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An Interview with 

Elizabeth Munch 

 

Elizabeth Munch is an Assistant Professor in 

the Department of Mathematics and 

Statistics at the University at Albany, State 

University of New York.  She received her 

doctoral degree in mathematics from Duke 

University under the supervision of John 

Harer.  In addition to her degree in 

mathematics, Prof. Munch also has a degree 

in harp performance from the Eastman 

School of Music. 

 

Ken: Could you please give us a brief 

autobiographical sketch, perhaps 

emphasizing aspects that led to your 

becoming a mathematician? Also, I know 

you also have a degree in harp performance 

from the Eastman School of Music and I’m 

curious if there was a time when you were 

trying to decide between a career in music 

and one in math? 

 

Elizabeth: I took a very nonstandard road to 

get where I am now.  When I was in high 

school, I loved both math and music and 

was trying to decide what to do in college.  I 

was involved in many activities with both.  I 

played with the Rochester Philharmonic 

Youth Orchestra and the Hochstein Youth 

Orchestra.  I already had a decent amount of 

work playing harp at weddings and parties.  

I was also on my high school’s math league 

team, and was on the Upstate New York 

ARML team for a few years.  I was several 

years advanced in math in school, so I was 

taking multivariable calculus as a senior.  I 

ended up deciding on going to college in 

harp performance for a few reasons.  First, I 

was already studying harp with one of the 

best professors in the country, Kathleen 

Bride, at Eastman and wanted to see where 

it would take me.  Maybe it was also 

because I always felt like I fit in better with 

the music crowd than the math crowd.  

Maybe I was just stubborn and wanted to 

prove to everyone that I could succeed as a 

musician. 

 

In any case, I ended up at Eastman as only a 

music major.  For me, music changed when 

it went from being a hobby to being a job.  I 

just wasn’t as happy with spending day after 

day in a practice room.  I was too much of a 

perfectionist, and that combined with stage 

fright made high pressure performances 

incredibly rough.  However, luckily for me, 

Eastman is part of the University of 

Rochester.  So, I was able to start taking 

other classes to try to figure out what I 

wanted to do if I didn’t want to do music.  I 

started with language classes and astronomy 

since I think I was still too stubborn to admit 

that I had made the wrong choice.  Well, 

maybe I should clarify that.  I still believe 

going to music school was the right choice 

for me at the time and I would not have 

landed where I am now without that 

experience.  However, after finally starting 

to take math classes, I decided to add a math 

degree to my music degree (I did finish 

both!). 

 

Ken: Wow, doing both sounds quite 

challenging!  Was it difficult? 

 

Elizabeth: The hardest part with trying to 

do a dual degree was the fact that the two 

programs were on different campuses, so I 

spent a lot of time on a bus going the 10 

miles back and forth between the downtown 

Eastman Campus and the main River 

Campus.  There were also issues with 

scheduling since, for example, I had to be in 

orchestra every semester which met MWF 

afternoons from (I may be misremembering) 

1-3 pm.  This meant that a lot of classes that 

I wanted or needed for my math degree were 

not available to me since I couldn’t be on 
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Dear Reader, 
 

We’re committed to producing quality math educational 
content and make every effort to provide this content to you 
for free. 

We are also committed to surviving as a nonprofit! 
 For this issue, those who do not subscribe to the print 
version will be missing out on the remainder of this interview 
with Prof. Elizabeth Munch and some other content.   We hope 
that you consider the value of such content and decide that the 
efforts required to produce such content are worthy of your 
financial support. 
 We know that mathematical interest and talent is 
unrelated to economic status, which is why we provide so 
much content for free.  But we hope that those of you who are 
comfortable financially will help us to continue in our efforts. 
 So, please consider subscribing to the Bulletin.  Thanks 
to our sponsors, subscriptions cost $36/year.  With a 
subscription, you have also gained access to our mentors via 
email and the ability to influence content in this Bulletin.  Visit 
www.girlsangle.org/page/bulletin_sponsor.html for more 
information. 
 
Thank you and best wishes, 
Ken Fan 
President and Founder 

  Girls’ Angle: A Math Club for Girls 
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The American Mathematical Society is generously offering a 25% discount on the two book set 
Really Big Numbers and You Can Count On Monsters to readers of this Bulletin.  To redeem, go 
to http://www.ams.org/bookstore-getitem/item=MBK-84-90 and use the code “GIRLS” at checkout. 
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America’s Greatest Math Game: Who Wants to Be a Mathematician. 
 

(advertisement) 
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A series of Rips complexes. 
 
Each image consists of the same point 
cloud.  In each image, purple disks of 
radius r are centered on each data point.  
An edge is drawn between two data points 
if their disks overlap.  Successive images 
show disks of increasing radius.  As the 
radius increases, the topology of the 
purple region changes.  Images courtesy of 
Prof. Munch. 



 

© Copyright 2015 Girls’ Angle.  All Rights Reserved.                                                                10 

The Laws of Probability1 
Part 1: What Makes a Coin Fair? 
by Elizabeth S. Meckes 
 

Everyone knows what it means to toss a fair coin, right?  It means that it’s equally likely 
to land on heads or tails.  But what does that really mean?  You toss it once, it lands on heads, so 
what?  Is it fair?  Is it unfair?  How do you know? 

At this point, you’re probably going to tell me that I should toss it a bunch of times.  If it 
lands on heads every time, we’re pretty sure it’s not a fair coin.  We know what should happen, 
and it pushes us a little closer to knowing what fair means: if we toss the coin a lot of times, we 
should get about equal numbers of heads and tails.  And that’s perfectly fine for a Saturday 
afternoon, but not very satisfying to a mathematician. 

There’s a big difference between what we mean when we talk about “laws” in physics 
and when we talk about “laws” in mathematics.  In physics, we’re trying to describe the reality 
that we see, and to do it accurately enough to be able to make valid predictions.  But in math, 
even though we often start with real, physical observations like coin tosses, our mindset is 
different.  We want to come up with some axioms (statements we will assume) which seem 
reasonable based on our observations and are as simple as possible; then we want to see how 
much we can prove.  Our goal is to start from these very simple assumptions, things we feel 
comfortable assuming, and prove that the more complicated things we think we’ve observed 
follow just from those axioms. 

Understanding what a fair coin is is a great way to see the difference between 
mathematical and physical laws at work.  The idea that I can’t predict whether the coin lands on 
heads or tails is very hard to turn into a mathematical axiom; it’s not even clear how to test it by 
experiment.  The suggestion I imagined you making before, that I should check fairness by 
tossing the coin a lot, led us to the general idea that a coin is fair if when you toss it a lot of 
times, it lands on heads about half the time.  But that’s still awfully fuzzy.  We could make it 
sound a bit math-ier by saying that if Hn is the number of times out of n tosses that the coin lands 

on heads, then we should have lim / 1/ 2
n n

H n
→∞

= .  But really I’m just conning you with fancy 

language and notation.  If I toss the coin n times, I get a certain number for Hn.  And then if I do 
it again, I get a different number: Hn is random!  Even if I could toss a coin an infinite number of 
times in order to take the limit, how do I know I’d get the same thing if I did the whole process 
again? 

