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ABSTRACT 
We consider a batch arrival two stages of service queueing system with a random setup time under 
Bernoulli vacation schedule, where the service if the first unit at the commencement of each busy period 
is preceded by a random setup time, on completion of which service starts. For this model we first 
obtain the steady state queue size distribution at a random epoch as well as at a departure epoch. Next 
we discuss some related vacation models. Finally, we obtain some system performance measures of 
this model. 
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RESUMEN 
Nosotros consideramos una llegada del lote de dos fases de un sistema de colas de servicio con un 
tiempo de arreglo aleatorio y horario de vacación con distribución de Bernoulli, donde el servicio 
comienza si la primera unidad al principio de cada periodo ocupado es precedida  por un tiempo de 
arreglo aleatorio, con cuya realización el servicio empieza. Para este modelo nosotros primero 
obtenemos la distribución de estado estacionario del tamaño de cola en un momento aleatorio, así 
como en un momento de comienzo. Después discutimos  algunos modelos de vacación relacionados. 
Finalmente, obtenemos algunas medidas del sistema de comportamiento de este modelo.  

 
1. INTRODUCTION 
 
 The queue with Bernoulli schedule vacation was first studied by Keilson and Servi [1986], where they 
introduced the concept of modified service time distribution. Recently, Madan [1987, 2000] studied Bernoulli 
vacation models for two stage heterogeneous service queueing system under certain modifications. Also he 
cited some interesting applications in many real life situations. Further, Ghafir and Silio [1993] recognized its 
applications in a  Multiple Access Ring Network. 
 
 Recently, the M

x
/G/1 queue with a random setup time, where the service of the first unit in each busy period 

is preceded by a random setup period was studied by Choudhury and Krishnamoorthy [2003], as proposed by 
Levy and Kleinrock [1986] as well as by Doshi [1985] under certain modifications. In fact some aspects of this 
model have also been studied by Doshi [1986], Takagi [1986] and Choudhury [1995, 2000]. 
 
 Although some aspects of these types of models were studied by these authors, it seem that batch arrival 
queue with two stages of heterogeneous service will give us much more information on the number of  
batches instead of total number of individual units in deciding whether the server is activated or not. Thus in 
this paper we propose to study such a two stage batch arrival queue, where the concept of a random setup 
time is introduced under the Bernoulli vacation schedule. 
 
 The batch arrival queueing models under different vacation policies have been treated earlier by a good 
number of authors, for example see Baba [1986], Lee and Srinivasan [1989], Lee et al. [1994,1995], 
Choudhury [2002a, 2202b] and Madan and Abu-Dayyeh [2002], to mention a few. However our model is 
different from others and it is to some extent, generalized in nature, where in on completion of two successive 
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stages of service, a unit may leave the system with probability (1-r) or the server goes for a vacation of 

random length with probability r (0 ≤ r ≤ 1) after completion of a SET.    
 
 In this paper, we first obtain the steady state queue size distribution at a random epoch as a generalization 
of the results obtained in Choudhury [2000]. Next, we obtain the queue size distribution at a departure epoch. 
Further, we demonstrate the existence of stochastic decomposition property of the queue size distribution 
which has been shown to decompose into the distributions of  three independent random variables, one  
of which is the queue size of M

x
/(G1, G2)/1queue without SET as discussed in Madan [2000, 2001]. The 

interpretation of the other two random variables will also be provided. Further, we discuss some related 
vacation models.  
  
2. THE MATHEMATICAL MODEL 
 
 We consider a batch arrival queueing system with two stages of heterogeneous service on FCFS basis, 
where arrivals occur according to a compound Poisson process with the batch size random variable ‘X’. The 
server is turned off the system each time as soon as the system empties (turned off period). The system 
becomes operative only when one or a batch of customers arrive to the system. At this point of time the 
server does not offer proper service to the first waiting customer immediately; rather it undertakes an 
additional amount of time of random length called setup time (SET) (during which no proper work is done) in 
order to set the system in to operative mode before actual service begins (setup period). Assuming that the 

