3.4.

Figure 4.8 compares the overheads of monitoring both read/write accesses (rw) and write only ac-

cesses (wo). Table 4.9 shows the number of monitored accesses before and after the CLB filtering

process for both rw and wo.

In Figure 4.8, the reduction in overhead as we go from rw to wo comes from reducing the

number of monitored accesses. For example, in gzip the number of monitored accesses after the

CLB is reduced by 58.5% as we go rw to wo (Table 4.9), resulting in a 61.9% reduction in overhead

(Figure 4.8).
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Figure 4.8: Overhead of monitoring different types of accesses.

Application rw wo rw wo

(Before CLB) (Before CLB) (After CLB) (After CLB)

ncompress 334019 158995 27 13

linux-simple 178142 11769 5 5

polymorph 18658 520 5 4

gzip 1048300 274594 107079 44441

tar 107980 29729 188 102

man 3598 1518 737 90

bc 782901 260813 164371 84716

Table 4.9: Number of monitored accesses before and after CLB filtering for different types of

accesses.

In ncompress, linux-simple, and polymorph, going from rw to wo induces a very small absolute

79



decrease in the number of monitored accesses after the CLB (Columns 4 and 5 of Table 4.9).

However, linux-simple and polymorph show a significant overhead reduction in Figure 4.8. The

reason is that going from rw to wo causes a significant reduction of monitored accesses before the

CLB for these applications (Table 4.9). Since the PCT of an application is generated based on all

monitored accesses before the CLB, the size of the PCT is significantly reduced from rw to wo for

these two applications. As a result, the overhead of bringing the PCT into the cache (part of other

overhead) is reduced significantly, resulting in a similar reduction in the total overhead.

Compiler-Based False Alarm Pruning The compiler optimization that differentiates pointer/array

accesses from other accesses is effective at pruning false alarms. As shown on Table 4.10, this

optimization reduces the number of false alarms in tar-1.13.25 from 8 to 2. However, this opti-

mization fails for polymorph-0.4.0, because the bug causes the program to enter an error handler

that is never entered in normal execution, resulting in eight false alarms that are caused by the

pointer/array accesses inside the handler.

ncompress linux-simple polymorph gzip tar man bc

Before Pruning 1 0 8 1 8 0 0

After Pruning 0 0 8 0 2 0 0

Table 4.10: Number of false alarms before and after pruning.

4.6.4 Overhead with SPEC Benchmarks

Overall Results To measure AccMon overheads on bug-free applications, we run six SPEC2000

benchmarks, namely gzip, parser, vpr, mcf, twolf and bzip21, with the Test input data set. The

experiments use the default setup for AccMon: TLS-enabled, 8-entry CLB and only monitoring

write accesses.

1 For parser, we fast forward the program’s initialization phase, which lasts for about 280 million instructions,

because its behavior is not representative of steady state. To reduce simulation time, for both parser, vpr and bzip2, we

only run them for 300 million instructions.
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Table 4.11 shows the results for the six SPEC benchmarks. The overheads range from 1.29

to 4.14 times for all the six applications. The size of monitored memory is 6.5-117 MBytes.

Recall that the overhead is broken down into iWatcherOn/Off overhead and monitoring plus other

overhead. For all the six applications, the iWatcherOn/Off overhead is a substantial portion of the

total overhead. The large iWatcherOn/Off overhead is mainly the result of watching the locations

for return addresses. In this case, both iWatcherOn and iWatcherOff are invoked once per function

call.

The monitoring overhead is related to the number of monitored accesses per 1M instructions

after CLB filtering. As shown on Table 4.11, the number of monitored accesses per 1M instructions

is large for all the six applications, ranging from 12k to 73k. Fortunately, most of these accesses

are filtered by the CLB, as indicated by the high CLB hit ratios, 83.3%-99.9% for all these ap-

plications except twolf. This significantly reduces the monitoring overhead which, together with

other overheads (described in Section 4.6.2), accounts for the non-iWatcherOn/Off component of

the total overhead. For example, Table 4.11 shows that, with CLB, mcf and bzip2 have very few

monitored accesses per 1M instructions, 0.12 and 0.18 respectively. Therefore, they suffer very

small monitoring overheads, which are indicated by the very small monitoring+other overheads

(overhead-iWatcherOn/Off overhead), 0.04X for mcf and 0.19X for bzip2.

Appli- Overhead iWatcherOn/Off #Monitored #Monitored CLB Hit Monitored

cation Overhead Accesses Accesses per 1M Ratios Sizes

per 1M Inst. Inst. after CLB (%) (Bytes)

gzip 1.29X 0.80X 73215.78 5698.34 92.2 13533869

parser 3.16X 2.13X 12442.43 77.48 99.4 10244523

vpr 1.73X 0.95X 45238.16 7561.99 83.3 6585702

mcf 2.19X 2.15X 39509.37 0.12 >99.9 117385440

twolf 4.14X 1.94X 46267.82 30400.77 34.3 7988353

bzip2 1.35X 1.16X 44320.44 0.18 >99.9 25429319

Table 4.11: AccMon behavior for SPEC applications.

Impact of the CLB Figure 4.9 shows AccMon’s overheads with different CLB entries, no CLB

(CLB0), 4-entry CLB (CLB4) and 8-entry CLB (CLB8), on the six SPEC2000 benchmarks. Ta-
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ble 4.12 gives the 4-entry and 8-entry CLB hit ratios for the six benchmarks.
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Figure 4.9: Overhead introduced by AccMon with and without the CLB.

#Entries gzip parser vpr mcf twolf bzip2

4 50.5% 95.7% 79.8% 99.5% 26.7% 61.2%

8 92.2% 99.4% 83.3% >99.9% 34.3% >99.9%

Table 4.12: CLB hit ratios for monitored accesses.

As shown in Figure 4.9, comparing with the baseline case (no CLB), the overheads are sig-

nificantly reduced by 18.3-62.5% using 4-entry CLB and 25.8-80.4% using 8-entry CLB. For ex-

ample, in gzip, 4-entry CLB filters 50.5% of the monitored accesses as shown in Table 4.12. As

such, there is a 51.8% reduction from 2.18 times to 1.05 times in the monitor+other overhead, and

the total AccMon’s overhead is reduced from 4.33 times to 2.82 times. With a 8-entry CLB, the

monitor+other overhead is further reduced by 77.5% from 2.18 times to 0.49 times, and the total

overhead is reduced by a factor of 3.36 from 4.33 times to 1.29 times, because 92.2% (Table 4.12)

monitored accesses are filtered.

Among the six benchmarks, gzip and bzip2 have large overhead reduction from a 4-entry CLB

to a 8-entry CLB, because their CLB hit ratios greatly increase, from 50.5% to 92.2% for gzip

and from 61.2% to 99.9% for bzip2 as shown in Table 4.12. The overheads of the other four

benchmarks are only slightly reduced, due to the small CLB hit ratio improvement (0.4-7.6%).
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4.7 Summary

This chapter made three contributions. First, it proposed the novel idea of PC-based invariants to

detect memory-related bugs. Second, it efficiently implemented this idea using previously pro-

posed iWatcher hardware framework and proposed the CLB, a new architectural extension to the

iWatcher framework that significantly reduces the overhead of PC-based invariant debugging. The

hardware implementation called AccMon leverages architectural, run-time system and compiler

support. It detects ten tested bugs with few false alarms (0 for five applications and 2-8 for two

applications) and low overheads (0.24-2.88 times). The latter is an order of magnitude smaller than

Purify.