The answer that probabilists have settled on is that going through limits is a bad way to 
define fair.  Instead, we assume that we can assign numbers called “probabilities” to events in a 
way that satisfy a small set of axioms which are so simple and so intuitively reasonable that we 
don’t mind taking them as a starting point.  Then, we prove the limiting statement above: that if 
you toss the coin a lot of times, the limiting proportion of times it lands on heads tends to 1/2. 

So, what are these axioms?  The first one is that I can assign a numerical probability, 
which I’ll call P(E) to any event E.  Sticking just with coin tossing, an event is anything I can 
describe in terms of the outcomes of a series of coin tosses.  So E could be the event that the first 
three tosses are heads, heads, tails.  Or it could be that the seventh toss is tails.  Or it could be 
that every other toss is a heads (forever – this is math, so I can have an infinite sequence of 
tosses).  I moreover assume that for any event E, P(E) is between 0 and 1 (including possibly 0 
or 1).  For example, if E is the event that the first toss is heads, and I’m trying to talk about a fair 
coin, then P(E) should be 1/2. 

                                                 
1 This content was supported in part by a grant from MathWorks. 
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My second axiom is very simple: if E is just 
the event that something, anything, happens, then 
P(E) = 1.  And here’s the third and final one, which 
is as complicated as it gets: if I have a bunch of 
different events E1, E2, . . . with no overlap, then I 
can figure out the probability that one of them 
happens by adding up the individual probabilities.  
This has to work even if there are infinitely many 
Ek. 

And that’s it.  Those are the properties that 
something I call probability has to have.  Now, 
back to our fair coin.  Like we said above, if E is 
the event that the first toss is heads, then P(E) 
should be 1/2.  And if E2 is the event that the 
second toss is heads, then P(E2) should be 1/2.  
And so on; each individual toss should be equally 
likely to be heads or tails.  But there’s one other 
important feature of a fair coin: independence.  
How the toss came out on the first try shouldn’t tell 
you anything about what’s going to happen next, 
and vice versa.  For our coin tossing, this means 
that all of the possible strings of outcomes of a 
given length should be equally likely: e.g., the first 
three trials have eight total possible outcomes, as 
shown at right, and each has probability 1/8. 

Phew.  Okay, now we really know what a 
fair coin is.  So what about tossing it a lot of times?  
We can start from just the three axioms above and 
prove what’s called the strong law of large 
numbers.  In symbols, if Hn is the number of heads 
in the first n tosses of a fair coin, then the strong 
law of large numbers says that 
 

1
lim 1

2→∞

 
= = 

 

n

n

H

n
P . 

 
What this means is that it’s essentially certain that 
in an infinite sequence of independent tosses of a 
fair coin, the limiting proportion of heads would be 
1/2.  I really have to have that cheater word 
“essentially” there: it’s of course possible that the 
limit might be something else (or even not exist).  
In principle, I could toss a fair coin forever and get heads every single time.  But what the strong 
law of large numbers says is that the probability that that will happen is zero.  It’s not that it can’t 
happen, but it won’t. 

So caveats and technicalities aside, modern mathematics has triumphed: we can start with 
very simple, very reasonable assumptions about how anything called probability should work, 
and our intuition about what fairness should mean becomes a theorem we can prove.
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The Benefit of 
Being Off 
by Lightning Factorial 
edited by Jennifer Silva 
 

“Stop going for the bull’s-eye!” 
I checked my dart-throwing 

motion and turned to face the audience. 
“Who said that?” I asked. 
A young woman waved back. 
“Oh, hi Addie!”  It was Addie 

Summer.  “Did you just tell me not to 
aim at the bull’s-eye?” 

“Yes!” she replied. 
“Do you want me to lose?” I 

asked incredulously.  “The bull’s-eye is 
worth 50 points.” 

“If you can hit it,” commented Addie. 
“But even if I’m off a little bit, I still get 25 points,” I responded. 
“I’ve been keeping track of where your darts land.  According to my computations, you 

have a higher expected score if you aim a little bit below and to the left of the bull’s-eye,” said 
Addie rather matter-of-factly. 

“Really?  Is that so?” I said in disbelief. 
“It is.  Do the math.” 
 
Thus playing darts led me back to mathematics.  I’ve since thought about Addie’s advice 

and reluctantly concluded that she’s right.  Here’s why: 
The idea can be illustrated clearly with a simplified version of darts.  Imagine a 

“dartboard” that consists of 5 square targets in a row with the following point values: 
  

6 0 10 0 6 

 
If I could hit the 10-point middle target every time, then I should definitely aim at it with 

every throw.  But the point Addie was making is that I, like most casual dart players, am unable 
to hit what I’m aiming at every single time (if ever!). 

To better model my dart throwing, let’s suppose that in this simplified dart game, I hit my 
target with frequency X, where X is a number between 0 and 1, inclusive.  For example, if X = 1, 
that means that I can always hit my target, but if X = 1/2, it means that I hit my target only half 
the time.  And suppose that my dart lands just to the left of my target with frequency Y.  I’ll 
assume that I miss just to the right exactly as often as I miss just to the left, so the frequency that 
I miss just to the right is also Y.  Finally, I’ll assume that I’m skilled enough that I never miss 
further off than just to the right or left of my target, that is, Y + X + Y = 1. 

Using this information, I can figure out what my average score will be if I aim for 
different parts of this simplified dartboard. 
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Suppose, for instance, that I aim directly at the 10-point target.  With N dart throws, I can 
expect XN of them to hit the target; YN of them will hit the 0-point target on the left, and YN of 
them will hit the 0-point target on the right.  Therefore, with N dart throws, I would expect to 
score 10XN points, or 10X points per dart on average. 

On the other hand, suppose I deliberately aim for the leftmost 6-point target.  In this case, 
a fraction X of my throws will hit the 6-point target, a fraction Y will land off the left side of the 
dartboard, and a fraction Y will land on the left 0-point target.  Each dart I throw would now be 
worth 6X points on average. 

The figure below gives the expected points per dart depending on where I aim. 
 

6X 16Y 10X 16Y 6X 

 
Notice that aiming for one of the 0-point targets makes each of my darts worth, on 

average, 16Y points.  What Addie was suggesting is that it is possible for 16Y > 10X, meaning 
that I’d be better off aiming at the 0-point target instead of the 10-point target! 

Let’s figure out when 16Y > 10X. 
Recall that we are also assuming that X + 2Y = 1.  Therefore X = 1 – 2Y.  If we substitute 

1 – 2Y for X in our inequality, the inequality becomes 16Y > 10(1 – 2Y) = 10 – 20Y.  Rearranging 
terms and simplifying, this can be rewritten Y > 5/18. 

Since X = 1 – 2Y, the inequality Y > 5/18 is equivalent to X < 4/9. 
In other words, if I hit my target less than 4/9 of the time, it would indeed be better for 

me to aim off-target! 
 