SET random variable follows a general law of distribution with distribution function (df) )x(S , Laplace-Stieltjes 

transform (LST) S*(θ) and finite moments E(S
k
) (k ≥ 1). The server then performs two stages of 

heterogeneous service in succession (busy period), the first stage service (FSS) followed by the second 

stage service (SSS).  Further, it is assumed  that the service time iS  (i =1, 2) of the i th stage service follows 

a general probability law with d.f Bi(x), LST )(B*
i θ and finite moments E )B( k

i , k ≥ 1, i = 1,2. As soon as the 

SSS of a unit gets completed, the server may go for a vacation of random length V (vacation period) with 

probability r )1r0( ≤≤  or may continue to serve the next unit, if any, with probability (1 – r). Otherwise, it turns 

off the system. Next, we assume that the vacation time V of the server follows a general probability law  

with df  V(x),  LST V*(θ) and finite moments E(V
k
), k = 1, 2 and is independent of the SET S, service times iB  

and the arrival process. Notationally, our model is denoted by SET/)BS(1/V/)G,G(M 21
x queue, where V 

represents vacation time and BS represents Bernoulli schedule. Thus, the time required by a unit to complete 
a service cycle, which we may call as modified service time, is given by 
  

B = B1 + B2 + V,   with probability r, 
 
                                    = B1 + B2, with probability (1 – r),  
 

so that B*(θ), the LST of the modified service time for our model is given by 
 

)(B* θ = )(V)(B)(rB)(B)(B)r1( **
2

*
1

*
2

*
1 θθθ+θθ−  

 
and the  first two moments of B are given by 
  

    E(B) = |
0

* )(B
d

d

=θ
θ

θ
− = E(B1) + E(B2) + rE(V), 

    E(B
2
) = |

0

*

2

2
2 )(B

d

d
)1(

=θ
θ

θ
−  

                        = E( +)B2
1 )V(rE)B(E 22

2 + + 2[E(B1)E(B2) + rE(V){E(B1) + E(B2)}]. 
        . 
3. QUEUE SIZE DISTRIBUTION AT A RANDOM EPOCH 
 

 In this section, we first set up the system state equations for the queue size distribution at a random epoch 

by treating the elapsed FSS time, SSS time and vacation time as supplementary variables. Then we solve the 

equations and derive the probability generating function (PGF) for it. We define 
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        =λ batch arrival rate, 

  
   X = size of the arriving batch (a random variable), 
    
   ak = Prob [ X = k ], 
              

   X(z) = ∑
∞

=1k

k
k ,az  the PGF of X,  

                       E[X[k]] = E[X(X – 1) ... (X – k + 1)] (< ∞),  the k th factorial moment of X. 
 

 Further, it may be noted that V(x), S(x) and Bi(x) being distribution functions, we have V(0) = 0, V(∞) = 1,  

S(0) = 0, S(∞) = 1, Bi(0) = 0 and Bi(0) = 0  for i = 1, 2  and  that V(x), S(x) and Bi(x) are continuous at x = 0,  
so that  
 

)x(V1

)x(dV
dx)x(v

−
= , 

 

)x(S1

)x(dS
dx)x(

−
=η , 

 

)x(B1

)x(dB
dx)x(

i

i
i −

=µ , i = 1,2 

 
are the first order differential functions (hazard rates) of V,S and Bi (i = 1,2) respectively. 
 

 Let NQ(t) be the queue size at time 't' , )t(B0
1  be the elapsed FSS time at time 't' , )t(B0

2 be the elapsed 

SSS time at time 't' , )t(S0 be the elapsed setup time at time 't'  and )t(V0 be the elapsed vacation time at 

time 't' . Further,  we introduce the random variable 

       =)t(Y 0, if the server is turned off at time 't' , 

                1, if the server is busy with FSS at time 't' , 

                              2, if the server is busy with SSS at time 't' , 

               3, if the server is on vacation at time 't' . 

                            4, if the server is on setup at time 't' . 

 

 Thus the supplementary variables )t(B0
1 , )t(B0

2 , )t(S0  and )t(V0  are introduced in order to obtain a 

bivariate Markov process })t(),t(N{ Q δ , where 0)t( =δ  if 0)t(Y = , )t(B)t( 0
1=δ  if 1)t(Y = , )t(B)t( 0

2=δ  if 

2)t(Y = ,  )t(V)t( 0=δ  if 3)t(Y =  and  )t(S)t( 0=δ  if 4)t(Y =  and define the following limiting probabilities 