It also used the binary instrumentation tool PIN [LCM+05] to build a pure software implemen-

tation of PC-based invariant detection tool called AccMon-S. AccMon-S does not require hardware

support, but has much higher execution overhead (10.4X-57.8X), so it can only be used for in-

house bug detection instead of bug detection during production runs. Besides detecting all ten

bugs tested in AccMon, AccMon-S also detected two real bugs in two large real-word server ap-

plications, Apache and Squid with 0-4 false alarms.

Since PC-based invariants detection is a statistics-based approach, it can catch bugs that do

not violate any programming-based rules. For example, there are a few bugs in our experiments

that are detected by PC invariants but are missed by other tested tools such as Purify [HJ92] and

CCured [NMW02, CHM+03].

83



Chapter 5

iChecker: Incremental Data Structure

Consistency Check

5.1 Overview

Consistency of a data structure means that the states of the data structure satisfy certain properties

during the entire program execution except within some operations that intentionally violate the

properties while evolving the data structure from one consistent state to another. For example, a

sorted doubly-linked list is consistent if the list nodes have values in order and every list node is

appropriately linked to its predecessor and successor. Such a list should remain consistent, for

instance, after an insertion of a new node in the list. But, during the insertion, the list is not

doubly-linked at some point.

Data-structure consistency is critical for many programs [DR03, DR05]. Unfortunately, soft-

ware faults may corrupt the data and cause inconsistency, which can make the program enter an

error state, generate wrong outputs, and even crash. For example, in the file-system case study

(Section 5.4.5), a fault in updating the inode bitmap causes an inconsistency. Consequently, the

program re-assigns an already used inode to a new file and loses the information of the original file

that was stored in this inode.

One approach to ensuring data-structure consistency is to statically analyze the code that can

potentially access the target data structure, for example using static analysis such as shape analy-

sis [SRW02, MS01], theorem proving [Pau94, BW96], or a combination of both [ZLKR04]. Static

analysis is highly automated and can be effectively used to verify several classes of consistency

properties and code. However, the inherent limitations of static analysis make it either incomplete

or unsound [FLL+02]. Interactive theorem provers can be used, in principle, to prove arbitrary
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properties, but they require a high level of expertise from the users and a large amount of manual

effort. Even a combination of static analysis and theorem proving has not been shown practical for

verifying the consistency properties for arbitrarily complicated data structures, especially those in

programs that are written in industrial programming languages such as C/C++.

Another, more widely used approach to ensuring data-structure consistency is to perform run-

time checks at the appropriate program points, e.g., at the entrance and the exit of relevant func-

tions. The checks are performed using assertions that either the programmers insert manually or a

compiler inserts automatically [GJKW97, MA87]. Each assertion typically calls a checking func-

tion (checker). This checking code can be manually written by programmers (in most practical

cases) or automatically generated from programmer-provided specifications [DR03, DR05].

The programmer would like to perform frequent run-time checks for the early detection of

data structure inconsistency, because it can limit the amount of damage caused by the error prop-

agation and reduce the time and effort needed for fault localization [DCRR04]. Unfortunately,

the traditional consistency check usually needs to traverse the entire data structure to determine

that the consistency properties hold. (A checker may find that some property does not hold after

traversing only a part of the structure.) Such global checks are fairly expensive and can incur large

overhead for large data structures with frequent checks, up to 416 times as reported in our experi-

mental results. Such big overhead prevents global checks being frequently invoked. consequently,

a data-structure corruption cannot be detected early enough.

A key observation about data structures is that a typical operation modifies only a small, lo-

calized part of the data structure. The effects of such small modifications on the consistency are

mostly local. Thus, it is often unnecessary to traverse the entire data structure to check the con-

sistency. If we start from a consistent state (e.g., after passing the last check) and the program

modifies only a small part of the state, it is sufficient to check the consistency of only the affected

part of the data structure. Consider, for example, a sorted doubly-linked list that was consistent

and in which a new node is inserted between two existing nodes. To verify if the data structure is

still consistent, we intuitively need to check only the new node and some existing node(s) whose
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pointers are modified; we do not need to traverse the entire list. We refer to a check on a partial

structure (e.g., a node in a list, a subtree in a tree, or an element in an array) as a local check. In

contrast, we refer to a traditional check of the entire structure as a global check.

It is conceivable that the incremental check can significantly reduce the time for checking data

consistency compared with the global check, especially when the data structure is large, and there

are only small modifications between two consecutive checks [DR03]. To perform incremental

checking, an effective solution is to borrow ideas from incremental computation [DRT81, YS88,

ABH02, RR93, LT95, ZL98]. It computes the new output incrementally by reusing parts of the old

computation (instead of by recomputing the entire output from the scratch), when the new input

and old input differ slightly. Unfortunately, most of previous works on incremental computation

were done in the context of (pure) functional languages and did not consider mutable data struc-

tures as used in imperative languages. To the best of our knowledge, there is no previous work

on incremental computation/checking of programs written in C, which is still one of the dominant

programming languages in industry, especially for performance critical systems and server soft-

ware. The main challenge for incremental checking of consistency in C programs is that any part

of a data structure may be potentially mutated by any write, including the “sneaky” writes caused

by dangling pointers, buffer overruns, or other memory corruptions.

This chapter presents our incremental checking framework called iChecker that leverages a

simple, previously proposed hardware iWatcher [ZQL+04] to provide an iChecker library for ef-

ficient, incremental, run-time consistency checks of mutable data structures in C programs. The

basic idea of iChecker is to perform a consistency check with a local check (on the parts that need

to be checked due to the modifications since the last consistency check) instead of with the global

check. Besides invoking the consistency checks (as in traditional global check), the programmer

only needs to indicate the data structure to be checked and its associated local check function, and

call a few library calls in limited places. It is iChecker’s responsibility to figure out on which part

of the data structure to perform this local check function. To achieve this functionality completely

in software would require monitoring almost every memory access except a few fraction that can
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be eliminated via sophisticated static program analysis.

More specifically, iChecker exploits the precise memory monitoring feature of iWatcher to

automatically build a dependency set for each part of the data structure (e.g., a node) to record

what other data this part’s consistency depends on. During the execution, iChecker also leverages

iWatcher to keep track of updates to data structures. At the check time, only those parts (of data

structures) that are affected by the updates are checked using the local checker function provided

by programmers.

We evaluate iChecker using four case studies: two micro-benchmarks (sorted doubly-linked

list and binary search tree) and two larger applications (a simple file system and an interactive

game). These case studies represent different types of structures and consistency checks, namely

pointer-based and array-based data structures, iterative and recursive global checks, and read-only

and read-write local checks.