In actuality, if I throw hundreds of darts at 
a target, the dart hole pattern created will look 
something like the picture on the left.  To obtain a 
more realistic sense of what happens when you 
throw darts, take a large sheet of paper and mark it 
with a bull’s-eye.  I used a big red X for my 
bull’s-eye.  Affix the paper to a wall (that nobody 
minds you throwing darts at!).  Then throw several 
darts, always aiming for the bull’s-eye.  Make sure 
to stand the same distance from the bull’s-eye that 
you plan to stand from a dartboard when you play 
darts.  The resulting pattern of holes provides a 
good sampling of what happens when you aim at a 
specific target.  The picture at left shows the 
results of my throwing 200 darts, aiming at the 
center of the red X. 

Using this dart hole pattern, I can make a more realistic computation for the average 
value of a dart when I aim at a particular location.  I superimpose the dart hole pattern over the 
dartboard, placing the center of the red X over the target point that I intend to aim at.  I then tally 
up the score I would get with the 200 throws that make up the dart hole pattern and divide the 
result by 200 to get the average points per dart. 

Let’s go through this procedure on our simplified dartboard. 
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The setup for this process is shown at 
right for the case where I aim at the center of the 
left 0-point target.  As you can see, many throws 
would not even land on the dartboard!  Darts that 
land off of the dartboard as well as darts that land 
in the white target contribute no points to my 
score.  Darts that land in the green targets 
contribute 6 points each, and darts that land in the 
red target contribute 10 points each. 

I count 22 dart holes in the left green 
target, 27 dart holes in the red target, and no dart 
holes in the right green target, giving me a total 
score of 22 × 6 + 27 × 10 = 402 points.  I then 
divide by 200 to get 2.01 as the average points per dart. 

On the other hand, if I aim for the center of the 
red target, as shown at left, I count 5 dart holes in the 
left green target, 43 in the red target, and none in the 
right green target.  All other dart holes contribute 
nothing to my score.  So with these 200 dart throws, my 
score would be 5 × 6 + 43 × 10 = 460 points, or 2.3 
points per dart on average. 

It turns out that with this simplified dartboard 
and a more realistic count, it would be better for me to 
aim at the middle of the red target instead of the middle 
of the left 0-point target, but not by much. 

To determine the ideal spot for me to aim at to 
maximize my score, I should perform this computation 

several times, moving the center of the red X all over the dartboard.  I then can aim at the point 
that yields the largest average points per dart.  Mathematically, we can define a function s that 
takes a point P and returns the average points per dart when I aim at P.  With P as the center of 
the red target, we just computed that s(P) = 2.3; when P is the center of the left 0-point target, we 
found that s(P) = 2.01.  The operation we perform to compute s is known as convolution.  We 
can say that s is the “convolution of the dart hole distribution with the dartboard score values.”  
One can think of the dartboard score values as giving the points per dart as a function of where 
you should aim if you can always hit your target, and s as giving the points per dart as a function 
of where you should aim when accounting for the distribution of how you miss the target.   

The only difference between our simplified 
example and a regulation dartboard (illustrated at right) 
is that a regulation dartboard presents a more complex 
scoring map.  The central red circle is worth 50 points 
and the small green ring around it is worth 25 points.  
The twenty pizza slices are worth points as shown.  
However, there are two rings, the double ring and the 
triple ring.  Putting a dart in the double ring is worth 
twice the value of the corresponding pizza slice, whereas 
putting a dart in the triple ring is worth three times the 
value of the corresponding pizza slice.  The most 
valuable region on the dartboard is the red triple ring 
section in the 20-point sector, which is worth 60 points. 
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Although there’s a more complex scoring system, the 
same principles apply.  We take our dart hole distribution and 
place the center of the X over the point at which we intend to 
aim.  We compute the score we’d receive by examining 
where each dart hole is located.  Finally, we divide the total 
score by the number of dart holes to get the average points 
per dart.  We do this by placing the center of the X over 
many different points and finding the point that yields the 
largest average points per dart.  That point is where we 
should aim when we play.  The illustration at left shows the 
set-up I’d use to compute the average points per dart if I were 
to aim at the triple ring region inside the 19-point sector. 

If you look closely at the pattern of dart holes (the 
blue dots in the illustration above left), you’ll see that 
although there’s a hole in the 5-point and 20-point sectors, 

there is no hole in the 9-point sector.  You might feel that this does not accurately reflect the 
truth, especially since the 9-point sector seems closer to the center of the red X than the 5-point 
sector.  Having no holes in the 9-point sector may be just a result of dumb luck.  We might 
suspect that if we created a dart hole pattern with many more dart throws, we’d eventually see 
some holes in the 9-point sector.  Indeed, the more darts you throw, the more accurately you’ll be 
able to determine the average points per dart.  Unfortunately, the more darts you throw, the more 
tedious the computations become. 

So, rather than use an actual dart hole pattern obtained by having you throw millions of 
darts at a wall, we can instead make some assumptions about how the dart holes will be 
distributed and encode this information in a density function.  For each point P, the density 
function returns the limit of the fraction of dart holes in a circle centered at P divided by the area 
of the circle, as the radius of the circle tends to 0 and the number of dart throws increases without 
bound.  By modeling your dart throwing with an appropriate mathematical function, we can 
eliminate quirks that result from peculiarities of chance and we can make computations without 
having to trouble you with the task of throwing millions of darts.  However, by replacing an 
actual sampling of dart holes with a mathematical model, we must bear in mind that we might 
introduce simplifying assumptions that are at odds with reality. 

Using a density function is exactly what researchers Ryan Tibshirani, Andrew Price, and 
Jonathan Taylor did to determine optimal targeting in darts.1  They assumed a Gaussian 
distribution of dart holes.  The Gaussian distribution is informally called the “bell curve,” 
because a graph of its density function resembles a church bell.  The skill level of a player is 
reflected in the concentration of dart holes near the target.  The more concentrated, the higher the 
skill level.  The authors found that for an unskilled player such as me, the optimal place to aim is 
in the 8-point sector, about a sixth of the way from the center toward the rim of the dartboard. 
 
Take it to Your World 
 Make a dart hole distribution and compute your ideal dartboard aiming spot. 
 Read the paper by Tibshirani, Price, and Taylor from the footnote below.  It contains neat 
“heat maps” that represent the function we denoted by s – the average points per dart as a 
function of aiming location – for various skill levels.  As you’d expect, the more skilled the 
player, the more s looks like the dartboard scoring map. 

                                                 
1 Tibshirani, R. J., Price, A. and Taylor, J. (2011). A statistician plays darts.  Journal of the Royal Statistical Society: 

Series A (Statistics in Society), 174, 213-226. 
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By Anna B. 
 

Anna continues thinking about irreducible polynomials over the finite field with 2 elements. 
  