 

   obPrLimP
t

0,0
∞→

=  [ ,n)t(NQ = 0)t( =δ ], 

 

   obPrLimdx)x(P
t

n,1
∞→

=  [ ,n)t(NQ = );t(B)t( 0
1=δ  dxx)t(Bx 0

1 +≤< ], ,0x > 1n ≥ , 

 

   obPrLimdx)x(P
t

n,2
∞→

=  [ ,n)t(NQ = );t(B)t( 0
2=δ  dxx)t(Bx 0

2 +≤< ], ,0x > 1n ≥ , 

 

   obPrLimdx)x(R
t

n
∞→

=  [ ,n)t(NQ = );t(V)t( 0=δ  dxx)t(Vx 0 +≤< ], ,0x > 0n ≥ , 

 

   obPrLimdx)x(Q
t

n
∞→

=  [ ,n)t(NQ = );t(S)t( 0=δ  dxx)t(Sx 0 +≤< ], ,0x > 1n ≥ . 
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 Now the analysis of the limiting behavior of this queueing process at a random epoch can be performed 
with the help of  Kolmogorov  forward equations:  
 

    ∑
=

−λ=µ+λ+
n

1i

in,1in,11n,1 ),x(Pa)x(P)]x([)x(P
dx

d
 1n,0x ≥> ,                                (3.1) 

 

    ∑
=

−λ=µ+λ+
n

1i

in,2in,22n,2 ),x(Pa)x(P)]x([)x(P
dx

d
1n,0x ≥> ,                                   (3.2) 

 

    ∑
=

−λ=η+λ+
n

1i

ininn ),x(Qa)x(Q)]x([)x(Q
dx

d
1n,0x ≥> ,                                       (3.3) 

 

              ∑
=

−λ=+λ+
n

1i

ininn ),x(Ra)x(R)]x(v[)x(R
dx

d
1n,0x ≥> ,                                        (3.4) 

  

    ,0)x(R)]x(v[)x(R
dx

d
00 =+λ+                                                             (3.5) 

 

    ∫ ∫
∞ ∞

µ−+=λ
0 0

1,2200,0 dx)x(P)x()r1(dx)x(R)x(vP ,                                                      (3.6) 

 

where 0)x(P 0,1 = , 0)x(P 0,2 = and 0)x(Q0 =   occurring in the above equations (3.1), (3.2) and (3.3) respectively.  

 
 These set of equations are to be solved under the following boundary conditions at x = 0 : 
              

   .1n;Pa)0(Q 0,0nn ≥λ=                                                                                             (3.7) 

            ∫ ∫∫
∞ ∞∞

+ ≥η++µ−=
0 0

nn

0

1n,22n,1 1n;dx)x(Q)x(dx)x(R)x(vdx)x(P)x()r1()0(P                (3.8)      

            ,dx)x(P)x()0(P

0

n,11n,2 ∫
∞

µ= 1n ≥ ,                                                                                            (3.9) 

 

   ,dx)x(P)x(r)0(R

0

1n,22n ∫
∞

+µ=  0n ≥ ,                                                                                     (3.10) 

 
and the normalizing condition  
 

   ∑∑ ∑∫∫∑∫
=

∞

=

∞

=

∞∞∞

=

∞

=+++
2

1i 1n 0n 0

n

0

n,i

1n 0

n0,0 1dx)x(Rdx)x(Pdx)x(QP .                                        (3.11) 

 
      Next, we define the following PGFs: 
 

     ∑
∞

=

=
1n

n,i
n

i ),x(Pz)z;x(P   for 1i = , 2, x > 0,  1|z| < , 

 

     ∑
∞

=

=
1n

n,i
n

i ),0(Pz)z;0(P  for 1i = , 2,  1|z| < , 
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     ∑
∞

=

=
1n

n
n ),x(Qz)z;x(Q  x > 0,  1|z| < , 

      

     ∑
∞

=

=
1n

n
n ),0(Qz)z;0(Q  1|z| < , 

             

     ∑
∞

=

=
0n

n
n ),x(Rz)z;x(R  x > 0,  1|z| < , 

  

     )0(Rz)z,0(R

1N

0n

n
n∑

−

=

= , 1|z| < . 