Our experimental results show that iChecker requires only modest changes (25–108 lines in-

cluding the global checkers), which are 10–56 lines more than the modifications for traditional

global checks and only account for 0.1%–21% of the original code. Since iChecker leverages the

iWatcher support to efficiently catch the memory accesses to the data structure for both building

dependency sets and tracking modifications, for large data structures the time overhead of using

iChecker for incremental check is 1.1–155 times (23.3 times on average) less than that of the

global check with 0.3–17.9 times (11.2 on average) of space overhead, and the time overhead is

estimated to be 2–7 times less than a software-only implementation for incremental check. Note

that iChecker offers more improvement for the two larger applications in terms of the much smaller

time and space overhead, as well as the much smaller percentage modifications over the original

code, than for the two micro-benchmarks.

iChecker works for mutable data structures and thus applies to many C programs, including

even the low level system code such as parts of an operating system, as demonstrated in our file

system case study.

The main modification required by iChecker is that the programmer needs to provide the local
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checker based on the global checker. The programmer needs to ensure soundness of the local

checkers with respect to the global checker, similarly as the programmer needs to ensure soundness

of the global checker with respect to the desired properties. However, since the programmer’s

effort can bring significant benefits in some cases, like 155 times less overhead in the file system

example, we expect the programmer to be willing to invest such effort selectively.

iChecker provides a strong demonstration case of leveraging new hardware innovations in per-

forming software engineering tasks. This is important for two reasons. First, it can make a strong

influence on the hardware designers to include more extensions in the near-future microprocessors

to enhance software quality and programmers productivity. Second, when such new hardware is

ready, iChecker can immediately take advantage of the hardware.

The remainder of this chapter is organized as follows. In Section 5.2, we use an example to

show the iChecker interface. In Section 5.3, we describe the iChecker framework and its imple-

mentation. Then, we use four case studies to demonstrate the use of the iChecker framework in

Section 5.4, followed by the summary in Section 5.5.

5.2 iChecker Interface and Example

We use a sorted doubly-linked list as a simple example to illustrate how the programmers can use

the iChecker framework for incremental consistency checking. Figure 5.1 shows three instances

of sorted doubly-linked lists. There are two consistency properties: the nodes should have values

sorted in the ascending order, and every node should be appropriately linked to its predecessor and

successor.

Figure 5.2 shows the code for basic operations of the list. The highlighted code represents

modifications for incremental checking (as discussed below). Figure 5.2 also shows the function

isDoublyLinkedSortedList that performs a global consistency check, traversing the entire list and

checking that each node is properly linked and has a value in order. checkListNode is the local

check function, which, for a given node, checks if its successor’s value is not smaller than its own
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and its successor is pointing back to this node itself. Note that in our example the relationship

between any pair of nodes are associated only with the first node to avoid redundant checks.

N1 N2 N4

nil

l.head

N1 N2 N3

nil

l.head ...

...

(b)

(a)

N3

N1 N4

nil

l.head

(c)

...
N3

3

3 5 7

5 6 7

763 5

Figure 5.1: Sorted doubly-linked list: (a) the original list; (b) the list after insertion of N4; (c) the

list after removal of N2.

5.2.1 Modifications and iChecker Interface

The modifications shown in Figure 5.2 use the iChecker interface shown in Figure 5.3. They can

be inserted manually by the programmer or automatically by the compiler. We next explain each

modification and the general interface (one data structure and four functions) associated with it:

ICheckStruct: This structure from our iChecker library keeps track of the data required for incre-

mental checking. In the example, an instance of ICheckStruct is added to each list.

newICheckStruct: This function initializes the corresponding ICheckStruct that stores a function

pointer for the global check globalFunc, an address to pass as a parameter to the global check

globalPara, a function pointer for the local check used by incremental check localFunc, and the

size of a data structure part that forms the basic unit for the incremental check partSize. In the

example, newICheckStruct is called to initialize the above data structure when the list is initialized.

insertIntoICheckStruct: This function adds a data structure part to the new set of the ICheckStruct
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typedef struct node {

int val;

struct node *next;

struct node *prev;

} ListNode;

typedef struct list {

ListNode *head;

int size;

ICheckStruct *icStruct;

} List;

List *newList() {

List *l=(List *)malloc(sizeof(List));

l->head=NULL;

l->size=0;

l->icStruct=

newICheckStruct(&isDoublyLinkedSortedList,

(void*)l, &checkListNode,

sizeof(ListNode));

return l;

}

void insertIntoList(List *l, int val) {

ListNode *cur;

/*insert the node *cur with cur->val==val*/

......

insertIntoICheckStruct(l->icStruct, (void*)cur);

}

void removeFromList(List *l, int val) {

ListNode *cur;

/*remove the node *cur with cur->val==val*/

......

deleteFromICheckStruct(l->icStruct, (void*)cur);

}

int main(int argc, char **argv) {

List *l = newList();

......

insertIntoList(l, 6);             /* line A */

if (!genericICheck(l->icStruct)) …;

......

removeFromList(l, 5);       /* line B */

if (!genericICheck(l->icStruct)) …;

......

}

/* isDoublyLinkedSortedList is the global checker, checkListNode is the local checker which is also used by the global checker */

int isDoublyLinkedSortedList(void *args) {

List *l=(List *)args;

ListNode *cur=l->head;

if (cur==NULL) return 1;

if (cur->prev!=NULL) return 0;

for (; cur!=NULL && cur->next!=NULL;

cur=cur->next) {

if (!checkListNode(cur)) return 0;

}

return 1;

}

int checkListNode(void *args) {

ListNode *cur=(ListNode *)args;

if (cur->next==NULL) return 1;

if (cur->next->prev!=cur) return 0;

if (cur->val>cur->next->val) return 0;

return 1;

}

Figure 5.2: Code with the modifications for incremental check.

pointed by icStruct for checking. In the example, insertIntoICheckStruct is called after inserting

a node in the list.

deleteFromICheckStruct: This function removes a data structure part from the dependency sets,

new set, and affected set (that it belongs to) of icStruct, indicating that there is no need to check

this part later. In the example, deleteFromICheckStruct is called after removing a node from the

list.

handleOrder: This function notifies the library to handle the special order of the local checks for

the data structure corresponding to the icStruct. It is only invoked in special cases.

genericICheck: This function performs the incremental check for the data structure corresponding

to the ICheckStruct pointer icStruct. The return value of -1 means that there are no modifications

since the last check and thus nothing needs to be checked, 1 means success, and 0 means failure.
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/* globalFunc: function pointer for global check */
/* globalPara: the parameter for global check */
/* localFunc: function pointer for local check */
/* partSize: the size of a data structure part */
/* which is the basic unit for incremental check */
/* return: the ICheckStruct for incremental check */
ICheckStruct *newICheckStruct(Function globalFunc,
void *globalPara, Function localFunc, int partSize);

/* icStruct: pointer to the associated ICheckStruct */
/* part: the address of the new part */
void insertIntoICheckStruct(ICheckStruct *icStruct,

void *part);

/* icStruct: pointer to the associated ICheckStruct */
/* part: the address of the removed part */
void deleteFromICheckStruct(ICheckStruct *icStruct,

void *part);

/* icStruct: pointer to the associated ICheckStruct */
void handleOrder(ICheckStruct *icStruct);

/* icStruct: pointer to the associated ICheckStruct */
/* return code: -1 no check, 1 pass, 0 failure */
int genericICheck(ICheckStruct *icStruct);

Figure 5.3: Functions in iChecker interface.
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This function should be called when the check is desired.

Besides the above modifications, the programmer may also need to provide a local checking

function. In this example, the local checker is already a function called by the global checker, so

the programmer does not need to write anything additional. In more advanced examples discussed

in Section 5.4, the programmer needs to provide a local checker.