Mathematics is a journey of discovery.  As mathematicians take this journey, they follow many wrong 

turns, believe many incorrect facts, and encounter many mysteries. Out of these twists and turns comes 

the reward of truth and understanding. However, if you look at math books, you might get the impression 

that mathematicians rarely err. In this column, Anna gives us a peek into her mathematical process of 

discovery, bravely allowing us to watch even as she stumbles. 
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In Search of Nice Triangles, Part 2 
by Ken Fan | edited by Jennifer Silva 
 
Emily: Jasmine?  Are you in the mood to think about triangles? 
 
Jasmine: You read my mind! 
 
Emily: Last time, we saw that the only triangles with integer side lengths and angles that 
measure a rational multiple of 360° are the equilateral ones with integer side lengths. 
 
Jasmine: Right. 
 
Emily: I’m eager to explore what triangles exist if we weaken our conditions on either the side 
lengths or the angle measures. 
 
Jasmine: Same here.  What do you say we look for triangles with integer side lengths, but only 
two angles that are a rational multiple of 360°? 
 
Emily: Okay! 
 
Jasmine: From last time, we know that if all the side lengths of a triangle are integers, then the 
cosines of all of the angles must be rational numbers. 
 
Emily: Yes, that follows from the law of cosines. 
 
Jasmine: And we know exactly which “nice” angles have rational cosines, thanks to the 
Chebyshev polynomials and the rational root theorem.  Up to multiples of 360°, they are the 
angles which have degree measures 0, 60, 90, 120, 180, 240, 270, and 300. 
 
Emily: Since the angles in a triangle add up to 180°, we can ignore angles that are 180° or larger; 
the 0° angle can’t be part of a triangle, so that leaves only the 60°, 90°, and 120° angles to play 
with. 
 
Jasmine: If two of the angles measure 60°, then the third angle also measures … 
 
Emily: Hold on!  I feel so silly! 
 
Jasmine: What? 
 
Emily: The angles of a triangle add up to 180°! 
 
Jasmine: Yeah? 
 
Emily: That means that if two of the angles are rational multiples of 360, so will be the third! 
 
Jasmine: Oh yeah!  That puts us right back in the situation we studied last time.  There’s no such 
thing as a triangle that has exactly two angles that measure a rational multiple of 360°. 
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Emily: Maybe there are interesting nice triangles with integer side lengths but only one angle 
that measures a rational multiple of 360°. 
 
Jasmine: Let’s find out! 
 
Emily: The one nice angle must measure 60°, 90°, or 120°. 
 
Jasmine: If the special angle is 90°, then we’re looking for 
Pythagorean triples. 
 
Emily: Ah, that’s right.  That’s been well studied. 
 
Jasmine: Let’s concentrate on the other cases then, starting with triangles with a 60° angle. 
 
Emily: Okay.  Here’s a figure. 
 
Emily draws the figure at right. 
 
Jasmine: We want a, b, and c to be positive integers.  From the 
law of cosines, we know that c2 = a2 + b2 – 2ab cos 60°.  Since 
cos 60° = 1/2, this simplifies to c2 = a2 + b2 – ab. 
 
Emily: This is almost like looking for Pythagorean triples.  For Pythagorean triples, we’d be 
looking for positive integer solutions to the equation c2 = a2 + b2. 
 
Jasmine: It’s so similar that I bet we can solve our problem by tweaking one of the methods for 
finding the Pythagorean triples. 
 
Emily: Do you remember how to find Pythagorean triples? 
 
Jasmine: I remember one way.  First, one divides the equation c2 = a2 + b2 by c2 to obtain the 
equation 1 = (a/c)2 + (b/c)2.  This shows that every Pythagorean triple is similar to a right triangle 
with rational leg lengths and hypotenuse 1.  So we look for points with rational coordinates on 
the unit circle x2 + y2 = 1. 
 
Emily: How are those found? 
 
Jasmine: One way is to consider lines through the point (-1, 0).  Non-vertical lines through (-1, 0) 
intersect the unit circle x2 + y2 = 1 twice, once at (-1, 0) and once at some point (p, q).  If p and q 
are rational numbers, then the slope of the line is a rational number.  And, as it turns out, if the 
slope of the line is a rational number, p and q will be rational numbers as well.  So in this way, 
rational points on x2 + y2 = 1 are parametrized by rational numbers m: for each such m, we look 
at where the line through (-1, 0) with slope m intersects x2 + y2 = 1. 
 
Emily: I see.  Let’s try to modify the argument to solve our problem. 
 
Jasmine: Okay.  First, we divide the equation c2 = a2 + b2 – ab by c2 and obtain the equation 
1 = (a/c)2 + (b/c)2 – (a/c)(b/c). 
 

For more on Pythagorean triples, 
see pages 22-24 of Volume 8, 
Number 3 of this Bulletin. 
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Learn by Doing 
Finite Fields  

by Girls’ Angle Staff 
 

In last issue’s interview, Judy Walker suggested some exercises that use finite fields.  
Anna, of Anna’s Math Journal, took up Judy’s suggestion and continues her exploration in this 
issue.  This installment of Learn by Doing is intended for readers who are unfamiliar with finite 
fields but would like to follow Anna’s investigation and learn enough about finite fields to start 
doing some explorations on their own. 
 Typically, finite fields are introduced only after introducing Galois theory because Galois 
theory provides powerful tools that can be used to understand their structure.  Here, we’ll attempt 
a different approach that requires little by way of prerequisites.  For the last problems, it will 
help if you know about polynomials, the Euclidean algorithm, and Bézout’s theorem. 
 
 First, what is a field?  The rational numbers, the real numbers, and the complex numbers 
are all examples of a field.  All three sets are equipped with operations of addition and 
multiplication, and both operations enjoy many useful properties.  If we isolate some of the 
common properties of these three examples, we obtain the definition of a field. 
 So a field is a set that has two binary operations, called addition and multiplication, 
which are denoted by “+” and juxtaposition, respectively.  For any elements a, b, and c in the 
field, we must have: 
 

0. Closure of addition and multiplication: a + b and ab are in the field.  
1. The commutative laws of addition and multiplication: a + b = b + a and ab = ba. 
2. The associative laws of addition and multiplication: (a + b) + c = a + (b + c) and 

(ab)c = a(bc). 
3. The distributive law: a(b + c) = ab + ac. 
4. Existence of an additive identity: there exists an element, denoted 0 and called “zero,” 

such that a + 0 = 0 + a = a. 
5. Existence of additive inverses: for any a in the field, there exists an element, denoted 

-a, such that a + (-a) = (-a) + a = 0. 
6. Existence of a multiplicative identity: there exists an element different from 0, denoted 

1 and called “one,” such that a1 = 1a = a. 
7. Existence of multiplicative inverses for nonzero elements: for any a ≠ 0 in the field, 

there exists an element, denoted a-1 or 1/a, such that aa-1 = a-1a = 1. 
 
These properties are collectively referred to as the “field axioms.” 
 
Problem 1.  Let Q the set of rational numbers together with the usual operations of addition and 
multiplication.  Check that all field axioms are satisfied.  Convince yourself that the set of real 
numbers and the set of complex numbers with the usual addition and multiplication are fields. 
 