 
     Now proceeding in the usual manner with the equations (3.1) through (3.5), we get 
 

    x))z(X1(
i11 e)]x(B1)[z;0(P)z;x(P −λ−−= , x > 0, for i =1, 2                                         (3.12) 

 

    x))z(X1(e)]x(S1)[z;0(Q)z;x(Q −λ−−= , x > 0,                                                       (3.13) 

 

    x))z(X1(e)]x(V1)[z;0(R)z;x(R −λ−−= ,  x > 0.                                                      (3.14) 

 
     Multiplying equations (3.7) by appropriate powers of z and then taking summation over all possible values 
of ‘n’ we get 
 

                         0,0P)z(X)z;0(Q λ=                                                                        (3.15) 

 
   Hence from equations (3.13) and (3.15), we have  
 

                                        }x))z(X1(exp{)]x(S1[P)z(X)z;x(Q 0,0 −λ−−λ=                              (3.16) 

 So that 

                     ;
)]z(X1[

))]z(X(S1)[z(XP
)z;x(Q)z(Q

*
0,0

0
−

λ−λ−
== ∫

∞

                                        (3.17) 

 

where )x(dSe))]z(X(S

0

x))z(X1(* ∫
∞

−λ−=λ−λ  is the z-transform of S. Similarly by multiplying equation (3.8) by 

appropriate powers of z and taking summation over all values of n and using (3.6) and (3.16), we get on 
simplification. 
 

        )z,0(P))z(X(B)r1()z,0(zP 2
*
21 λ−λ−= + )z,0(R))z(X(zV* λ−λ +  ],1))z(X(S)z(X[zP *

o,o −λ−λλ          (3.18) 

where ∫
∞

−λ−=λ−λ
0

i
x))z(X1(*

i )x(dBe))z(X(B  is the z-transform of Bi, for i =1, 2 and V*(λ - λX(z)) = 

∫
∞

−λ−

0

x))z(X1( )x(dVe is the z-transform of V. 

      Proceeding in the similar manner with equations (3.9) and (3.10), we get 
 

                         )),z(X(B)z,0(P)z,0(P *
112 λ−λ=                                                     (3.19) 

                                      

      )).z(X(B)z;0(rP)z,0(zR *
22 λ−λ=                                                  (3.20) 
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 Now, utilizing equations (3.19) and (3.20) in equation (3.18), we get on simplification 
 

    P1(0,z) =
]λ−λλ−λλ−λ+−[

λ−λ−λ

))z(X(B))z(X(B))z(X(rV)r1((

))]z(X(S)z(X1[zP

*
2

*
1

*

*
0,0

.              (3.21) 

 
Hence from equations (3.21) and (3.12) for i = 1, we get  
 

          P1(z) = ∫
∞

0

1 dx)z,x(P = 
]−λ−λλ−λλ−λ+−−

λ−λ−λ−λ−

z))z(X(B))z(X(B)))z(X(rV)r1[(()]z(X1[

))]z(X(B1))][z(X(S)z(X1[zP

*
2

*
1

*

*
1

*
0,0

.         …(3.22)                                 

 
 Similarly from equations (3.19), (3.21) and (3.12) for i =2, we get 
 

           ∫
∞

=
0

22 dx)z,x(P)z(P  = 
]z))z(X(B))z(X(B))}z(X(rV)r1)][{(z(X1[

))]z(X(B1))[z(X(B))]z(X(S)z(X1[zP

*
2

*
1

*

*
2

*
1

*
20,0

−λ−λλ−λλ−λ+−−

λ−λ−λ−λλ−λ−
.               (3.23) 

 
 Finally, from equations (3.20), (3.19), (3.21) and (3.14), we have 
     

         ∫
∞

=
0

dx)z,x(R)z(R = 
]z))z(X(B))z(X(B))}z(X(rV)r1)][{(z(X1[

))z(X(B))z(X(B))]z(X(V1))][z(X(S)z(X1[r
*
2

*
1

*

*
2

*
1

**

−λ−λλ−λλ−λ+−−
λ−λλ−λλ−λ−λ−λ−

.            (3.24) 

 

 The unknown constant o,oP  can be determined by using the normalizing condition (3.11), which is 

equivalent to 1)1(R)1(Q)1(P)1(PR 210 =++++ . Thus we have 

 

                                                     ;
)S(C

)1(
P o,o

ρ−
=                                                                    (3.25) 

 

where )V(rE)B(E)B(E){X(E 21 ++λ=ρ  is the utilization factor of this system and C(S) = [1+λE(S)]. So that the 

expected number of arrivals during the turned off period plus a random setup period E(N) (say). 
 

E(N ) = E(X)C(S) = E(X))[1 + λE(S)]. 
 
