
Message-level security with JAX-WS on
WebSphere Application Server V7: Integrating JEE
authorization
Skill Level: Intermediate

Henry Chung (johndoe@us.ibm.com)
Author1 job title
Author1 company

27 Jan 2010

In Part 1, you learned how to provide message level security using JAX-WS on
WebSphere Application Server V7, including how to use policy sets to encrypt and
sign messages, and how to use a UsernameToken profile for authentication. In Part
2, you'll learn how to use the UsernameToken passed in the SOAP header as the
JEE principal to provide programmatic authorization in the service provider.

Introduction

Web Services Security (WS-Security) is an OASIS standard that describes how to
implement message-level security with Web services. Specifically, WS-Security
describes how to add confidentiality (such as encryption), integrity (such as digital
signatures), and propagate security tokens for authentication (such as username
and password) in SOAP messages. However, the WS-Security specification allows
sending multiple security tokens simultaneously in the SOAP message, and typically
Java™ Platform, Enterprise Edition (JEE) Web services provider implementation
performs authorization checks based on the principal (identity) from one of the
security tokens. In this article, we'll describe how to configure WebSphere to select
which security token of the SOAP message as a JEE principal that can be used for
authorization decisions.

Note that the JEE security model supports declarative security authorization as well
as programmatic security for both Web containers and EJB containers. There are
subtle differences between using the Web container programmatic APIs (such as

Integrating JEE authorization
© Copyright IBM Corporation 2010. All rights reserved. Page 1 of 21



getUserPrincipal()) and the EJB container programmatic APIs (such as
getCallerPrincipal()). However, the scope of this article is to discuss how to
configure Web services in order to specify that one of the tokens in the SOAP
header should be used as the JEE principal. Once this principal has been set, you
can simply use the JEE security model and WebSphere Base Security APIs as you
normally would.

You can use the JEE security model for authorization either declaratively or
programmatically for both servlets and EJBs. However, for the purposes of this
article, we'll demonstrate a servlet-based Web service that uses the programmatic
JEE APIs to get the principal. You can extend the sample to use the JEE
programmatic APIs to perform programmatic authorization checks in servlet-based
base Web service providers or configure JEE role-based method-level security for
EJB. JEE declarative and programmatic security for the Web container as well as
the EJB container is covered in other materials, and are not the focus of this article.
(See Resources for more information.) Our goal is to demonstrate how to enable the
integration of the message-level security tokens for use with the JEE authorization
framework on WebSphere Application Server.

Create a JAX-WS service provider

1. Using Rational Application Developer (Application Developer) V7.5.2,
create a new dynamic Web project with a project name of
HelloWorldProject.

2. Next, create a new Java class with the name HelloWorldProvider

and copy the contents of Listing 1 into this new class.
Listing 1. HelloWorldProvider.java

package com.ibm.dwexample;
import javax.annotation.Resource;
import javax.jws.WebService;
import javax.xml.ws.WebServiceContext;

@WebService
public class HelloWorldProvider {

@Resource WebServiceContext wsCtx;

public String sayHello(String msg) {
System.out.println("[provider] received " + msg);
System.out.println("[provider] user = " + wsCtx.getUserPrincipal());
return "Hello " + msg;

}
}

The interesting part of the HelloWorldProvider code is the @Resource

WebServiceContext. This line allows the JAX-WS runtime to inject the
Web service context and enables you to access the JEE principal from

developerWorks® ibm.com/developerWorks

Integrating JEE authorization
Page 2 of 21 © Copyright IBM Corporation 2010. All rights reserved.



the context. However, in order for this code to actually return the correct
principal in Application Server, you must configure the Caller in the
service provider binding; otherwise, you may get a result of "Principal:
/UNAUTHENTICATED*quot;.

3. Right-click the HelloWorldProject and select Run As => Run on Server.
Ensure that Run server with resources on Server is selected in the
Publishing settings for WebSphere Application Server section.

4. Select a WebSphere Application Server v7.0 server profile and click
Finish.

Secure the service provider

Policy sets and policy set bindings are covered in Part 1, so we'll go straight into
creating a policy set that we'll use to specify a UsernameToken as the authentication
token for the Web service. Once this policy set has been created and attached to the
service provider, you'll create a server-side binding in which you'll specify which
token will be used as the primary security token--that is, the JEE principal. You need
to do this because the WS-Security specification allows attaching multiple tokens for
authentication, thus additional metadata is required to identify which is the primary
security token. In WebSphere, this metadata is known as the Caller and is
configured as part of the binding for WS-Security, as we'll show in this article.