Problem 2.  Let Z the set of integers together with the usual operations of addition and 
multiplication.  Z is not a field.  Which field axioms fail? 
 

Problem 3.  Notice that Z ⊂ Q.  Show that Q is the smallest field that contains Z in the sense 

that if Z ⊂ F ⊂ Q and F is a field, then F = Q. 
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Problem 4.  Let Q[ 2 ] be the set of real numbers of the form a + b 2 , where a and b are 

rational numbers (with the usual operations of addition and multiplication).  Show that Q[ 2 ] is 
a field. 
 
Problem 5.  Use the field axioms to show that in any field, multiplication by 0 always produces 
0.  That is, for all x in the field, we must have x0 = 0.  (Hint: Use the distributive law and the fact 
that 0 + 0 = 0.) 
 
Problem 6.  Show that for any field element a, we have (-1)a = -a.  (Note: If your reaction to this 
and the previous question is that there’s nothing to prove, it probably means that you are 
recognizing these facts from your experience with multiplication of real numbers.  The point of 
problems 5 and 6 is that these facts are true in any field because they follow from the field 
axioms.  There is no field axiom that explicitly states that you can get the additive inverse of a by 
multiplying it with the additive inverse of 1, so it is something that requires proof.  That is, show 
that (-1)a = -a is a logical implication of the field axioms.) 
 
Problem 7.  In fact, show that for any a and b in a field, (-a)b = -(ab). 
 
In a field, we generally write a – b for a + (-b).  We also use standard symbols for integers as 
shorthand for elements in a field obtained by repeated addition of 1 or -1.  (E.g. 2 is 1 + 1 and -3 
is -1 – 1 – 1.) 
 
A finite field is a field that has a finite number of elements. 
 
Problem 8.  Perhaps the most sensible first question to ask about finite fields is, “Do they exist?”  
To answer, one might begin by trying to construct the smallest possible one.  Because 0 and 1 
must be distinct, there is no field with 1 element.  But perhaps there is a field with just the 2 
elements 0 and 1.  Let F2 = {0, 1}.  Define an addition and multiplication on F2 that makes it a 
finite field.  To assist, here are addition and multiplication tables already filled in with entries 
that are dictated explicitly by the field axioms.  (Here, “×” stands for multiplication.) 
 

+ 0 1 

0 0 1 

1 1  
 

× 0 1 

0  0 

1 0 1 
 

 
Be sure to check that all the field axioms hold. 
 
Note that there is only one way to complete the addition and multiplication tables to create a 
field with 2 elements. 
 
Problem 9.  Make addition and multiplication tables for a field with the elements 0, 1, and a. 
 
Problem 10.  Make addition and multiplication tables for a field with the elements 0, 1, p, and q. 
 
The last two problems probably required a good bit of work to do completely.  It would be rather 
tedious if all finite fields had to be constructed by explicitly showing their addition and 
multiplication tables and then checking that all the field axioms are satisfied.  So let’s explore 
other, more efficient ways to build finite fields. 
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Problem 11.  (Modular arithmetic.)  The set of integers Z with standard addition and 
multiplication satisfies most of the field axioms.  We will exploit this by modifying Z to create a 
number of finite fields.  If you are familiar with modular arithmetic, you’ll recognize it here. 
 
A. Fix a positive integer N.  Define an equivalence relation ~ on Z by declaring that a ~ b if and 
only if N divides b – a.  (Show that this is an equivalence relation.)  Let Z/NZ denote the set of 
equivalence classes in Z with respect to ~.  If a is in Z, denote by a  the equivalence class of a.  
(For a brief intro to equivalence relations, see page 10 of Volume 1, Number 3 of this Bulletin.) 
 
B. Let a, b, c, and d be in Z.  Suppose that a ~ b and c ~ d.  Show that a + c ~ b + d and ac ~ bd. 
 
Part B shows that it is sensible to define binary operations of addition and multiplication by the 

formulas a b a b+ = +  and ab ab= . 
 
C. Show that so defined, addition and multiplication satisfy the field axioms if and only if N is a 
prime number.  (As you do this, note how commutativity and associativity follow from 
commutativity and associativity of integer addition and multiplication, which you can assume.)  
Which field axioms fail when N is composite? 
 
Thus, for any prime number p, there exists a finite field with p elements. 
 
Problem 12.  Compare Z/4Z to the field you constructed in Problem 10. 
 
Let E and F be fields.  We say that they are isomorphic if there exists a bijective map f : E → F 
such that f(0) = 0, f(1) = 1 (note that in these equations, the 0 and 1 on the left side of the equal 
sign are the additive identity and multiplicative identity in E, whereas on the right side of the 
equal sign, they are the additive identity and multiplicative identity in F), and, for all x and y in 
E, we have f(x + y) = f(x) + f(y) and f(xy) = f(x)f(y). 
 
Problem 13.  Let F be a finite field.  Show that F contains a field isomorphic to Z/pZ for some 
prime number p.  (Hint: Consider the sequence 1, 1 + 1, 1 + 1 + 1, . . ..  Because F is finite, this 
sequence cannot produce new elements of F forever.) 
 
Let F be any field.  Denote by F[x] the polynomials in x with coefficients in F.  That is, 
 

F[x] = { c0 + c1x + c2x
2 + . . . + cdx

d | d is a nonnegative integer and ck in F for all 0 ≤ k ≤ d }. 
 
Define addition and multiplication in F[x] in the usual way.  That is, if a0 + a1x  + . . . + adx

d and 
b0 + b1x + . . . + bex

e are in F[x], then 
 

(a0 + a1x + . . . + adx
d) + (b0 + b1x + . . . + bex

e) = (a0 + b0) + (a1 + b1)x + (a2 + b2)x2 + . . . 
 
and 
 
(a0 + a1x + . . . + adx

d)(b0 + b1x + . . . + bex
e) = a0b0 + (a0b1 + a1b0)x + (a0b2 + a1b1 + a2b0)x2 + . . . 

 
We are going to mimic the construction of Z/NZ replacing Z with F[x] and the modulus N with a 
polynomial p(x).  (Before reading further, can you guess what condition will be needed on p(x) to 
obtain a field?) 
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Problem 14.  A. Fix a polynomial p(x) in F[x].  Define an 
equivalence relation on F[x] by declaring that a(x) is equivalent 
to b(x) if and only if b(x) – a(x) is divisible by p(x).  (Show that 
this is an equivalence relation.)  Let F[x]/(p(x)) denote the set of 
equivalence classes in F[x] with respect to this equivalence 

relation.  If a(x) is in F[x], denote by ( )a x  the equivalence class 

of a(x). 
 
B. Let a(x), b(x), c(x), and d(x) be in F[x].  Suppose that a(x) is equivalent to b(x) and c(x) is 
equivalent to d(x).  Show that a(x) + c(x) is equivalent to b(x) + d(x) and a(x)c(x) is equivalent to 
b(x)d(x). 
 