 Note that the equation (3.24) represents the steady state probability that the server is idle  but available in 

the system. Also from equation (3.25), we have ρ < 1, which is the stability condition under which the steady 
state solution exist. Consequently, the system state probabilities can be obtained from equations (3.17), 
(3.21), (3.22),(3.24) and (3.25). Thus we get  
 

    Prob [the server is on setup period] = Q(1) = 
)]S(E1[

)1)(S(E

λ+
ρ−λ

 

             

    Prob [the server is on vacation] = R(1) = )V(E)X(Erλ  

               

    Prob [the server is busy with FPS] = P1(1) = )B(E)X(E 1λ  

               

    Prob [the server is busy with SPS] = P2(1) = )B(E)X(E 2λ           

 
 Again by generalized idle period here we mean that turned off period plus a random setup period. Thus the 
system is idle if and only if either the server is on turned off or on a random setup period. Hence we have  
 

Prob [The system is idle] = Prob [The server is on turned off period] 
                     
                                                                          +  Prob [The server is on a random setup period] 
 

                                                                    = (1 - ρ).  
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 Let )z(zR)z(Q)z(P)z(PP)z( 210,0 ++++=ψ  be the PGF of the queue size distribution at a random epoch, 

then 
  

           ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−λ−λλ−λλ−λ+−
λ−λλ−λλ−λ+−−ρ−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
λ−λ−

=ψ
z))z(X(B))z(X(B))]z(X(rV)r1[(

))z(X(B))z(X(B))]z(X(rV)r1)[(z1)(1(

)]z(X1)[S(C

))z(X(S)z(X1
)z(

*
2

*
1

*

*
2

*
1

**

.           (3.26) 

 
4. ANALYSIS OF THE QUEUE SIZE DISTRIBUTION 
 
 In this section, we derive the system state probabilities and analyze the PGF of the queue size distribution 
to provide its appropriate interpretation. Now after some algebric rearrangement with first term of the 
expression (3.26), we may write  
                   

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

λ−λ
λ−λ−

⎥
⎦

⎤
⎢
⎣

⎡
λ+

λ
+

λ+
λ−λ

=
−

λ−λ−
))z(X)(S(E

))z(X(S1

)]S(E1[

)S(E

)]S(E1[

))z(X(S

)]z(X1)[S(C

))]z(X(S)z(X1[ ***

 = ξ(z) = (say) 

 
 For further analysis of this model let us define the following events: 
 

T0 =  length of the turned off period 
 

T1  =  length of the generalized idle period. 
 
 Clearly  
 

λ
=

1
)T(E 0  

 

and       
λ

λ+
=+=

)]S(E1[
)T(E)S(E)T(E 01 . 

 

 Now 
)]S(E1[

1

)T(E

)T(E

1

0

λ+
=  is the proportion of expected amount of time the server is on turned off period 

given that the system is idle. Hence by the theory of regeneration process long fraction of time the server is 
on turned off period given that the system is idle which occur with probability 
 
Prob [The server is on turned off period / The system is idle] 
                                     

= α=
λ+ )]S(E1[

1
 (say) 

 
 Similarly it can be shown that  
 
Prob [The server is on a random setup period / The system is idle] 
                                     

= )1(
)]S(E1[

)S(E
α−=

λ+
λ

. 

 
 Now utilizing these interpretation in equation (4.1), we may write 
 

)z(I)1()z(I)z( Rα−+α=ξ ; 

 
where  I(z) = The PGF of the number of units arrived during a random setup period. 
 

= ))z(X(S* λ−λ  
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and )z(IR = The PGF of the number of units that arrived during the residual life of the random setup period. 

                 

     = 
))z(X)(S(E

))]z(X(S1[ *

λ−λ
λ−λ−

 

 
 Now, the stochastic decomposition property for this model can be demonstrated easily by showing  
     

ψ(z) = [ ])z(I)1()z(I
z))z(X(B))z(X(B))]z(X(rV)r1[(

))z(X(B))z(X(B))]z(X(rV)r1)[(z1)(1(
R*

2
*
1

*

*
2

*
1

*

α−+α⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−λ−λλ−λλ−λ+−
λ−λλ−λλ−λ+−−ρ−

. 

            

              = )z()z(0 ξψ ,                                                                    (4.2) 

 

where ψ0(z), the first factor in the right hand side of (4.2),  is the PGF of the stationary queue size distribution 

of an M
X
/(G1, G2)/1 queue with vacation time under Bernoulli schedule and ξ(z) = ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
λ−λ−
)z(X1)[S(C

)z(X(S)z(X1 *

 is 

the PGF of the number of units present in the system  during an idle period.  More specifically, we may call 

ξ(z) the additional queue size distribution caused by the generalized idle period.  
 