We'll use the Application Server administrative console to create the policy set,
attach the policy set to your service provider, and create the binding by which this
service provider will adhere.

1. From Application Developer, right-click the Application Server V7 runtime
in the Servers view and select Administration => Run administrative
console as shown in Figure 1.
Figure 1. Launch the administrative console

2. From the administrative console, select Services => Policy sets =>
Application policy sets as shown in Figure 2.
Figure 2. Application policy sets

ibm.com/developerWorks developerWorks®

Integrating JEE authorization
© Copyright IBM Corporation 2010. All rights reserved. Page 3 of 21



3. Click New to create a new policy set.

4. Specify My UNT as the name for the new policy set and add a description
in the Description field, then click Apply .

5. Next click Add in the Policies section and choose WS-Security as the
policy to be added as shown in Figure 3.
Figure 3. New policy set

developerWorks® ibm.com/developerWorks

Integrating JEE authorization
Page 4 of 21 © Copyright IBM Corporation 2010. All rights reserved.



6. Once the policy has been added to your new policy set, simply click
WS-Security to configure it.

7. Click Main policy; you should see a screen that looks like Figure 4.
Figure 4. Configure WS-Security policy

ibm.com/developerWorks developerWorks®

Integrating JEE authorization
© Copyright IBM Corporation 2010. All rights reserved. Page 5 of 21



8. By default, the WS-Security policy is created with message-level
protection, as described in Part 1. However, in order to simplify things for
this article, disable message-level protection by unchecking Message
level protection, then clicking Apply.

9. Since our policy requires a UsernameToken to extract the JEE principal,
you need to add a UsernameToken to the WS-Security policy by doing
the following:

1. Click Request token policies in the Policy Details section of the
Main Policy.

2. Click Add Token Type and choose UserName as shown in Figure
5.

Figure 5. Add UsernameToken to Request Token policy

developerWorks® ibm.com/developerWorks

Integrating JEE authorization
Page 6 of 21 © Copyright IBM Corporation 2010. All rights reserved.



10. Specify MyUsernameToken for the Username token and leave
WS-Security 1.0 as the WS-Security version as shown in Figure 6, then
click Apply.
Figure 6. Specify UsernameToken

11. Click Save to save the changes directly to the master configuration. You
should see a screen that looks like Figure 7.
Figure 7. Configured UsernameToken policy

ibm.com/developerWorks developerWorks®

Integrating JEE authorization
© Copyright IBM Corporation 2010. All rights reserved. Page 7 of 21



12. Now that the policy set is created, you need to attach it to your service
provider. From the administrative console, select Services => Service
providers to get the list of JAX-WS service providers, and select
HelloWorldProviderService, as shown in Figure 8.
Figure 8. JAX-WS service providers

13. Check HelloWorldProviderService, click Attach Policy Set, and select
your policy set (for example, My UNT).

14. The My UNT policy set is now attached to the HelloWorldProviderService,
as shown in Figure 9.
Figure 9. Attach policy set to service provider

developerWorks® ibm.com/developerWorks

Integrating JEE authorization
Page 8 of 21 © Copyright IBM Corporation 2010. All rights reserved.



15. The policy set specifies the "what," while the bindings specify the "how."
Therefore, you need to configure policy set bindings for this service
provider. To do this:

a. Check HelloWorldProviderService, then click Assign Binding
and select New Application Specific Binding.

b. SpecifyServerUNTBinding for Bindings configuration name,
then click Add and select WS-Security to create the application
specific binding as shown in Figure 10.
Figure 10. Policy set binding configuration

Note that the binding assignment checked the policy set to
determine which policies needed to be configured. In this case, the

ibm.com/developerWorks developerWorks®

Integrating JEE authorization
© Copyright IBM Corporation 2010. All rights reserved. Page 9 of 21



policy set contained a WS-Security policy, which is why this policy
was included in the Add drop-down menu.

16. Since the WS-Security policy set that you added to your service provider
includes the UsernameToken as a required token of the requester, you
need to specify the "how" for this policy in the binding by doing the
following:

a. Display the details of ServerUNTBinding by clicking
Authentication and protection.

b. Navigate to the authentication tokens section and click
request:MyUsernameToken. You should see a screen like Figure
11.
Figure 11. UsernameToken identity

c. Keep the default values for this scenario, and click OK.