Part B shows that we can define an addition and multiplication in F[x]/(p(x)) by using the 

formulas ( ) ( ) ( ) ( )a x b x a x b x+ = +  and ( ) ( ) ( ) ( )a x b x a x b x= . 

 
C. Show that so defined, addition and multiplication satisfy all the field axioms except that 
nonzero polynomials do not always have a multiplicative inverse. 
 

D. Show that every element of F[x]/(p(x)) can be expressed as ( )a x  where a(x) is a polynomial 

of degree less than the degree of p(x).  (Hint: Use polynomial division and look at the 
remainder.) 
 
A polynomial p(x) is said to be irreducible if and only if p(x) cannot be written as a product of 
two polynomials each of degree 1 or greater. 
 
E. Show that all field axioms are satisfied in F[x]/(p(x)) if p(x) is irreducible.  (Suggestion: Adapt 
the Euclidean algorithm for finding the greatest common factor of two integers to polynomials 
and use it to prove a polynomial version of Bézout’s theorem.  For more on Bézout’s theorem, 
see p. 16 of Volume 6, Number 5 of this Bulletin.) 
 
Problem 15.  Let p(x) = x2 + x + 1 in F2[x].  Show that p(x) is irreducible.  Show that F2[x]/(p(x)) 
is a finite field with 4 elements.  (Also, take a look at Anna’s Math Journal in the previous issue 
of this Bulletin.)  
 
Problem 16.  Can you construct a field with 32 elements?  (Hint: Find an irreducible polynomial 
of degree 5 in F2[x].  Also, take a look at Anna’s Math Journal in this issue of the Bulletin.) 
 
Problem 17.  Construct a field with 9 elements. 
 
Problem 18.  Prove that all finite fields have pn elements for some prime number p and positive 
integer n. 
 
Problem 19.  Prove that for any prime number p and positive integer n, there exists a field with 
pn elements. 
 
Problem 20.  Prove that any two finite fields of the same size are isomorphic. 
 
Remember, subscribers are always welcome to email us with any thoughts and questions! 

Let f(x) and g(x) be polynomials 
in F[x].  We say that f(x) is 
divisible by g(x) (or, g(x) divides 
into f(x)) if there exists a 
polynomial q(x) in F[x] such that 

f(x) = q(x)g(x). 
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Notes from the Club 

 
These notes cover some of what happened at Girls’ Angle meets.  In these notes, we include 
some of the things that you can try or think about at home or with friends.  We also include some 
highlights and some elaborations on meet material.  Less than 5% of what happens at the club is 
revealed here. 
 

Session 17 - Meet 1 
September 17, 2015 

Mentors: Bridget Bassi, Karia Dibert, Anna Ellison, Alexandra 
Fehnel, Jennifer Matthews, Wangui Mbuguiro, Debbie 
Seidell, Sara Sussman, Isabel Vogt, Jane Wang (Head) 

 

 Permutohedrons can be good stepping stones into higher dimensional thinking.  If you 
have students who are comfortable with equations for straight lines and planes, first challenge 
them to describe in detail the 2-dimensional permutohedron, which is the convex hull of the 6 
points obtained by permuting the coordinates of (1, 2, 3).  Next, ask them to describe in detail the 
3-dimensional permutohedron, which is the convex hull of the 24 points obtained by permuting 
the coordinates of (1, 2, 3, 4).  And when they’ve provided a good description of that, move on to 
the 4-dimensional permutohedron, which is the convex hull of the 120 points obtained by 
permuting the coordinates of (1, 2, 3, 4, 5). 
 In general, the n-dimensional permutohedron is the convex hull of the (n + 1)! points 
obtained by permuting the coordinates of (1, 2, 3, ..., n, n + 1) in Euclidean (n + 1)-dimensional 
space.  Challenge students to find, for each k-dimensional face of the permutohedron, linear 
equations whose solution set intersects the permutohedron in that face. 
 

Session 17 - Meet 2 
September 24, 2015 

Mentors: 
 

Bridget Bassi, Karia Dibert, Anna Ellison, 
Neslly Estrada, Debbie Seidell, Sara Sussman, 
Isabel Vogt, Jane Wang (Head) 

 
Spirographs became the launch point of at least three different mathematical journeys.  

Some members began thinking about stars that can be formed by connecting each dot in a 
circular arrangement of n dots to the dot k over in the clockwise direction, for some fixed k.  
Other members investigated the geometric effect of different gear ratios.  And another group of 
members began to work out an algorithm for finding the center of a circle.  That is, how can you 
find the center of a circle if you’re given a circle without its center marked? 

The first journey (concerning n-pointed stars) is equivalent to understanding the 
solubility of linear equations in one variable modulo n, an extremely important topic in algebra 
and number theory.  For more on such stars, check out the series Star Tips in this Bulletin, 
Volume 8, Numbers 1-4. 

The third journey led members to make the following conjecture: If equally spaced 
parallel line segments are drawn all the way across the face of a circle, including as many lines 
as will fit, then the center of the circle will lie on or between the two that are longest.  Can you 
prove or disprove this conjecture? 

 

Session 17 - Meet 3 
October 1, 2015 

Mentors: 
 
 
 

Bridget Bassi, Karia Dibert, Anna Ellison, 
Neslly Estrada, Jennifer Matthews, Debbie Seidell, 
Isabel Vogt, Jane Wang (Head) 
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Function madness erupted in a game that pitted two teams against each other.  Each team 
invented a function (from the set of real numbers to itself) for the other team to try to figure out.  
To figure out the functions, a team could ask for the output of the function on any input. 

 

Session 17 - Meet 4 
October 8, 2015 

Mentors: 
 

Bridget Bassi, Karia Dibert, Neslly Estrada, Jennifer 
Matthews, Debbie Seidell, Sara Sussman, Anuhya 
Vajapeyajula, Isabel Vogt, Jane Wang (Head), Sibo Wang 

 
Many problem solving efforts at this meet shared an important common theme: finding 

the simplest case that is not yet understood.  For example, consider the problem of determining 
the number of 5-dimensional faces of a 6-dimensional permutohedron.  We recognize that this 
question is an instance of the general question, “how many (n – 1)-dimensional faces does the n-
dimensional permutohedron have?”  If we are struggling to answer the original question, then 
there is a great deal of wisdom in putting aside the original question and replacing it with the 
case where n = 1.  When the n = 1 case is understood, then proceed to the case of n = 2, and so 
on.  It often happens that working systematically from the simplest case leads to more rapid 
understanding of the general case than stubbornly sticking to an attempt to resolve a more 
advanced case before the simpler cases have been examined.  Another advantage is that patterns 
are easier to detect in data collected systematically rather than haphazardly. 
 

Session 17 - Meet 5 
October 15, 2015 

Mentors: Bridget Bassi, Karia Dibert, Anna Ellison, Neslly Estrada, 
Jennifer Matthews, Debbie Seidell, Jane Wang (Head) 

 
Some members built models of polyhedra using straws and string.  Others explored 

criteria for when a shape can be tiled with dominos. 
 