5.2.2 Incremental Check Demonstration

Assume that executing the main function in the example produces the list shown in Figure 5.1(a)

right before inserting the value 6. The list after the insertion is shown in Figure 5.1(b). Performing

the incremental check after the insertion requires that only the nodes N2 and N4 (shown in bold)

are checked using the local checker checkListNode. In contrast, the global check would traverse

all the nodes. Further execution removes the value 5 from the list. The list after the removal is

shown in Figure 5.1(c). After the deletion, iChecker performs the local check only on the node N1

(shown in bold), whereas the global check would once again traverse all the nodes.

5.3 iChecker Framework

This section first gives an overview of iChecker framework followed by the detailed iChecker

library implementation. It next explains how we address the three most important challenges for

incremental consistency checks. It finally illustrates the framework using the sorted, doubly-linked

list example.

5.3.1 Overview

Incremental consistency checking of mutable data structures should check only the parts of the

data structure whose consistency may have changed due to modifications performed since the last

consistency check. To achieve this, we propose a mechanism that builds a dependency set for each
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part (e.g., a node in a list, a subtree in a tree, or an element in an array) of the data structure. The

dependency set for a part is the set of data on which this part’s consistency depends. For example,

as explained in Section 5.2, the dependency set of a node in the sorted doubly-linked list would

include its value, its next field, its successor’s value, and the successor’s prev field.

The incremental check is performed on two types of parts. First, all new parts added since

the last check are checked using the local checker; during this checking, iChecker automatically

builds a dependency set for each new part. Second, each affected part, i.e., an existing part whose

dependency set has a memory location that changed value since the last check, is re-checked using

the local checker. During each local check, the dependency set for the corresponding part is also

updated as some data may not be correlated to this part any more and some other may become this

part’s new “neighbors”.

To implement the above incremental check process, we need to address three challenges: 1) ob-

tain a local checker, 2) track modifications since the last check, and 3) find affected parts of the data

structure that need to be checked based on the modifications. Our goal is to design and implement

a framework that can address these challenges and, in the mean time, also achieve efficiency, sim-

plicity, and flexibility. To achieve this goal, our iChecker framework leverages iWatcher [ZQL+04]

and provides a run-time iChecker library. Table 5.1 shows the main functionality of the hardware

and library.

Component Main Functionality

Hardware 1. Track the monitored writes and reads

(iWatcher) 2. Trigger the monitoring functions

Library 1. build and update dependency sets

(iChecker) 2. Track modifications that can affect consistency

3. Maintain an internal data structure for

incremental check

4. Invoke the local checker for each new or

affected part

Table 5.1: Main functionality of the iChecker components.

Our framework uses iWatcher to automatically track the writes and reads to the checked data
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structure (monitored accesses); iWatcher also automatically triggers the monitoring functions for

monitored accesses. Our library has two monitoring functions. The read monitoring function

builds/updates dependency sets using monitored reads, and the write function determines affected

parts based on monitored writes (modifications) and dependency sets. For building/updating the

dependency set of a part, the library informs iWatcher to track the monitored reads only during the

local check of this part. The library also maintains an internal data structure, which includes the

dependency sets. Finally, the library invokes the local checker for each new and affected part.

Using hardware, we can efficiently track writes to and reads from the checked data structure.

Hardware passes information about writes to the library so it can track the modifications performed

since the last check. Hardware passes information about reads to the library so that it can build and

update dependency sets.

Between simplicity and flexibility, there is a trade-off: if a framework requires less modifica-

tions to the application, it is simpler for programmers to use but less flexible in supporting different

structures and consistency properties. Our design choice is to find a balance. To achieve simplicity,

our framework provides the iChecker library that exposes simple interface (Section 5.2.1) to the

application and hides lots of implementation details, including the interaction with iWatcher. To

achieve flexibility, we ask the programmer to provide the local checker.

5.3.2 Library Implementation

The iChecker library consists of one data structure, ICheckStruct, and four functions, newICheck-

Struct, insertIntoICheckStruct, deleteFromICheckStruct, and genericICheck. Recall that Figure 5.3

shows the interface for these functions.

The library data structure ICheckStruct maintains the information necessary for incremental

check. Each instance of checked application data structure is associated with an instance of the

library data structure ICheckStruct. In addition to the information described in Section 5.2, the

ICheckStruct structure also contains a table that stores dependency sets for each checked part, a

new set of parts that have never been checked, and an affected set of old parts whose dependency
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sets have some modified locations.

The implementation of newICheckStruct and insertIntoICheckStruct are straightforward as de-

scribed in Section 5.2. The genericICheck function performs the incremental consistency check

procedure. The application calls this function when a check is required. The function does the

following: 1) calls iWatcherOn for each element in the new set to notify iWatcher to monitor these

elements, 2) performs local check on each element in the new set and the affected set, and 3)

informs iWatcher to track the monitored reads only inside the local check. At monitored reads,

iWatcher automatically triggers the read monitoring function (provided by the library but not ex-

posed to the user) to build/update dependency sets. The local checker returns 0 or 1 depending on

the consistency result, and -1 if there is no element in either the new set or the affected set.

5.3.3 Obtaining an Incremental Checker

We assume that the application provides the global checker. To handle different types of structures

and consistency properties, we also require the application to provide the local checker, which

is usually already provided to implement the global checker. Without any high-level semantic

information about the checked data structure, it would be very difficult to automatically generate

the local checker only based on the global checker.

5.3.4 Efficient Tracking of Modifications

Our framework dynamically tracks modifications to the checked data structure using iWatcher

hardware [ZQL+04]. An alternative approach for tracking modifications would be using soft-

ware instrumentation to intercept most stores to check if the address is a monitored location. Due

to aliasing problem, the instrumentation cannot precisely determine which stores could access a

monitored location. This approach would induce larger overhead and contradict our efficiency

goal.

Recall that during the genericICheck, each new part is monitored because the library calls
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iWatcherOn for a new part. iWatcher can automatically catch the writes to the monitored locations.

5.3.5 Finding the Affected Parts

Our framework uses dependency sets to determine the affected parts that need to be checked during

the next incremental check. Each dependency set has the format l : {l1, l2, . . . , ln}, where l is a

memory location of a checked data-structure part and l1, l2, . . . , ln are memory locations inside

the checked data-structure. The dependency set states that the part at memory location l depends

on the memory locations l1, l2, . . . , ln. If any of the memory locations l1, l2, . . . , ln is modified, a

local check needs to be performed for the part l. With the help from iWatcher, the iChecker library

builds and updates dependency sets: the library functions build and update dependency sets based

on the monitored reads that iWatcher tracks during the local check. The intuition for this is the

following: if the execution of local checker for the part at l reads only the locations l1, l2, . . . , ln,

then the check result for l depends on l1, l2, . . . , ln.

Based on the dependency sets and the modifications, the library can compute which parts

should be incrementally checked at the next consistency check. Since modifications potentially

affect the consistency of these parts, we call these parts affected parts. The library adds them to

the affected set of the corresponding ICheckStruct. The parts in the affected set are incremen-

tally checked when genericICheck is called. For example, based on the above dependency set, if

location l2 is modified, iChecker adds l to the affected set so it will check l later.