17. You now have specified that the UsernameToken to be passed in the
SOAP header according to the WS-Security specification is to be used as
the authentication token by the service provider. However, remember that
the WS-Security specification allows more than one token to be passed in
the request message, so now you'll need to specify to WebSphere which
of these tokens is to be used in creating the WebSphere credentials (in
other words, the JEE subject), so that the identity of the specific token can
be used for JEE security, such as role-based authorization checking. In
WebSphere, this is done by configuring the caller as follows:

a. Click Caller (see Figure 10) from the Callers dialog, then click New
.

b. Enter Caller for the Name.

c. Enter
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0#UsernameToken

for the Caller identity local part, as shown in Figure 12. Note that
this URL is the value of the Local part of the authentication token

developerWorks® ibm.com/developerWorks

Integrating JEE authorization
Page 10 of 21 © Copyright IBM Corporation 2010. All rights reserved.



shown in Figure 11.
Figure 12. Specify caller

d. Click OK to accept this caller, then click Save to save this binding
to the master configuration.

Consume the secure service

Perhaps the easiest way to ensure that the service consumer adheres to the policies
of the service provider is to use the same policy set. You can do this by exporting
the service provider policy set from the Application Server administrative console,
then importing it into Application Developer.

To export the policy set, do the following:

1. From the administrative console, select Services => Policy sets =>
Application policy sets.

2. Check the My UNT policy set, then click Export =>, as shown in Figure
13.
Figure 13. Export the policy set

ibm.com/developerWorks developerWorks®

Integrating JEE authorization
© Copyright IBM Corporation 2010. All rights reserved. Page 11 of 21



3. Click My UNT.zip and save the file somewhere on your local drive; for
example, c:\temp.

4. Click OK to save the file.

To import the policy set into Application Developer, do the following:

1. From the Application Developer main menu, select File => Import =>
Web services => WebSphere Policy Sets , then click Next.

2. Click Browse and select the My UNT.zip file that you exported above.
The wizard reads the zip file and displays the policy sets included in it, as
shown in Figure 14.
Figure 14. Import the policy set

developerWorks® ibm.com/developerWorks

Integrating JEE authorization
Page 12 of 21 © Copyright IBM Corporation 2010. All rights reserved.



3. Ensure that My UNT is checked and click Finish.

Now that you've imported the policy set into Application Developer, you need to
create a service consumer client to attach the policy set to:

1. In Application Developer, select File => New => Other => Java => Java
Project to create a new Java project to hold the consumer.

2. Specify HelloWorldConsumer as the Client project name, then click
Finish. If prompted to change to the Java perspective, click No.

3. Now select the service provider from which Application Developer will
generate a client proxy and select Generate => Client, as shown in
Figure 15.
Figure 15. Generate the JAX-WS client proxy

ibm.com/developerWorks developerWorks®

Integrating JEE authorization
© Copyright IBM Corporation 2010. All rights reserved. Page 13 of 21



4. From the Web Service Client wizard, ensure that IBM WebSphere
JAX-WS is the chosen Web service runtime, then click Client project:.

5. Specify HelloWorldConsumer as the Client project name, then
choose HelloWorldConsumer as the client project and click OK.

6. Accept the defaults and click Finish. Application Developer will generate
the JAX-WS client proxy class and supporting classes.

7. Right-click the generated HelloWorldConsumer project, and select New
=> Class.

8. Specify com.ibm.dwexample as the package name and ClientTest

as the Java class name, then click Finish.

9. Replace the generated client code with the code in Listing 2 and save the
file.
Listing 2. ClientTest.java

package com.ibm.dwexample;
import com.ibm.dwexample.HelloWorldProvider;
import com.ibm.dwexample.HelloWorldProviderService;

public class ClientTest {

public static void main(String[] args) {

developerWorks® ibm.com/developerWorks

Integrating JEE authorization
Page 14 of 21 © Copyright IBM Corporation 2010. All rights reserved.



HelloWorldProviderService srv = new HelloWorldProviderService();
HelloWorldProvider port = srv.getHelloWorldProviderPort();

String resp = port.sayHello("World");
System.out.println("[response] " + resp);

}
}

Now that you've created the JAX-WS consumer, you need to attach the imported
policy set to the consumer, then generate a client-side policy set binding. To do this,
complete the following steps:

1. Navigate to the HelloWorldConsumer project and select Services =>
Clients => {http://dwexample.ibm.com/}HelloWorldProviderService
=> Manage Policy Set Attachment as shown in Figure 16.
Figure 16. Manage policy set attachment

2. Click Next, then Add.

3. Verify that the service name is set to
{http://dwexample.ibm.com/}HelloWorldProviderService, then select
Policy Set => My UNT.