Session 17 - Meet 6 
October 22, 2015 

Mentors: 
 

Bridget Bassi, Anna Ellison, Jennifer Matthews, 
Debbie Seidell, Isabel Vogt, Jane Wang (Head) 

 Some members worked on creating an algorithm for how to make a jam sandwich. 
 Another question that arose at this meet: can a mesh consisting of regular hexagonal cells 
made of rigid edges but flexible joins flex into a 3-dimensional shape, or will it be rigid? 
 

Session 17 - Meet 7 
October 29, 2015 

Mentors: 
 

Bridget Bassi, Karia Dibert, Neslly Estrada, 
Isabel Vogt, Jane Wang (Head), Anuhya Vajapeyajula 

 
Jane opened the meet by presenting some interesting and sometimes spooky estimation 

and approximation problems.  She discussed the value of estimation and some techniques for 
making good estimations.  Good estimation involves identifying the most important influences 
and thinking in terms of orders of magnitude. 

For some problems, approximation is extremely useful.  For example, the motion of a 

simple pendulum is governed by a differential equation of the form 
2

2
sin 0

d x
k x

dt
+ = , where k is 

a constant and x is a function of t.  The solution to this differential equation cannot be expressed 
in terms of elementary functions.  However, if the pendulum is only slightly perturbed, x will be 
small, and for small values of x, sin x is closely approximated by x.  By approximating sin x with 
x for small values, useful approximate solutions can be obtained to the differential equation.
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Calendar 

 
Session 17: (all dates in 2015) 
 

September 17 Start of the seventeenth session! 
 24  
October 1  
 8  
 15  
 22  
 29  
November 5  
 12  
 19  
 26 Thanksgiving - No meet 
December 3 Jinger Zhao, Two Sigma 
 10  

 
 
Session 18: (all dates in 2016) 
 

January 28 Start of the eighteenth session! 
February 4  
 11  
 18 No meet  
 25  
March 3  
 10  
 17  
 24 No meet 
 31  
April 7  
 14  
 21 No meet 
 28  
May 5  

 
Girls’ Angle has been hosting Math Collaborations at schools and libraries.  Math Collaborations 
are fun math events that can be adapted to a variety of group sizes and skill levels.  For more 
information and testimonials, please visit www.girlsangle.org/page/math_collaborations.html. 
 
Girls’ Angle can offer custom math classes over the internet for small groups on a wide range of 
topics.  Please inquire for pricing and possibilities.  Email: girlsangle@gmail.com. 
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Girls’ Angle: A Math Club for Girls 
Membership Application 

 
Note: If you plan to attend the club, you only need to fill out the Club Enrollment Form because all 

the information here is also on that form. 

 
 
Applicant’s Name: (last) ______________________________ (first) _____________________________ 
 
Parents/Guardians: _____________________________________________________________________ 
 
Address (the Bulletin will be sent to this address): 
 
 
 
 
 
Email: 
 
 

Home Phone: ____________________________               Cell Phone: ____________________________ 
 
Personal Statement (optional, but strongly encouraged!): Please tell us about your relationship to 
mathematics.  If you don’t like math, what don’t you like?  If you love math, what do you love?  What 
would you like to get out of a Girls’ Angle Membership? 
 
 
 
 
 
 
 
 
——————————————————————————————————————————- 
 
The $36 rate is for US postal addresses only.  For international rates, contact us before applying. 
 
Please check all that apply: 
 

□ Enclosed is a check for $36 for a 1-year Girls’ Angle Membership. 
 

□ I am making a tax free donation. 
 
Please make check payable to: Girls’ Angle.  Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA 
02141-0038.  Please notify us of your application by sending email to girlsangle@gmail.com. 
 

 
A Math Club for Girls 
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Girls’ Angle 

Club Enrollment 
 

Gain confidence in math!  Discover how interesting and exciting math can be!  Make new friends! 

 
The club is where our in-person mentoring takes place.  At the club, girls work directly with our mentors 
and members of our Support Network.  To join, please fill out and return the Club Enrollment form.  
Girls’ Angle Members receive a significant discount on club attendance fees. 
 
Who are the Girls’ Angle mentors?  Our mentors possess a deep understanding of mathematics and 
enjoy explaining math to others.  The mentors get to know each member as an individual and design 
custom tailored projects and activities designed to help the member improve at mathematics and develop 
her thinking abilities.  Because we believe learning follows naturally when there is motivation, our 
mentors work hard to motivate.  In order for members to see math as a living, creative subject, at least one 
mentor is present at every meet who has proven and published original theorems. 
 
What is the Girls’ Angle Support Network?  The Support Network consists of professional women 
who use math in their work and are eager to show the members how and for what they use math.  Each 
member of the Support Network serves as a role model for the members.  Together, they demonstrate that 
many women today use math to make interesting and important contributions to society. 
 
What is Community Outreach?  Girls’ Angle accepts commissions to solve math problems from 
members of the community.  Our members solve them.  We believe that when our members’ efforts are 
actually used in real life, the motivation to learn math increases. 
 
Who can join? Ultimately, we hope to open membership to all women.  Currently, we are open primarily 
to girls in grades 5-12.  We welcome all girls (in grades 5-12) regardless of perceived mathematical 
ability.  There is no entrance test.  Whether you love math or suffer from math anxiety, math is worth 
studying. 
 
How do I enroll?  You can enroll by filling out and returning the Club Enrollment form. 
 
How do I pay?  The cost is $20/meet for members and $30/meet for nonmembers.  Members get an 
additional 10% discount if they pay in advance for all 12 meets in a session.  Girls are welcome to join at 
any time.  The program is individually focused, so the concept of “catching up with the group” doesn’t 
apply. 
 
Where is Girls’ Angle located?  Girls’ Angle is located about 12 minutes walk from Central Square on 
Magazine Street in Cambridge, Massachusetts.  For security reasons, only members and their 
parents/guardian will be given the exact location of the club and its phone number. 
 
When are the club hours? Girls’ Angle meets Thursdays from 3:45 to 5:45.  For calendar details, please 
visit our website at www.girlsangle.org/page/calendar.html or send us email. 
 

Can you describe what the activities at the club will be like?  Girls’ Angle activities are tailored to 
each girl’s specific needs.  We assess where each girl is mathematically and then design and fashion 
strategies that will help her develop her mathematical abilities.  Everybody learns math differently and 
what works best for one individual may not work for another.  At Girls’ Angle, we are very sensitive to 
individual differences.  If you would like to understand this process in more detail, please email us! 
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Are donations to Girls’ Angle tax deductible?  Yes, Girls’ Angle is a 501(c)(3).  As a nonprofit, we 
rely on public support.  Join us in the effort to improve math education! Please make your donation out to 
Girls’ Angle and send to Girls’ Angle, P.O. Box 410038, Cambridge, MA 02141-0038. 
 