5.3.6 Analysis on the Sorted Doubly-Linked List

We next provide a detailed analysis of incremental checking for the sorted doubly-linked list exam-

ple in Section 5.2. Figure 5.1(a) shows the list l right before the execution of line A in Figure 5.2.

Assume that iChecker has already built the dependency sets for all nodes in Figure 5.1(a) and in-

structed iWatcher to monitor all these nodes. The dependency sets are
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&N1 : {&(N1.next),&(N2.prev),&N1,&(N1.val),&(N2.val)} &N2 : {&(N2.next),&(N3.prev),&N2,&

...

We illustrate how iChecker tracks modifications and builds the dependency sets using the node

N4 as an example part. Line A inserts the node N4, and the list becomes as shown in Figure 5.1(b).

This insertion modifies the monitored locations &(N2.next) and &(N3.prev); iChecker detects

this because iWatcher automatically tracks all accesses to monitored locations. Based on the mod-

ifications and the above dependency sets, iChecker adds &N2 to the affected set.

At the end of the insertion function, insertIntoICheckStruct adds &N4 to the new set. The

genericICheck after line A then performs the local checks on &N4 (which is in the new set) and

&N2 (which is in the affected set). The execution of the check checkListNode (from Figure 5.2) on

&N4 reads locations &(N4.next), &(N4.next → prev) (&(N3.prev)), &N4, &(N4.val), and

&(N4.next → val) (&(N3.val)). Therefore, the library builds the dependency set for node N4

&N4 : {&(N4.next),&(N3.prev),&N4,&(N4.val),&(N3.val)}

Similarly, the library updates the dependency set for node N2

&N2 : {&(N2.next),&(N4.prev),&N2,&(N2.val),&(N4.val)}

After the incremental check, genericICheck makes the new set and the affected set empty.

Line B removes the node N2, and the list becomes as shown in Figure 5.1(c). This deletion

modifies &(N1.next), &(N4.prev), &(N2.next), and &(N2.prev), so iChecker adds &N1 and

&N2 to the affected sets. However, N2 is removed from the list, and the dependency set for N2

is removed during the deleteFromICheckStruct call (at the end of the deletion). After line B, thus,

genericICheck only invokes the local check on &N1 and updates its dependency set to

&N1 : {&(N1.next),&(N4.prev),&N1,&(N1.val),&(N4.val)}
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Subject Data structure type Global checker type Local checker type Shadow

array-based pointer-based iterative recursive read-only read-write no yes

list X X X X

tree X X X X

filesystem X X X X

Freeciv X X X X X

Table 5.2: Subject classification. The data structures in Freeciv contain both array-based and

pointer-based parts.

5.4 Case Studies

This section demonstrates the use of our iChecker framework in four case studies: a sorted doubly-

linked list, a binary search tree, a simplified Linux file system, and an interactive game Freeciv.

The first two studies are micro-benchmarks, and the last two were applications used in previous

studies on detecting and repairing inconsistencies in data structures [DR03, DR05].

At the end, we also use a small sorted doubly-linked list and a small binary search tree to

serve as negative examples for which using incremental checks imposes larger overhead than using

global checks.

5.4.1 Subject Characteristics

We chose these four subjects for our case studies because they have very different data structure

and consistency characteristics. Table 5.2 shows these characteristics. We categorize the subjects

based on four aspects: data structure type, global checker type, local checker type, and check

complexity (need shadow copy or not).

If the global checker is recursive, we add additional fields in the checked structure to record

the output of recursive functions for incremental check (Section 5.4.4). Read-only means that the

local checker only reads from the checked data structure, whereas read-write means that the local

checker also writes to the checked data structure. For the latter, the order of local checks is critical

for the correctness (Section 5.4.4). Shadow means that the checkers (both global and local) need to

maintain a shadow copy of some parts of the checked data structure; a local checker with shadow
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structure needs the old value of a checked part for updating the shadow structure (Section 5.4.5).

5.4.2 Evaluation Methodology

Since our iChecker framework uses the iWatcher hardware, we implement the framework using the

cycle-accurate execution-driven simulator that was also used in many previous studies [MRH+02,

PT03, ZQL+04, ZLF+04]. The simulator simulates a 2.4 GHz machine with 2-level caches and

512 MB RAM. All cache misses are simulated as in real machines, thus the performance impact

caused by all memory accesses is fully simulated. We implemented the iChecker library in C. All

four subject programs are also in C.

For each case study, we will describe important consistency properties, provide global checkers

and local checkers for these properties, and insert calls to perform consistency checks at the end of

the function calls that modify the data structures.

Since our proposed incremental check mechanism can be also implemented without hardware

support for catching monitored memory accesses, we also estimate the time overhead of potential

software-only implementations. To catch accesses to the checked data structure using only soft-

ware, the most straightforward way (called SoftImp) is to instrument all reads inside the local

checker and all writes anywhere in the program. In contrast to iWatcher that looks up its Check

Table (which maps monitored locations to their associated monitoring functions) only for accesses

to monitored locations, a software-only implementation needs to look up its own table for every

instrumented read or write instruction, often finding that the access is to a non-monitored location.

Since the tables in two approaches would be similar, we use the average lookup time of iWatcher to

approximate of a software-only implementation, specifically the time for those lookups that access

a non-monitored location. Therefore, the estimated execution time of a software-only implemen-

tation is:

estimated time = iChecker time + avg lookup

∗ (#instrumented accesses − #monitored accesses)
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We obtain all four parts of the formula from our simulations.

Although compilers can statically decide the addresses of some accesses (e.g. using pointer

analysis) and eliminate some instrumentations in the software implementation, the fraction of re-

duction in instrumented memory accesses is usually not very large for programs like ours that use

pointers to do fine-grain manipulation of data structures.

Another way to do local check in software is that the programmer invokes the local checker on

the parts of the data structure that she knows may have been changed. For example, after inserting

a node into the list, the programmer could check only the new node and its neighbors. Although

this way does not require tracking of memory accesses, it cannot detect unintended modifications,

e.g. through memory corruption. Therefore, we do not compare it with the global check and our

incremental check.

Table 5.3 shows the time overheads (over the baseline, original program without checks) of

global check, the time and space overheads (over the baseline) of incremental check using iChecker

framework, as well as the estimated time overheads of SoftImp for software-only incremental

check. The space overheads of global check are very small, and the space overheads of SoftImp

should be similar to those of incremental check using iChecker. Table 5.4 shows the sizes of the

original code as well as the modifications (the modifications for iChecker count the global checker)

for all programs.

Application global iChecker SoftImp

time time space time

Sorted n=2000 3.1X 2.8X 11.2X 18.1X

doubly-linked n=4000 2.8X 1.3X 12.8X 6.5X

list n=8000 2.5X 0.5X 14.1X 2.6X

Binary n=2000 103.9X 35.8X 14.3X 257.0X

search n=4000 210.7X 41.6X 16.1X 253.1X

tree n=8000 416.4X 50.1X 17.9X 249.2X

Filesystem 6.2X 0.04X 0.3X 0.1X

Freeciv 0.7X 0.1X 2.5X 0.2X

Table 5.3: Overheads of consistency checks for four case studies
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Subject Original code size (LOC) Modification size (LOC)

global iChecker

list 149 15 25

tree 172 18 36

filesystem 2871 37 93

Freeciv 88788 52 108

Table 5.4: Sizes of original code and modifications. The LOC refers to the original code and

modifications for local and global checkers.