 We may note that the expression for ψ0(z),in the right hand side of (4.9) can also be obtained easily from 
the well known Pollaczek-Khinchine formula, by replacing the service time distribution by our modified service 

time distribution ).(B)(B)](rV)r1[()(B *
2

*
1

** θθθ+−=θ  

 
 Let K(z) be the PGF of a batch of customers who arrived during our modified service time B, then 
  

K(z) = ))z(X(B))z(X(B))]z(X(rV)r1[( *
2

*
1

* λ−λλ−λλ−λ+−  

and   

.)]V(rE)B(E)B(E)[X(E)1(K 21
' ρ=++λ=  

 

 Now utilizing )z(K in Pollaczek-Khinchine formula (e.g. see Medhi [20], p-116), we may write 

 

  ψ0(z) = 
z)z(K

)z(K)z1())1(K1( '

−
−−

= ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−λ−λλ−λλ−λ+−
λ−λλ−λλ−λ+−−ρ−
z))z(X(B))z(X(B))]z(X(rV)r1[(

))z(X(B))z(X(B))]z(X(rV)r1)[(z1)(1(
*
2

*
1

*

*
2

*
1

*

;  

                                                                                                                           
which is the first factor in the right hand side of equation (4.2). 
 
 In particular, if we take r = 0 (i.e. if there is no server vacation) then from equation (4.2), we get  
 

ψ(z) = ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−λ−λλ−λ−

λ−λλ−λλ−λ−−ρ−

]z))z(X(B))z(X(B)][z(X1)[S(C

))z(X(B))z(X(B)]z(X(S)z(X1)[z1)(1(
*
2

*
1

*
2

*
1

*

; 

 
which is the PGF of queue size distribution at a random epoch of an M

X
/(G1, G2)/1 queue with a random setup 

time. In such a model, the total service time required by an arriving unit to complete both stages of service is 

B = B1 + B2, so that )(B)(B)(*B *
2

*
1 θθ=θ  and ρ = λE(X)[E(B1) + E(B2)] < 1. Note that some aspects of the 

M
X
/G/1 type of queue with a random setup time have been discussed by Choudhury [4].  

 
Remark 4.1. 
 
 It is important to note here that the stationary queue size distribution at a random epoch of 

M
X
/ SET/)BS(1/V/)G,G( 21 queue given in equation (4.2) decomposes into the distributions of two 

independent random variables, viz. 
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 (I) The stationary queue size distribution of an M
X
/ )BS(1/V/)G,G( 21  queue with a vacation time under Bernoulli 

schedule (a SET independent random variable)(represented by the first term) and  
 
(II) The queue size distribution at a random epoch given that the server is idle  due to number of arrivals 

during the turned off period plus a random setup period (a SET related random variable) (represented by 
the second factor). 

 
5. RELATED VACATION MODEL  
            
 Now form the utility point of view the idle time, our model can also be considered as a case of multiple 
vacation model. Under the multiple vacation policy (MVP) the server keeps on taking vacations of random 

length till it finds at least one unit waiting in the system to start a busy period. Now putting SV ≅  and taking 

limit 0→α  in the above equation (4.2), we get  

 

        
]z))z(X(B))z(X(B))}z(X(rV)r1))[{(z(X)(V(E

))z(X(B))z(X(B))]z(X(rV)r1))][(z(X(V1)[z1)(1(
)z(lim

*
2

*
1

*

*
2

*
1

**

0 −λ−λλ−λλ−λ+−λ−λ

λ−λλ−λλ−λ+−λ−λ−−ρ−
=ψ

→α
 = ψ1(z) (say)       (5.1)                        

 

which is the PGF of the queue size distribution at a random epoch of an )BS(1/V/)G,G(M 21
X  queue, under 

MVP. 
 
 Next, if we assume batch arrivals with MVP but without the second stage service, then with 

1))z(X(B*
2 =λ−λ , we have )]V(rE)B(E)[X(E 1 +λ=ρ and equation (5.1) yields  

 

            
]z))z(X(B))}z(X(rV)r1))[{(z(X)(V(E

))z(X(B))]z(X(rV)r1))][(z(X(V1)[z1)(1(
)z(

*
1

*

*
1

**

1
−λ−λλ−λ+−λ−λ

λ−λλ−λ+−λ−λ−−ρ−
=ψ                (5.2) 

 

which is the PGF of the queue size distribution at a random epoch of an )BS(1/V/)G,G/(M 21
X under MVP. 