ibm.com/developerWorks developerWorks®

Integrating JEE authorization
© Copyright IBM Corporation 2010. All rights reserved. Page 15 of 21



4. Enter ClientUNTBinding as the Binding name, and click OK, as
shown in Figure 17.
Figure 17. Attach the policy set to the consumer

You've now attached the policy set that you created in Application Server and
attached it to the JAX-WS consumer. You've also assigned the name to the
client-side binding (ClientUNTBinding). The final step is to configure the binding:

1. Select the WSSecurity policy type in the bindings configuration and click
Configure.

2. Select
com.ibm.websphere.wssecurity.callbackhandler.UNTGUIPromptCallbackHandler
as the callback handler, as shown in Figure 18.
Figure 18. JAX-WS consumer binding configuration

developerWorks® ibm.com/developerWorks

Integrating JEE authorization
Page 16 of 21 © Copyright IBM Corporation 2010. All rights reserved.



3. Click OK, then Finish .

You've now assigned a policy set and a corresponding policy set binding to the
service consumer. You can now test the code to make sure it's really working.

Run the sample application

Because the code used in this article demonstrates using a UsernameToken (that is,
a username and password in the SOAP header) as the authentication credentials for
authenticating with Application Server, you need to ensure security is enabled on
Application Server before you test. To do this, from the Application Server
administrative console, ensure that Enable administrative security and Enable
application security are both checked. If security was not enabled, you'll need to
restart the Application Server for the security changes to take effect.

To test the application, do the following:

1. From Application Developer, right-click ClientTest.java and select Run

ibm.com/developerWorks developerWorks®

Integrating JEE authorization
© Copyright IBM Corporation 2010. All rights reserved. Page 17 of 21



As => Run Configurations.

2. As shown in Figure 19, since the consumer needs to use Java
Authentication and Authorization Service (JAAS) in order to pass in the
Username credentials, specify the following for VM arguments to point to
the JAAS login configuration file:

-Djava.security.auth.login.config="C:\Program
Files\IBM\SDP\runtimes\base_v7\profiles\was70profile1\properties
\wsjaas_client.conf"

Figure 19. Set JAAS arguments for ClientTest

3. Click Run. You should see client results as shown in Figure 20 and
server-side results as shown in Figure 21.
Figure 20. JAX-WS consumer results

Figure 21. JAX-WS provider results

developerWorks® ibm.com/developerWorks

Integrating JEE authorization
Page 18 of 21 © Copyright IBM Corporation 2010. All rights reserved.



Summary

Many Web services require authorization in addition to authentication, integrity, and
confidentiality. In this article, you've learned how to configure WebSphere
Application Server V7 to choose a security token that is part of the SOAP header as
the JEE security principal. Since this configuration is done at the binding level for the
policy set, each Web service port could have a different configuration, if desired, or
you can specify the configuration at the service level as we did in this article. Once
this configuration has been set, the JEE authorization APIs are available to
developers so that authorization decisions can be made. For EJB-based Web
services, the configured JEE principal can be used for JEE role-based authorization
checking using annotations or deployment descriptors.

Acknowledgement

The authors would like to thank Bill Dodd for his thorough review of this article.

ibm.com/developerWorks developerWorks®

Integrating JEE authorization
© Copyright IBM Corporation 2010. All rights reserved. Page 19 of 21



Downloads

Description Name Size Download
method

Sample project interchange jax-ws-caller_PI.zip 21KB HTTP

Sample policy set My UNT.zip 1KB HTTP

Information about download methods

developerWorks® ibm.com/developerWorks

Integrating JEE authorization
Page 20 of 21 © Copyright IBM Corporation 2010. All rights reserved.



Resources

Learn

• Authorization concepts and solutions for J2EE applications (developerWorks,
2006)

• WebSphere Application Server Information Center: Role-based authorization

• Redbook: IBM WebSphere Application Server V7.0 Web Services Guide

• Redbook: Web Services Feature Pack for WebSphere Application Server V6.1

• Redbook: WebSphere Application Server V7.0 Security Guide

• Redbook: Rational Application Developer V7.5 Programming Guide

• WebSphere Application Server V7 Information Center

• developerWorks WebSphere Application Server zone

• developerWorks Web services and SOA zone

• WebSphere Application Server forum

Get products and technologies

• Download Rational Application Developer V7 trial

• Download IBM SOA Sandbox for reuse

About the author

Henry Chung

Short bio

ibm.com/developerWorks developerWorks®

Integrating JEE authorization
© Copyright IBM Corporation 2010. All rights reserved. Page 21 of 21