5.4.3 Sorted Doubly-Linked List

The sorted doubly-linked list is our running example from Section 5.2. The workload program

first inserts n nodes with random values, then randomly removes 100 nodes. We perform the

consistency check at the end of each insertion and deletion call.

Performance As shown in Table 5.3, iChecker can reduce the check time overhead by a factor of

1.1–5 for this program. The larger the n the higher the reduction because a larger data structure

incurs a higher time overhead with global checks. iChecker’s check time overhead is also 5-6 times

smaller than the estimated overhead of a software-only implementation. The large space overheads

in this benchmark are because the simple program only contains the list structure. As we can see,

for more complicated programs like Filesystem and Freeciv, the space overheads are smaller.

5.4.4 Binary Search Tree

20

tree.root

10 35

... ...

12 16

8 15/ /

/ / / /

20

tree.root

10 35

... ...

12 16

8 15/ /

/ / /

13/ /

20

tree.root

10 35

... ...

12 16

8 13/ /

/ / / /

(b) (c)(a)

N3

N2

N1N1 N1

N2 N4

N3 N3

N4

Figure 5.4: Binary search tree: (a) the original tree (b) the tree after insertion of N4; (c) the tree

after removal of N2. The nodes in bold will be checked after the operation.
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Example instance: Figure 5.5(a) shows instances of a binary search tree.

Consistency property: We require the tree to be ordered for binary search: for each node N , the

maximum value in N ’s left subtree is not greater than the value in N , and the minimum value in

N ’s right subtree is not less than the value in N . This property also implies that the nodes form a

tree (not an arbitrary graph with cycles).

int isOk(void *args) {

TreeNode *t=(TreeNode *)args;

if (t==0) return 1;

if (t->left !=0 && (!isOk(t->left) || max(t->left)>=t->val))

return 0;

if (t->right !=0 && (!isOk(t->right) || min(t->right)<=t->val))

return 0;

return 1;

}

int max(TreeNode * t) {

if (t->right!=0)

return max(t->right);

return t->val;

}

int min(TreeNode * t) {

if (t->left!=0)

return min(t->left);

return t->val;

}

int isOkICheck(void *args) {

TreeNode *t=(TreeNode *)args;

if (t==0) return 1;

if (t->left !=0 && (!t->left->isOk) || t->left->max>=t->val))

return 0;

if (t->right !=0 && (!t->right->isOk || t->right->min<=t->val))

return 0;

t->max=maxI(t);

t->min=minI(t);

t->isOk=1;

return 1;

}

int maxI(TreeNode * t) {

if (t->right!=0)

return t->right->max;

return t->val;

}

int minI(TreeNode * t) {

if (t->left!=0)

return t->left->min;

return t->val;

}

(a) (b)

Figure 5.5: The checkers for binary search tree: (a) global checker and (b) local checker.

Global checker: Figure 5.5(a) shows the global checker. It is a recursive function and also uses

the recursive max and min helper functions. The parameter for the global checker is the root of

the tree. Intuitively, the local checker should perform the similar check but only on a subtree that

was modified. However, if we simply use the global checker as the local checker (by just passing

the root of a subtree as the parameter for local check), the dependency set for any tree node would

include all its descendants because the recursive calls eventually access all its descendants. In

particular, the dependency set for the root would include all tree nodes. Hence, if anything in the

tree changes, the root would need to be incrementally checked, which is the same as the global

check.

Local checker: The above problem can be solved by following this simple three-step guideline: 1)
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for each recursive function called in the global checker, add a corresponding field in the structure

part; 2) update these fields in the local checker; and 3) replace function calls with field reads

in recursive helper functions. In particular, for the tree, it means adding fields isOk, max, and

min to the TreeNode structure. Figure 5.5(b) shows the local checker that updates the fields in

isOkICheck and reads them in the maxI and minI functions.

Check propagation: The local checker updates the max and min fields, which can trigger check

propagation: checking a node N can trigger checking of the N ’s parent (due to the possible

changes in its max or min values), which can then trigger checking of the N ’s grandparent, and

so on until the root node. For example, Figure 5.4(b) shows the tree after inserting N4 to the

tree. Suppose that the consistency has been checked right before the insertion. Then checking

consistency right after the insertion requires that N4 be checked because it is a new node. Since

N3 depends on its right child (that has changed from NULL to &N4), N3 needs be checked, too.

The check on N3 changes its max from 12 to 13, and thus its parent N2 also needs be checked

(because N2 depends on N3.max). In this example, check propagation stops at N2. In general,

it can proceed to the root, which means that the incremental check may need to check (only) one

entire path in the tree, whereas the global check always needs to traverse the entire tree.

Check order: The writes in the local checker also raise the issue of the order of the local checks. If

some node and its ancestor both need to be checked, ideally the checking should follow the bottom-

up order, i.e., check the descendants before checking the ancestors, because checking ancestors

needs max and min values that may be updated due to the check propagation. However, the

current implementation of our framework simply follows the order of modifications for check

order. If not used carefully, this order may produce wrong check results. For example, in the

removal case of Figure 5.4(c), the modification order is N1, N4, N3, but the correct check order

should be N3, N4, N1.

To guarantee the correct check result for the local checker that is read-write, the library does the

following. After checking one data-structure part (one node for tree), the library records the check

result. If some later checks propagate to this part (indicating that the order was suboptimal), the li-
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brary checks the part again. The process repeats until fixed point, when there is no order violation.

This process terminates even for cyclic dependencies when local checkers are correct. The appli-

cation notifies the library to handle the order by calling the library function handleOrder(icStruct).

Note that the check propagation and check order issues do not arise in the list example, because

the local checker only reads from the data structure, which is indeed the common case for checks.

Other code modifications: Similarly to the list example, the program for tree also needs to call

newICheckStruct for initialization, insertIntoICheckStruct when inserting a new tree node, delete-

FromICheckStruct when removing a node from the tree, and genericICheck for a consistency

check.

Performance The workload program first inserts n nodes with random values, then randomly

removes 100 nodes. We perform the consistency check at the end of each insertion and deletion.

Table 5.3 shows that iChecker reduces the check time overhead by 2.9–8 times compared to global

checks and 5–7 times compared to the software-only estimation. The large space overheads are

due to the same reason as that for the linked list.

5.4.5 A Simplified Linux File System

Block
Bitmap
Block

Inode
Bitmap
Block

Block
Super

Block
Group

Block
Inode ...

8192

ref

1nil

blockptr[0:11]
file size

Inode Entry

Figure 5.6: A simplified Linux file system application.

This subject program was implemented and used by Demsky et al. [DR03, DR05] in previous

studies on detecting and repairing data-structure inconsistencies. It is a simplified version of the
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Linux ext2 file system.

Example instance: As shown in Figure 5.6, the file system consists of an array of blocks. The first

five blocks are used to keep the file system meta information. The Inode block contains all inode

entries, the InodeBitmap block identifies the used and free inode entries, and the BlockBitmap

block identifies the used and free blocks. Each inode entry has a ref field. If an inode entry is used,

it should have ref > 0; otherwise, it should have ref = 0. Each inode entry also has 12 block

pointers blockptr[0..11], and each pointer either points to a block used by this inode, or equals to

NULL. Both inode bitmap and block bitmap are an array of chars.

