Exploring Data with Graphs and Numerical Summaries Section 2.1: What Are the Types of Data?

Learning Objectives

- Know the definition of variable
- Know the definition and key features of a categorical versus a quantitative variable
- 3. Know the definition of a discrete versus a continuous quantitative variable
- 4. Know the definition of frequency, proportion (relative frequencies), and percentages
- Create Frequency Tables

2

Learning Objective 1: Variable

- A variable is any characteristic that is recorded for the subjects in a study
- Examples: Marital status, Height, Weight, IQ
- A variable can be classified as either
 - Categorical, or
 - Quantitative (Discrete, Continuous)

Learning Objective 2: Categorical Variable

- A variable can be classified as <u>categorical</u> if each observation belongs to one of a set of (non-numerical) categories.
- Examples:
 - Gender (Male or Female)
 - Religious Affiliation (Catholic, Jewish, ...)
 - Type of residence (Apt, Condo, ...)
 - Belief in Life After Death (Yes or No)

Learning Objective 2: Quantitative Variable

- A variable is called quantitative if observations on it take numerical values that represent different magnitudes of the variable
- Examples:
 - Age
 - Number of siblings
 - Annual Income

Learning Objective 2:

Main Features of Quantitative and Categorical Variables

- For Quantitative variables: key features are the center and spread (variability)
- For Categorical variables: a key feature is the percentage of observations in each of the categories

Learning Objective 3: Discrete Quantitative Variable

- A quantitative variable is discrete if its possible values form a set of separate numbers, such as 0,1,2,3,....
- Discrete variables have gaps between their possible values usually they have a finite collection of values.
- Examples:
 - Number of pets in a household
 - Number of children in a family
 - Number of foreign languages spoken by an individual

Learning Objective 3: Continuous Quantitative Variable

- A quantitative variable is continuous if its possible values form an interval
- Continuous variables have an infinite number of possible values (in principle)
- Examples:
 - Height/Weight
 - Age
 - Blood pressure

Learning Objective 4: Proportion & Percentage (Relative Frequencies)

- The number of observations that fall in a certain category is the <u>frequency</u> (count) of observations in that category divided by the total number of observations
 - Frequency of that class
 Sum of all frequencies
- The Percentage is the proportion multiplied by 100. Proportions and percentages are also called **relative frequencies**.

Learning Objective 4:

Frequency, Proportion, & Percentage Example

- If 4 students received an "A" out of 40 students, then,
 - 4 is the frequency
 - 0.10 =4/40 is the proportion and relative frequency
 - 10% is the percentage .1*100=10%

10

Learning Objective 5: Frequency Table

A frequency table is a listing of possible values for a variable, together with the number of observations and/ or relative frequencies for each value

Frequency Table: Daily TV watching			
No. hours	Frequency	Percent	
0-1	232	25.6	
2-3	403	44.5	
4-5	181	20.0	
6-7	45	5.0	
8 or more	44	4.9	
Total	905	100.0	

Class Problem #3

A stock broker has been following different stocks over the last month and has recorded whether a stock is up, the same, or down in value. The results were

Performance of stock	Up	Same	Down
Count	21	7	12

- 1. What is the variable of interest
- 2. What type of variable is it?
- Add proportions to this frequency table

Exploring Data with Graphs and Numerical Summaries

Section: How Can We Describe Data Using Graphical Summaries?

Learning Objectives

- 1. Distribution
- 2. Graphs for categorical data: bar graphs and pie charts
- 3. Graphs for quantitative data: dot plot, stemleaf, and histogram
- 4. Constructing a histogram
- 5. Interpreting a histogram
- 6. Displaying Data over Time: time plots

14

Learning Objective 1: Distribution

- A distribution is an association of the possible values a variable takes with the occurrence of those values (frequency or relative frequency)
- A graph or frequency table describes a distribution in pictorial or in tabular form.

Learning Objective 2: Graphs for Categorical Variables

Using pie charts and bar graphs to summarize categorical variables

- Pie Chart: A circle having a "slice of pie" for each category
- Bar Graph: A graph that displays a vertical bar for each category

16

Learning Objective 2: Pie Charts Pie charts: used for summarizing a categorical variable Drawn as a circle where each category is represented as a "slice of the pie" The size of each pie slice is proportional to the percentage of observations falling in that category

Learning Objective 2: Bar Graphs

- Bar graphs are used for summarizing a categorical variable
- Bar Graphs display a vertical bar for each category
- The height of each bar represents either counts ("frequencies") or percentages ("relative frequencies") for that category
- Usually easier to compare categories with a bar graph than with a pie chart
- Bars for different categories don't touch

Learning Objective 3: Graphs for Quantitative Data • Dot Plot: shows a dot for each observation placed above its value on a number line • Stem-and-Leaf Plot: portrays the individual observations • Histogram: uses bars to portray the data

Learning Objective 3:
Which Graph?

Dot-plot and stem-and-leaf plot:
More useful for small data sets
Data values are retained

Histogram
More useful for large data sets
Most compact display
More flexibility in defining intervals

Learning Objective 4: Steps for Constructing a Histogram

- 1. Divide the range of the data into intervals of equal width
- Count the number of observations in each interval, creating a frequency table
- 3. On the horizontal axis, label the values or the endpoints of the intervals.
- Draw a bar over each value or interval with height equal to its frequency (or percentage), values of which are marked on the vertical axis.
- 5. Width of all bars the same and all touch
- 6. Label and title appropriately

Learning Objective 5: Interpreting Histograms Overall pattern consists of center, spread, and shape Assess where a distribution is centered by finding the median (50% of data below median 50% of data above). Assess the spread of a distribution. Shape of a distribution: roughly symmetric, skewed to the right, or skewed to the left

Learning Objective 5: Shape and Skewness

- Consider a data set of the scores of students on a very easy exam in which most score very well but a few score very poorly:
- What shape would you expect a histogram of this data set to have?
- a. Symmetric
- b. Skewed to the left
- c. Skewed to the right
- d. Bimodal

Learning Objective 6: Time Plots

- Used for displaying a time series, a data set collected over time.
- Plots each observation on the vertical scale against the time it was measured on the horizontal scale. Points are usually connected.
- Common patterns in the data over time, known as trends, should be noted.