Who is the Girls’ Angle director? Ken Fan is the director and founder of Girls’ Angle.  He has a Ph.D. 
in mathematics from MIT and was a Benjamin Peirce assistant professor of mathematics at Harvard, a 
member at the Institute for Advanced Study, and a National Science Foundation postdoctoral fellow.  In 
addition, he has designed and taught math enrichment classes at Boston’s Museum of Science, worked in 
the mathematics educational publishing industry, and taught at HCSSiM.  Ken has volunteered for 
Science Club for Girls and worked with girls to build large modular origami projects that were displayed 
at Boston Children’s Museum. 
 

Who advises the director to ensure that Girls’ Angle realizes its goal of helping girls develop their 

mathematical interests and abilities?  Girls’ Angle has a stellar Board of Advisors.  They are: 
Connie Chow, executive director of Science Club for Girls 
Yaim Cooper, lecturer, Harvard University 
Julia Elisenda Grigsby, assistant professor of mathematics, Boston College 
Kay Kirkpatrick, assistant professor of mathematics, University of Illinois at Urbana-Champaign 
Grace Lyo, Instructional Designer, Stanford University 
Lauren McGough, graduate student in physics, Princeton Univeresity 
Mia Minnes, SEW assistant professor of mathematics, UC San Diego 
Beth O’Sullivan, co-founder of Science Club for Girls. 
Elissa Ozanne, associate professor, The Dartmouth Institute 
Kathy Paur, Kiva Systems 
Bjorn Poonen, professor of mathematics, MIT 
Gigliola Staffilani, professor of mathematics, MIT 
Bianca Viray, assistant professor, University of Washington 
Karen Willcox, professor of aeronautics and astronautics, MIT 
Lauren Williams, associate professor of mathematics, UC Berkeley 

 

At Girls’ Angle, mentors will be selected for their depth of understanding of mathematics as well as 

their desire to help others learn math.  But does it really matter that girls be instructed by people 
with such a high level understanding of mathematics?  We believe YES, absolutely!  One goal of 
Girls’ Angle is to empower girls to be able to tackle any field regardless of the level of mathematics 
required, including fields that involve original research.  Over the centuries, the mathematical universe 
has grown enormously.  Without guidance from people who understand a lot of math, the risk is that a 
student will acquire a very shallow and limited view of mathematics and the importance of various topics 
will be improperly appreciated.  Also, people who have proven original theorems understand what it is 
like to work on questions for which there is no known answer and for which there might not even be an 
answer.  Much of school mathematics (all the way through college) revolves around math questions with 
known answers, and most teachers have structured their teaching, whether consciously or not, with the 
knowledge of the answer in mind.  At Girls’ Angle, girls will learn strategies and techniques that apply 
even when no answer is known.  In this way, we hope to help girls become solvers of the yet unsolved. 
 
Also, math should not be perceived as the stuff that is done in math class.  Instead, math lives and thrives 
today and can be found all around us.  Girls’ Angle mentors can show girls how math is relevant to their 
daily lives and how this math can lead to abstract structures of enormous interest and beauty. 
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Girls’ Angle: Club Enrollment Form 
 
Applicant’s Name: (last) ______________________________ (first) _____________________________ 
 

Parents/Guardians: _____________________________________________________________________ 
 

Address: ___________________________________________________________ Zip Code: _________ 
 

Home Phone: _________________ Cell Phone: _________________ Email: ______________________  

 
Personal Statement (optional, but strongly encouraged!): We encourage the participant to fill out the 
optional personal statement on the next page. 
 
Permission: I give my daughter permission to participate in Girls’ Angle. I have read and understand 
everything on this registration form and the attached information sheets. 
 
___________________________________________________            Date: _______________________ 
(Parent/Guardian Signature) 
 
Participant Signature: ___________________________________________________________________ 
 
Members: Please choose one. 
 

□ Enclosed is $216 for one session 
(12 meets) 
 

□ I will pay on a per meet basis at $20/meet. 

Nonmembers: Please choose one. 
 

□ I will pay on a per meet basis at $30/meet. 
 

□ I’m including $36 to become a member, 
and I have selected an item from the left. 

 
□ I am making a tax free donation. 

 
 
Please make check payable to: Girls’ Angle.  Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA 
02141-0038.  Please notify us of your application by sending email to girlsangle@gmail.com.  Also, 
please sign and return the Liability Waiver or bring it with you to the first meet. 

Please fill out the information in this box. 
 

Emergency contact name and number: ____________________________________________________________________________ 
 

 

Pick Up Info:  For safety reasons, only the following people will be allowed to pick up your daughter.  Names:  

 
___________________________________________________________________________________________ 
 

Medical Information:  Are there any medical issues or conditions, such as allergies, that you’d like us to know about? 
 
______________________________________________________________________________________________________________ 
 
Photography Release: Occasionally, photos and videos are taken to document and publicize our program in all media forms. We will 
not print or use your daughter’s name in any way. Do we have permission to use your daughter’s image for these purposes?    Yes       No 
 

Eligibility: Girls roughly in grades 5-12 are welcome.  Although we will work hard to include every girl and to communicate with you 
any issues that may arise, Girls’ Angle reserves the discretion to dismiss any girl whose actions are disruptive to club activities. 
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Personal Statement (optional, but strongly encouraged!): This is for the club participant only.  How 
would you describe your relationship to mathematics?  What would you like to get out of your Girls’ 
Angle club experience?  If you don’t like math, please tell us why.  If you love math, please tell us what 
you love about it.  If you need more space, please attach another sheet. 

  

 
Girls’ Angle: A Math Club for Girls 

Liability Waiver 
 

 I, the undersigned parent or guardian of the following minor(s) 
 
 
_____________________________________________________________________________________, 
 
do hereby consent to my child(ren)’s participation in Girls’ Angle and do forever and irrevocably release Girls’ 
Angle and its directors, officers, employees, agents, and volunteers (collectively the “Releasees”) from any and 
all liability, and waive any and all claims, for injury, loss or damage, including attorney’s fees, in any way 
connected with or arising out of my child(ren)’s participation in Girls’ Angle, whether or not caused by my 
child(ren)’s negligence or by any act or omission of Girls’ Angle or any of the Releasees. I forever release, 
acquit, discharge and covenant to hold harmless the Releasees from any and all causes of action and claims on 
account of, or in any way growing out of, directly or indirectly, my minor child(ren)’s participation in Girls’ 
Angle, including all foreseeable and unforeseeable personal injuries or property damage, further including all 
claims or rights of action for damages which my minor child(ren) may acquire, either before or after he or she 
has reached his or her majority, resulting from or connected with his or her participation in Girls’ Angle. I agree 
to indemnify and to hold harmless the Releasees from all claims (in other words, to reimburse the Releasees and 
to be responsible) for liability, injury, loss, damage or expense, including attorneys’ fees (including the cost of 
defending any claim my child might make, or that might be made on my child(ren)’s behalf, that is released or 
waived by this paragraph), in any way connected with or arising out of my child(ren)’s participation in the 
Program. 
 
 
Signature of applicant/parent: ___________________________________________________ Date: ___________________ 
 
Print name of applicant/parent: __________________________________________________ 
 
Print name(s) of child(ren) in program: ___________________________________________ 
 

 