Consistency properties: We check two properties, inodeConsistency that requires the status (used

or free) of all inode entries to match the corresponding inode bitmap bits (1 or 0) and blockConsis-

tency that requires the status of all blocks to match the corresponding block bitmap bits.

int checkInode(void *args) {

/* ptr points to the file system block array */

/* itb points to the inode block */

struct block *ptr=(struct block *)args;

struct InodeBlock *itb=(struct InodeBlock *) &ptr[itbptr];

/* ib.inode is the inode bitmap */

/* itb->entries[i] is the ith inode entry */

for (int i=0; i<NUMINODES; i++) {

if ((!(ib.inode[i/8]&(1<<(i%8))) && itb->entries[i].ref>0) ||

((ib.inode[i/8]&(1<<(i%8))) && itb->entries[i].ref<=0))

return 0;

}

return 1;

}

int checkInodeICheck(void *args) {

struct InodeBlock *itb=(struct InodeBlock *) &ptr[itbptr];

/* iboffset points to the checked char in the inode bitmap */

/* startEntry is 1st in the 8 entries corresponding to the */

/* checked char */

char *iboffset = (char *)args;

int startEntry = (iboffset-(char *)(&ib))*8;

for (int i=0; i<8; i++) {

if ((!((*iboffset)&(1<<i)) && itb->entries[startEntry+i].ref>0)

|| (((*iboffset)&(1<<i)) & itb->entries[startEntry+i].ref<=0))

return 0;

}

return 1;

}

(b)(a)

Figure 5.7: The checkers for inodeConsistency in the simplified Linux file system: (a) global

checker and (b) local checker.

Check inodeConsistency Global checker: Figure 5.7(a) shows the global checker. Since the

status of an inode entry is determined by its ref , the global checker checks if the ref in each inode

entry matches the corresponding bit in the inode bitmap.

Local checker: A basic data-structure part for local checker is a char in the inode bitmap array. A

char in the inode bitmap corresponds to 8 consecutive inode entries. Figure 5.7(b) shows the local

checker. It only checks if the bits in the given char match the ref fields in the corresponding 8
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inode entries.

Other modifications: As usual, we need to initialize ICheckStruct with newICheckStruct. After

the initialization, we also need to insert all chars from the inode bitmap array into the new set

by using insertIntoICheckStruct, because all these array elements should be checked during the

next/first incremental check. As for dynamic structures (e.g., list or tree), we call genericICheck

for consistency checking.

We also need to monitor the ref fields of all inode entries. However, the ref field is not a part

of incremental check, so we cannot use insertIntoICheckStruct call to notify the library to call

iWatcherOn on these fields. Therefore, at the beginning, we need to explicitly call iWatcherOn

for all ref fields.

int checkBlock() {

for (int i=0; i<NUMBLOCK/8; i++)

if (bb.blocks[i]!=shadowbb.blocks[i])

return 0;

for (i=0; i<NUMBLOCK%8; i++)

if ((bb.blocks[NUMBLOCK/8]&(1<<(i%8)))!=

(shadowbb.blocks[NUMBLOCK/8]&(1<<(i%8))))

return 0;

return 1;

}

int genBlockBitmap(void *args) {

struct block *ptr=(struct block *)args;

struct InodeBlock *itb=(struct InodeBlock *) &ptr[itbptr];

/* shadowbb.blocks is the shadow block bitmap */

/* bb.blocks is the file system block bitmap */

/* itb->entries[i].Blockptr[j] is the jth block pointer of the ith inode */

for (int i=0; i<NUMINODES; i++) {

for (int j=0; j<12; j++) {

if (itb->entries[i].Blockptr[j]!=NULL) {

int k=itb->entries[i].Blockptr[j];

if (shadowbb.blocks[k/8]&(1<<(k%8)))

return 0;

shadowbb.blocks[k/8]=shadowbb.blocks[k/8]|(1<<(k%8));

}

}

}

return 1;

}

int genBlockBitmapICheck(void *args) {

int *bptr = (int *)args;

struct InodeBlock *itb=(struct InodeBlock *) &ptr[itbptr];

int index = 12*(bptr-(int *)(itb)/sizeof(Inode)

+(bptr-(int *)(itb))%sizeof(Inode)-1;

/* old array stores old values for all block pointers */

/* old[index] keeps old value for the checked block pointer bptr */

if (old[index]!=0) {

// reset old bit to 0

if (!(shadowbb.blocks[old[index]/8]&(1<<(old[index]%8))))

return 0;

shadowbb.blocks[old[index]]&=0xff^(1<<(old[index]%8));

}

if (*bptr!=0) {

if (shadowbb.blocks[(*bptr)/8]&(1<<((*bptr)%8)))

return 0;

shadowbb.blocks[(*bptr)/8]|=1<<((*bptr)%8);

old[index]=*bptr;

}

return 1;

}

(b)(a)

Figure 5.8: The checkers for blockConsistency in the simplified Linux file system: (a) global

checker and (b) local checker.

Check blockConsistency Global checker: The consistency check for block is not as straight-

forward as the check for inode because the status of a block is determined not by a field of the
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block structure, but by block pointers of other data: inode entries. One straightforward way to

implement the global check function is: for every bit in the block bitmap, search every inode to

see if any blockptr in the inode points to the corresponding block. If the results do not match (e.g.

the bit in the bitmap is set to 1 but there is no inode’s blockptr point to the corresponding block,

or vice versa), the data structure is inconsistent. While this implementation is simple, it is very

inefficient because for every bit, it needs to search every inode. To improve checking efficiency,

an incorrect solution is to simply start from inode entries and check, for each inode entry, to see

if blocks pointed by its blockptr field has the corresponding bit in the block bitmap set to 1. Such

checking procedure is insufficient because it does not check the consistency properties for those

bits whose blocks are not pointed by the blockptr field of any inode.

To optimize performance, a correct and efficient alternative is to use a shadow block bitmap

(shadowbb.blocks) based on the block pointers of all inode entries by only traversing all the inodes

only once. Then the checker just needs to compare this shadow bitmap with the block bitmap of

the file system (bb.blocks). In our evaluation, we use this implementation for global checks, as

shown in Figure 5.8(a).

Local checker: We provide the local checker for genBlockBitmap instead of for checkBlock. A

basic part for generating the shadow bitmap incrementally is a block pointer. When a block pointer

changes, the local checker needs to know not only the new value, but also the old value, because

the checker needs to reset the corresponding bitmap bit for the old value to 0. Therefore, the

checker maintains an array for all old block pointer values. Figure 5.8(b) shows the local checker

for genBlockBitmap. The checkBlock remains the same as in the global checker.

Other modifications: As for inodeConsistency, we need to call newICheckStruct and insertInto-

ICheckStruct to add all block pointers to the new set and to call genericICheck for a consistency

check. We also need to explicitly call iWatcherOn on the entire block bitmap at the beginning.

Performance Our workload program performs the following sequence of file manipulations: first

open 145 files (it will create them since they did not exist), next write to each file and repeat this

write process 6000 times, then close these files, and finally open them again, read from them, and
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close them. We perform the inodeConsistency check at the end of openfile function because it

may change the inode entries and the inode bitmap, and the blockConsistency check at the end of

writefile function since it may change the block pointers and the block bitmap.