Note that the above result was derived by Servy [1986] (also see Takagi [1991], p. 230) for single unit arrival 
case. Also, we note here that for r = 0 the equation (5.2) agrees with the equation (2.11) of Choudhury [2002].   
 
6.  QUEUE SIZE DISTRIBUTION AT A DEPARTURE EPOCH 
 
 Recently, Choudhury and Krishnamoorthy [2003] obtained the PGF of the queue size distribution  
at a departure epoch for M

X
/G/1 queue with a random setup time by using the argument of embedded  

Markov chain. However, in this section an attempt has been made to obtain the PGF for our  
M

X
/(G1, G2)/V/1(BS)/SET queue. Following argument of PASTA we state that a departing customer will see 'j' 

customers in the queue just after a  departure if and only if there were (j + 1) customers in the queue just 

before the departure. Now, denoting {πj; j ≥ 0} as probability that there are 'j' customers in the queue at a 
departure epoch, we may write 
 

∫
∞

+µ−=π
0

1j,220j dx)x(P)x()r1(k + ∫
∞

0

j0 dx)x(R)x(vk , j  ≥ 0, 

 
where k0 is the normalizing constant. 
 

 Let π(z) be the PGF of {πj; j ≥ 0}, then utilizing equations (3.19), (3.20), and (3.21) we get 
  

            π(z) = ∑
∞

=

π
0j

j
jz =  

]z))z(X(B))z(X(B))}z(X(rV)r1[{(

))z(X(B))z(X(B))]z(X(rV)r1[())]z(X(S)z(X1[Pk
*
2

*
1

*

*
2

*
1

**
0,00

−λ−λλ−λλ−λ+−

λ−λλ−λλ−λ+−λ−λ−λ
           (6.1) 

 

 Now, using the normalizing condition π(1) = 1, (5.2) yields  
 

K0 =
0,0P)N(E

)1(

λ
ρ−

. 
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  Thus we have  
 

   π(z) = 
]z))z(X(B))z(X(B))}z(X(rV)r1)[{(N(E

))z(X(B))z(X(B))]z(X(rV)r1[())]z(X(S)z(X1)[1(
*
2

*
1

*

*
2

*
1

**

−λ−λλ−λλ−λ+−
λ−λλ−λλ−λ+−λ−λ−ρ−

             (6.2) 

 

Hence the relationship between ψ(z) and π(z) is given by 
 

           π(z) = 
)z1)(X(E

)]z(X1[

−
−

 ψ(z)=  H(z)π(z)ξ(z),                                             (6.3) 

 

where H(z) =
)z1)(X(E

)]z(X1[

−
−

, is the PGF of the number of customers placed before an arbitrary customer (tagged 

customer) in a batch in which the tagged customer arrives. This number is given as backward recurrence time 
in the discrete time renewal process where renewal points generated by the arrival size random variable.  
This is due to the randomness nature of the arrival size random variable. 
 
 In particular, if we take r =1 in the above equation (6.2), we get  
 

             
]z))z(X(B))z(X(B))z(X)[(N(E

))z(X(B))z(X(B))z(X(V))]z(X(S)z(X1)[1(
)z(

*
2

*
1

*
2

*
1

**

−λ−λλ−λλ−λ
λ−λλ−λλ−λλ−λ−ρ−

=π               (6.4) 

 

where now we have )](V(E)B(E)B(E)[X(E 21 ++λ=ρ <1). 

 

 Note that (5.4) is the PGF of the departure point queue size distribution of 1/)G,G/(M 21
X  limited service 

queue with a single vacation and a random setup time. In such a model, if there is at least one unit in the 
system at the end of a vacation, the service is immediately started otherwise the server waits until a batch of 

customer arrives. Also we note that some aspects of this type of  1/G/M  queueing system without a random 

setup time was considered by Takagi [1991] (e.g. see page-230). However, a model of similar nature for 

regular 1/G/MX  queue with limited service was also studied by Kuechen [1979]. 

 
 Now setting z=0 in equation (5.2), we get 
 

π(0) =
)N(E

)1( ρ−
= π0; 

 
which is the steady sate probability that no unit is waiting in the system at the departure point of time. Hence 

the relationship between π0 and P0,0 is given by 
          

00,0 )X(EP π= . 

 
 This exhibits an interesting phenomenon. It states that an observer is more likely to find the system empty 
than a departing customer leaves the system. 
 
Remark 6.1. 
 