Exploring Data with Graphs and Numerical Summaries Section: How Can We Describe the Center of Quantitative Data?

Learning Objectives 1. Calculating the mean 2. Calculating the median 3. Comparing the Mean & Median 4. Definition of Resistant 5. Know how to identify the mode of a distribution

Learning Objective 1: Mean The mean is the sum of the observations divided by the number of observations It is the center of mass $\overline{x} = \sum \frac{x}{n}$

Leaning Objectives 1 & 2:
Find the mean and median

CO₂ Pollution levels in 8 largest nations measured in metric tons per person:
2.3 1.1 19.7 9.8 1.8 1.2 0.7 0.2

a. Mean = 4.6 Median = 1.5
b. Mean = 4.6 Median = 5.8
c. Mean = 1.5 Median = 4.6

Learning Objective 3: Comparing the Mean and Median

- The mean and median of a symmetric distribution are close together.
 - For symmetric distributions, the mean is typically preferred because it takes the values of all observations into account

49

Learning Objective 3:
Comparing the Mean and Median

In a skewed distribution, the mean is farther out in the long tail than is the median

For skewed distributions the median is preferred because it is better representative of a typical observation

Symmetric Distribution

Right-Skewed Distribution

Left-Skewed Distribution

Learning Objective 4: Resistant Measures

- A numerical summary measure is resistant if extreme observations (outliers) have little, if any, influence on its value
 - The Median is resistant to outliers
 - The Mean is not resistant to outliers

51

Learning Objective 5: Mode

- Mode
 - Value that occurs most often
 - Highest bar in the histogram
 - The mode is most often used with categorical data

Exploring Data with Graphs and Numerical Summaries Section: How Can We Describe the Spread of Quantitative Data?

Learning Objectives

- Calculate the Range
- 2. Calculate the standard deviation
- 3. Know the properties of the standard deviation
- Know how to interpret the magnitude of s: The Empirical Rule

54

Learning Objective 1: Range One way to measure the spread is to calculate the range. The range is the difference between the largest and smallest values in the data set; Range = max - min The range is strongly affected by outliers

Learning Objective 2: Standard Deviation

Gives a measure of variation by summarizing the deviations of each observation from the mean and calculating an adjusted average of these deviations

$$S = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}}$$

Learning Objective 2: Standard Deviation

$$S = \sqrt{\frac{1}{(n-1)} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$

- Find the mean
- Find the deviation of each value from the mean
- Square the deviations
- Sum the squared deviations
- Divide the sum by *n-1* (for samples only)

(gives variance, or squared deviation from mean)

Learning Objective 2: Standard Deviation

Metabolic rates of 7 men (cal./24hr.): 1792 1666 1362 1614 1460 1867 1439

$$\overline{X} = \frac{1792 + 1666 + 1362 + 1614 + 1460 + 1867 + 1439}{7}$$

$$= \frac{11,200}{7}$$

$$= 1600$$

Learning Objective 2: Standard Deviation

Observations	Deviations	Squared deviations
x_{i}	$x_i - \overline{x}$	$(x_i - \overline{x})^2$
1792	1792 1600 = 192	(192)2 = 36,864
1666	1666 🖫 1600 = 66	$(66)^2 = 4,356$
1362	1362 🗑 1600 = -238	$(-238)^2 = 56,644$
1614	1614 🗑 1600 = 14	$(14)^2 = 196$
1460	1460 🖼 1600 = -140	$(-140)^2 = 19,600$
1867	1867 🖫 1600 = 267	$(267)^2 = 71,289$
1439	1439 🖼 1600 = -161	$(-161)^2 = 25,921$
	sum = 0	sum = 214,870
214,870		
$S^2 = \frac{1}{2}$	= 35,811.67	

$$s^{2} = \frac{214,870}{7-1} = 35,811.67$$
$$s = \sqrt{35,811.67} = 189.24 \text{ calories} = 35,811.67$$

Learning Objectives

- Obtaining quartiles and the 5 number summary
- 2. Calculating interquartile range and detecting potential outliers
- 3. Drawing boxplots
- 4. Comparing Distributions
- 5. Calculating a z-score

Learning Objective 1:
Percentile

The pth percentile is a value such that p percent of the observations fall below or at that value.

Learning Objective 1
Quartile Example

Find the first and third quartiles

Prices per share of 10 most actively traded stocks on
NYSE (rounded to nearest \$)

2 4 11 13 14 15 31 32 34 47

a. Q₁ = 2 Q₃ = 47
b. Q₁ = 12 Q₃ = 31
c. Q₁ = 11 Q₃ = 32
d. Q₁ = 12 Q₃ = 33

Learning Objective 1: Guidelines for Constructing Effective Graphs

- Label both axes and provide proper headings
- To better compare relative size, the vertical axis should start at 0.
- Be cautious in using anything other than bars, lines, or points
- It can be difficult to portray more than one group on a single graph when the variable values differ greatly