Table 5.3 shows that iChecker’s time overhead is 155 times smaller than the global check! It is

also twice smaller than the software-only estimation. The space overhead is only 0.3X.

5.4.6 Freeciv

Freeciv is a publicly available, interactive, multi-player game. It was also used in previous studies

on detecting and repairing data-structure inconsistencies [DR03, DR05]. Freeciv is a strategy game

that simulates development of civilizations. The program uses several data structures, but the most

interesting is the one that represents a map of the world. The map has a grid of tiles. Each tile has

a city pointer that either points to a city that is on the tile or is NULL if there is no city on the tile.

Consistency properties: We check the following two properties related to tiles and cities: 1)

cityononlyonetile that requires each city to be on only one tile, and 2) citymustononetile that re-

quires each city to be on one tile.

Global checker and local checker: Both the global checkers and local checkers are similar to

those in the file system example. All checkers for both consistency properties keep a shadow data

structure. In addition, the local checkers for both properties use an array that maintains the old city

on a tile for updating the shadow structure. Due to space constraints, we do not present all details.

Performance Our workload program consists of the computer playing several turns of the strategy

game against itself. We identify some important functions in Freeciv and check the consistencies

at the end of these functions. As shown in table 5.3, the time and space overheads of incremental

check are small.
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5.4.7 Negative Examples

While incremental checking can significantly reduce the checking overhead over global checks in

most programs, its performance gain depends on the size of the structure, the check frequence, and

the complexity of properties. Here, we will only demonstrate for small structures the overhead

could offset the performance gain, by scaling down our sorted doubly-linked list and binary search

tree. As shown in Table 5.5, incremental checks (both iChecker and the software-only estimation)

have larger overheads than global checks due to the overhead for tracking updates and maintaining

dependency sets. Therefore, in these cases, it is not a good idea to use incremental checks.

However, this does not affect the overall benefit of incremental checks because, after all, bugs

that occur in larger data structures are usually much harder to diagnose than those in smaller ones

and thereby have stronger demands for efficient ways to check data consistency as frequent as

possible. Efficient incremental checking methods such as iChecker exactly serve this purpose.

data structures n global iChecker SoftImp

sorted doubly- 100 1.67X 15.33X 145X

linked list 1000 3.01X 3.78X 33.53X

binary 100 3.25X 29X 240X

search tree 1000 50.24X 33.11X 257.74X

Table 5.5: Overheads with small data structures (n is the number of nodes inserted in the data

structure).

5.5 Summary

We have presented iChecker, a framework for incremental consistency checking of mutable data

structures in C programs. Our framework leverages a previously proposed iWatcher hardware to

provide a library for efficient, incremental, run-time consistency checking. The main idea is to

perform a consistency check using only a local check on the small parts of data structure modified

since the last consistency check. To use iChecker, the programmer needs to provide a local check

function, and iChecker automatically monitors memory accesses to build dependencies and to
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invoke the local check function only as necessary. Our experimental results show that for large

data structures, iChecker provides a significant speedup (23.3 times on average) over global checks

that traverse the entire data structure regardless of modifications.

iChecker requires the programmer to provide the local checker and guarantee the soundness

of the local checker. We expect the programmer to be willing to do that to achieve the orders of

magnitude smaller overhead (like 155 times less overhead in the file system case).

We believe that iChecker has the potential to change the view that developers have on seemingly

high-overhead consistency checking (and assertions in general): as the overhead gets lower, we

expect developers to use checking more aggressively in various development tasks such as testing,

debugging, and program understanding.

110



Chapter 6

Conclusions and Future Work

This dissertation work provides architectural support for software debugging. More specifically, it

focuses on addressing the three limitations of dynamic monitoring for detecting memory-related

bugs: inefficiency, inaccuracy and limited bug coverage. The contributions of this work are it

proposes a simple and general architectural framework called iWatcher for low overhead location-

controlled dynamic monitoring, a new bug detection method, PC-based invariants, to catch hard-

to-find program-specific memory bugs, and a simple architectural extension to iWatcher to further

reduce the overhead of PC-based invariant debugging. It builds an automatic detection tool called

AccMon that uses PC invariants and leverages iWatcher with the CLB extension, and a pure soft-

ware detection tool called AccMon-S for PC invariants detection using PIN tool. It also reduces

the overhead of data structure consistency check in C programs by proposing an incremental check

framework called iChecker that leverages iWatcher for efficient consistency check of mutable data

structures.

Particularly, iWatcher automatically detects all accesses to a watched memory location, in-

cluding those by aliased pointer dereferences. To further reduce overhead and support rollback,

iWatcher can optionally leverage Thread-Level Speculation (TLS). The experimental results with

seven buggy applications (with various bugs) show that iWatcher detects all the bugs evaluated in

our experiments with only a 0.1-179% execution overhead. In contrast, a well-known open-source

bug detector called Valgrind induces orders of magnitude more overhead, and can only detect a

subset of the bugs.

To catch the hard-to-find bugs with low overhead, AccMon uses a statistics-based method, PC-

based invariants, and leverages architectural, run-time system and compiler support. It detects all
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ten tested bugs in non-server programs with few false alarms (0 for five applications and 2-8 for two

applications) and low overheads (0.24-2.88 times). The latter is an order of magnitude smaller than

Purify. Since AccMon uses a statistics-based approach, it can catch bugs that do not violate any

programming-based rules. For example, there are 3-4 bugs in our experiments that are detected

by AccMon but are missed by other tested tools such as Purify [HJ92] and CCured [NMW02,

CHM+03].

The software implementation of PC-based invariants, AccMon-S, is built by using the binary

instrumentation tool PIN. Although it does not need extra hardware, it introduces 10.4-57.8 times

execution overheads, orders of magnitude larger than AccMon’s overheads. Besides detecting all

ten bugs tested in AccMon, AccMon-S also detected two real bugs in two large real-word server

applications, Apache and Squid with few false alarms (0-4).

The idea for reducing the consistency check overhead is to perform a consistency check using

only a local check on the small parts of data structure modified since the last consistency check.

To use iChecker, the programmer only needs to provide a local check function, and iChecker auto-

matically monitors memory accesses to build dependencies and to invoke the local check function

only as necessary. Our experimental results show that iChecker provides a significant speedup (up

to 155 times) over global checks that traverse the entire data structure regardless of modifications.

In the future, I would like to explore hardware support and novel ideas for detecting other types

of bugs, apart from memory-related bugs that are the main focus of my thesis research. One of my

main targets is concurrency bugs, including data races and atomicity bugs that account for a large

portion of all bugs, especially in server software. The urgency of handling such bugs grows as

the emerging multicore architectures will lead to more multi-threaded applications. However, it is

notoriously hard to expose, reproduce, and catch such bugs due to the nondeterminism. It would be

interesting to investigate hardware support for efficiently detecting such bugs in production runs,

where they are more likely exposed than in in-house testing.

Another category is semantic bugs which are usually program specific and, thus, hard to detect

automatically. The main question is how to effectively collect such program-specific information.
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Answering this question requires a deep understanding of semantic bugs and program behavior,

for example, by help from machine learning and statistics techniques.

I also plan to apply the incremental check idea to specific domains, such as file systems. It

would be very useful if we could significantly reduce the consistency check time for real-world file

systems.
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