 From equation (5.4), we observe that the departure point queue size distribution of M

X
/(G1, G2)/V/1(BS)/SET 

queue is the convolution of three independent random variables: one (the first factor) is the number of units 
places before a tagged customer in a batch in which this tagged customer arrives. This is due to randomness 
property of the size of the arriving batch. The interpretations of the other two random variables are provided  
in Remark.4.1. The result obtained in this section is quite general and it covers many situations (e.g. see 
Takagi [1991]). 
 
7. EXPECTED BUSY PERIOD 
  
 An interesting result which falls outside the preceding result is expected busy period. Hence in this section 
an attempt has been made to obtain the expected busy period. To obtain it we follow the argument of 
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alternating renewal process, which seems to be simpler and elegant. We now define busy period as the 
length of the time interval that keeps the server busy without interruption. This continues up to the instant 
when the server becomes free again i.e. the system becomes empty again. We now define 
  

T1 = length of the generalized idle period 

                            and   

Tb = length of the busy period. 
 

 Now T1  and  Tb generalizes an alternating renewal process and therefore we may write 
  

                                                           
)1()T(E

)T(E

1

b

ρ−
ρ

= .                                                            (7.1) 

 

 Now since 
λ

λ+
=

)}S(E1{
)T(E 1   (see section – 4), therefore from equation (7.1) we get  

                         
)1)}(S(E1[

)V(E)X(rE

)1)](S(E1[

)]B(E)B(E)[X(E
)T(E 21

b ρ−λ+
+

ρ−λ+
+

=                                          (7.2) 

 

 Now if we take r = 0   and E(B2) = 0 thus )B(E)X(E 1λ=ρ  the above equation (7.2) reduces to  

 

E(Tb) =
)]B(E)X(E1[

)]S(E1)[B(E)X(E

1

1

λ−
λ+

 

      

                                                                            = ;
)1(

)S(E

)1(

)B(E)X(E 1

ρ−
ρ

+
ρ−

                                                        (7.3) 

 
which agrees with the result obtained by Choudhury and Krishnamoorthy [2003]. Note that for E(S) = 0 the 
above equation (7.3) agrees with the result obtained by Chaudhury [1995]. 
         
8. MEAN QUEUE SIZE 
 
 In this section we derive the queue size distribution at random epoch as well as at departure epoch of this 

model. Let 
1QL  be the mean queue size of this SET/)BS(1/V/)G,G/(M 21

X  queue at a random epoch. Then  

 

         
1QL = 

dz

)z(dψ
 at z =1 

 

                      = ρ+ =
[ ]
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)V(rE)B(E)B(E)X(E 22
2

2
1

22
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++λ

 

 

                        
[ ]

)1(2

)V(rE)B(E)B(E))1X(X(E 21
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++−λ

+  

 

                   +
( )

)1(

)}B(E)B(E){V(rE)B(E)B(E)X(E 2121
22

ρ−
++λ

+ )S(E)X(Eλ  

 

                   + 
)X(E2

)1X(X(E

2

)S(E)X(E 2 −
+

λ
                                                         (8.1) 

 

 Again let 
2QL  be the mean queue size of this SET/)BS(1/V/)G,G/(M S21

X  queue at departure epoch, 

then we have  
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2QL = 

dz

)z(dπ
at z =1 

 

               = ρ+ =
[ ]

)1(2

)V(rE)B(E)B(E)X(E 22
2

2
1

22
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++λ

 

 

                        +
[ ]

)1(2

)V(rE)B(E)B(E))1X(X(E 21
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                       +
( )

)1(

)}B(E)B(E){V(rE)B(E)B(E)X(E 2121
22

ρ−
++λ

 

 

               +
)N(E

)}S(E1)){1X(X(E)]S(E)S(E)[X(E 22 λ+−+λ+λ
                        (8.2) 

 

 Note that for r = 0, E(B2) = 0 = )B(E 2
2  wet mean queue size of the  M

x
/G/1 queue with a random setup time. 

Also we note that for E(S) = 0 = )S(E 2 we get mean queue size of the )BS(1/V/)G,G/(M 21
X  queue. Such a 

model was considered by Madan [2001] for single unit arrival case. 
 

 Further, let WQ denote the mean waiting time of an arbitrary customer for this SET/)BS(1/V/)G,G(M S21
X  

queue. Then WQ can  be obtained from equation (8.1) by utilizing  Little's  formula WQ = QL)X(Eλ . 
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